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Executive summary 
6G is emerging as the next generation of mobile networks, integrating tactile and mission-critical 
application domains with significant impact on daily lives. To enable a sustainable 6G ecosystem, 
with reliable operation of its services and confidence in maintaining service level agreements, 
there is a critical need to tackle the cybersecurity challenges emerging with 6G propositions. 
Some of such challenges are inherited from 5G as they have not been fully addressed, while 
others are novel with the adoption of new enablers. The latter is particularly true with the 
adoption of AI, introducing new risks to AI security as well as data privacy. The mission of the 
NATWORK project is to develop a flexible and adaptive cybersecurity framework of solutions that 
are sustainable and adaptive to 6G threats and cascade attacks against 6G infrastructure and/or 
its services.  

To be able to develop such efficient and adaptive cybersecurity solutions that meet 6G 
expectations, there is need first to analyse the foreseen security challenges associated with 
emerging propositions of the 6G architecture and its requirements; and review the landscape of 
threats and attacks already perceived in 5G and how they can evolve in 6G. Particularly, taking 
into account the infrastructure complexity and expectation of frictionless provision of services 
and seamless management over multiple autonomous 6G systems. It is further required to 
review state-of-the-art cybersecurity solutions, adopted in various domains relevant to 6G and 
assess their adoption in 6G to counter expected threats. 

This document comprehensively reviews state-of-the-art in cybersecurity of 5G and 6G networks, 
services and relevant technologies. It analyses the challenges associated with various 
components in 6G, from the radio access to the core network and from edge to core clouds. The 
document provides a detailed analysis of AI application for cybersecurity in 5G/6G and the 
security of AI when adopted in network operations. It further reviews challenges and threats to 
data privacy when sharing for AI training. Complementarily, the document reviews the affected 
threat mitigations KPIs by different types of attacks along with state-of-the-art cybersecurity 
solutions adopted in the various relevant domains. The above are used to set the priority 
challenges of the NATWORK project and guide the research and innovation efforts in 
cybersecurity solutions, within the technical work packages in the rest of the project timeline. 
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1. Introduction  
6G is emerging as the next generation in mobile networks and services. The architectural design 

is still in the making with several European and international efforts defining the requirements, 

functions, components, capacities and enablers. The main differentiators of 6G are: the 

expansion towards Terahertz wireless radio communications; connecting vulnerable end-devices 

at a much larger scale; the integration of AI in network operations from the edge to the core and 

on multiple planes (management, control, data); and, frictionless cloudification of network and 

user services over multiple clouds [Ziegler2020, Alwis2021, Porambage2021, Bhat2021, 

Jiang2021, Quy2023]. Added to that, 6G end-to-end requirements are expected to have a new 

level of stringency. They specify ultra-reliable low-latency communications (URLLC), ultra-fast 

recovery and resiliency, energy efficiency and sustainability and privacy preservation and security 

by design [Nguyen2020, Nguyen2021, Porambage2021, Quy2023].  

The prospects above introduce several cybersecurity challenges and threats of attacks, some of 

which are novel (such as AI trustworthiness and dependency on datasets), requiring scalable, 

adaptive and efficient solutions. For a start, the adoption of AI in network management and 

control requires establishing confidence and ‘trust’ in the logic of decisions, made by the machine 

learning models (ML) used in AI services. The field of explainable AI (XAI) is working building 

confidence, through explainability of decisions. But this is still primitive in maturity, when 

considering AI integration in mission and time critical operational environments.  Added to that, 

the dependency of AI on datasets introduces novel cybersecurity threats in manipulating data to 

influence AI decisions. On the other hand, AI has an emerging use in launching targeted and 

intelligent attacks circumventing existing access control, detection and protection solutions. Such 

threats and attacks have not been addressed in current state-of-the-art, nor their impact on 

stakeholders in 6G ecosystems. There is a need to analyse AI-related challenges, vulnerabilities 

and threats to develop suitable counter measures. 

ENISA provides a comprehensive risk modelling of the 5G ecosystem [ENI2024], categorized 

according to the following threat taxonomy: Nefarious Activity/Abuse of Assets (NAA), 

Eavesdropping/Interception/Hijacking (EIH), Physical Attacks (PA), Unintentional Damages (UD), 

Failures or Malfunctions (FM), Outages (OUT), Disasters (DIS), and Legal (LEG). The threat 

taxonomy is matched with vulnerabilities according to the STRIDE method, which includes 

Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of 

Privilege in various places of the 5G system. Finally, a detailed list of vulnerabilities is provided 

for various components, including the Core Network (CN), network slicing, Radio Access Network 

(RAN), Software-Defined Networks (SDN), Multi-Access Edge Computing (MEC), physical 

infrastructure, implementation options, Mobile Network Operator (MNO) processes, vendor 

processes, and security assurance processes. 
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Orthogonally, there is a new scale of complexity in service and resource management in 6G, with 

emerging need for cooperation and coordination across autonomous cloud and network 

systems. This comes with 6G adoption of the cloud-native paradigm and the target of frictionless 

service provisions over multiple clouds, extending from the edge to the core and including the 

new radio access. This means a typical 6G service will likely be managed by multiple entities, such 

as a cloud orchestrator(s) and SDN controller(s). These entities will need to coordinate their 

threat intelligence sharing and decision-making processes, not only to protect against cascade 

attacks but more so to provide security-by-design orchestration. 

The importance of availability, particularly for URLLC services, cannot be overstated. However, 

the increased complexity and interconnectivity of 6G networks also broaden the attack surface 

for malicious actors. From Distributed Denial of Service (DoS/DDoS) attacks to Economic Denial 

of Sustainability (EDoS/DoSt) attacks and sophisticated energy harvesting manipulations and 

routing attacks, the potential for disruption is vast and varied. Furthermore, physical layer 

attacks, malware, ransomware, and mobility-based attacks pose significant risks not only to 

network functionality but also to energy efficiency, crucial for achieving net-zero energy goals. 

To address these multifaceted challenges in 6G ecosystems, comprehensive security frameworks, 

innovative mitigation strategies, and collaborative efforts among industry stakeholders are 

essential [Scalise2024].  

An overarching target in any cybersecurity solutions that address 6G challenges is that they must 

be sustainable; in cost, energy consumption and the induced CO2 footprint. At the current stage 

there is no clarity on the energy requirements to meet 6G expectations, nor a mature 

understanding of the potential energy threats to 6G, abusing resource-intensive services. To be 

able to design sustainable cybersecurity solutions, there is a need to analyse the current state of 

the art of solutions and their environmental, as well as socio-economic cost in 6G systems. There 

is further need to analyse emerging threats of energy exhaustion in 6G to be able to device 

suitable detection and protection from energy-related attacks that renders a 6G deployment 

and/or service unsustainable.  

 

1.1. Purpose and structure of the document 

This document provides a comprehensive state of the art review of the cybersecurity challenges 

foreseen in the road toward 6G adoption, summarizing the potential threats and attacks and 

existing technologies and solutions to tackle them, with a special consideration on sustainability.  

The document comprehensively covers 6G components and is structured with sections focused 

on the radio access, the data plane, the orchestration and management plane and the edge-to-

core cloud. These sections cover the associated risks brought by network function virtualization 
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(NFV), the payload security, runtime (virtualization) security, AI security and AI-for-security in 6G 

as well as data privacy. The latter is covered with a separate section as being a key user and E.U 

concern notably for the adoption of novel 6G user centric services. Moreover, the document 

analyses the affected mitigation solutions KPIs by different threats and their impact in a 6G 

ecosystem. The wide coverage of state-of-the-art literature and solutions is then utilized to 

summarise the priority challenges for the NATWORK project and guide the upcoming research 

and innovation to address them. 

The remainder of this document is structured as follows: 

• Section 2 covers the security and sustainability challenges on the RAN,  

• Sections 3, 4 and 5 cover the same challenges on the Data plane, the orchestration and 

management plane and edge to core clouds, respectively, 

• Section 6 covers the challenges and threats on Data and privacy, 

• Section 7 addresses the affected network KPIs. 

• Section 8 covers state-of-the-art security solutions and technologies at play to mitigate 

identified 5G/6G threats.  

• Section 9 brings NATWORK’s road map summary, and  

• Section 10 draws the document conclusions. 

 

1.2. Intended Audience 

The NATWORK Project’s SoA analysis & benchmark assessment is devised for public use in the 

context of preparatory SoA analysis & benchmark assessment of the NATWORK consortium, 

comprising members, project partners, and affiliated stakeholders. This document mainly 

focuses on the SoA analysis & benchmark assessment methodologies, challenges, and anticipated 

benchmarks of the project, thereby serving as a referential tool throughout the project's lifespan.  

 

1.3. Interrelations 

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and 

resources from academia, industry, and research sectors, focusing on user-centric service 

development, robust economic and business models, cutting-edge cybersecurity, seamless 

interoperability, and comprehensive on-demand services. The project integrates a collaboration 

of fourteen partners from ten EU member states and associated countries (UK and CH), ensuring 

a broad representation for addressing security requirements of emerging 6G Smart Networks 

and Services in Europe and beyond. 
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NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically 

segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple 

activities across various WPs, the structure ensures clarity in responsibilities and optimizes 

communication amongst the consortium's partners, boards, and committees. The interrelation 

framework within NATWORK offers smooth operation and collaborative innovation across the 

consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e., 

Research Institutes, Universities, SMEs, and Large industries) enabling scientific, technological, 

and security advancements in the realm of 6G. The SoA analysis & benchmark assessment, 

addresses all SoA activities of the NATWORK project workplan to provide the initial guidelines for 

the development purposes of the technical WPs, such as WP3, WP4, and WP5, as well partially 

WP6.
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2. Radio Access Network (RAN) 

2.1. O-RAN open architecture and associated risks 

Several reports have been published that analyse the security challenges of the RAN networks, 

especially considering the openness aspect, which is gaining prominence in the 6G developments. 

[BSI2022] identifies the following security risks: O-RAN development process not following 

security/privacy by design/default, lack of specification & optionality introduces considerable 

risks, rights & roles concept not sufficiently defined, and selection of security protocols does not 

always follow best security practices. [CISA2022] identifies the following concerning factors: 

changing threat surface due to network disaggregation, security considerations related to open-

source software and security concerns not unique to Open RAN, e.g., cloud risks, secure 

virtualization/containerization, and Distributed Denial of Service (DDoS) attacks. [IFRI2022] 

emphasizes the following challenges: increased risk of misconfiguration and vulnerabilities in 

low-quality components, larger attack surface, potentially greater reliance on unreliable (e.g., 

open-source) components & vendors, and risk of increased dependency on foreign suppliers. 

[NTT2021] further amplifies these concerns, listing:  security issues of open-source software and 

off-the-shelf technologies, increased threat surface due to exposed interfaces, security issues 

related to added RAN functions, higher probability of physical attacks, cloud security issues, and 

process vulnerabilities. Also, [NIS2022] adds the following to the list: expanded threat surface, 

increased complexity for network fault management, deficiencies in technical specifications, 

increased dependency on infrastructure providers, impacts on network security and 

performance due to mix-and-match, and security risks due to resource sharing.  

The most recent report on Open RAN security challenges is a study [Quad2023] which develops 

a categorization of security risks for Open RAN networks, reviews existing expert reports, and 

considers how to set conditions in a neutral and non-biased manner.  Based on the developed 

methodology, a total of 1338 unique security threats have been identified. It then performs 

comparative study of Open RAN and traditional vertically integrated networks. In addition, it 

provides a resulting overall risk rating and highest risk components of Open RAN. Finally, based 

on the analysis, the report identifies the following major security challenges of Open RAN: 

• Increased RAN attack surface; 

• AI/ML related risks; 

• Cloud related risks; 

• Unreliable vendors and open-source software related risks; 

• Stakeholder management and process challenges. 
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2.2. Jamming in RAN 

Despite over forty years of evolution, cellular networks remain susceptible to jamming attacks. 

This vulnerability primarily stems from the absence of practical and efficient anti-jamming 

techniques at the wireless PHY/MAC layer, necessary for securing radio packet transmissions 

amidst jamming signals. The vulnerability also accentuates the critical need for an in-depth 

understanding of jamming attacks and for more research efforts on the design of efficient anti 

jamming techniques.  

In a recent survey [Priyadarshani2024] the authors investigated prevalent jamming attacks and 

the corresponding countermeasures in EBC technologies such as millimeter wave, terahertz, free-

space optical, and visible light communications. They classified the jamming attacks such as 

proactive, reactive, and advanced jammers. There are several jamming mitigation techniques 

such as regulated transmit power, spread spectrum techniques, spatial diversity, jamming 

filtering, adaptive coding and modulation, RIS, game theory, and AI/ML. Author [Pirayesh2022] 

conducted a comprehensive analysis of existing anti-jamming strategies in wireless networks, 

covering techniques such as power control, spectrum spreading, frequency hopping, MIMO-

based jamming mitigation, and jamming-aware protocols. They also provided a literature review 

on jamming attacks and countermeasures within emerging wireless technologies, including 

mmWave communications and learning-based wireless systems. 

An overview of jamming attacks and their mitigation techniques on 5G communications was 

presented where the author analysed the vulnerability of 5G NR to jamming, spoofing, and 

sniffing by looking at individual physical channels and signals [Lichtman2018]. Arjoune et al. 

presented state-of-the-art detection and mitigation techniques [Arjoune2020] and discussed 

their suitability to defeat smart jammers in 5G wireless networks. The study highlighted that 

while 5G New Radio (NR) enhances network resilience against jamming through dynamic 

resource allocation, it remains susceptible to sophisticated jamming attacks. This underscores 

the necessity for advanced research into robust anti-jamming strategies for 5G systems. In these 

papers, mostly the authors studied the different vulnerabilities of the NR physical layer to 

jamming attacks. Similar to LTE, it was shown that the NR physical channels and signals could be 

targeted by network-specific jamming attacks. In particular, the authors studied jamming attacks 

on PSS, SSS, PBCH, PDCCH/PUCCH, PDSCH/PUSCH, PRACH, and reference signals. In order to carry 

out jamming attacks on NR synchronization signals, the jammer must possess detailed knowledge 

of the system configurations, including the subcarrier spacing and the offset-ref-low-scs-ref-PRB 

parameter, which are crucial for pinpointing the position of the PSS/SSS within the frame. Sheikhi 

et al. [Sheikhi2020] compared how power-optimized jamming attacks affect the spectral 

efficiency of FDD and TDD massive MIMO systems. Utilizing the channel reciprocity in TDD mode, 

the jammer manipulates the estimated uplink channels to refine its jamming strategy for the 
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downlink. In FDD mode, the jammer leverages the second-order statistics of the channels to craft 

the jamming signal. 

Recently, the PHY-layer vulnerability of 5G cellular networks has been investigated for learning-

based applications. Sagduyu et al. [Sagduyu2021] introduced an adversarial attack designed to 

deceive the deep learning model utilized for dynamic spectrum allocation in 5G networks. This 

scheme involves the deliberate transmission of well-designed jamming signals during the sensing 

or data transmission phases, with the objective of manipulating the input to the Environmental 

Sensing Capability (ESC) classifier within the 5G system. Kim et al. [Kim2021] developed a 

malicious attack on learning-based beam pattern prediction in 5G mmWave networks. Their 

scheme involves introducing perturbations to the neural network input, disrupting the 

classification of beam patterns by legitimate 5G users. Furthermore, they devised perturbations 

to compel the neural network to select suboptimal beam patterns. 

Shi et al. [Shi2021] explored the susceptibility of learning-based network slicing in 5G networks. 

Their approach involves a power-constrained jammer constructing a reinforcement learning 

model to monitor channels and disrupt Physical Resource Blocks (PRBs) to maximize the 

disruption of network slicing requests. Simulations revealed that while machine learning 

promises enhanced reliability and efficiency for 5G networks, it is significantly vulnerable to 

adversarial attacks, posing a threat to 5G performance degradation. It is worth mentioning that 

these Jamming attacks on cellular networks often necessitate precise timing synchronization to 

effectively disrupt specific control signals. Given that synchronization signals are broadcast 

periodically, malicious attackers can readily obtain the necessary timing information. 

Consequently, these targeted jamming attacks represent a significant threat to cellular networks. 

2.3. User access, security and mobility threats 

2.3.1. DoS and DDoS Attacks 

Access availability is paramount for ensuring uninterrupted communication and service delivery 

in 6G networks. DDoS attacks exploit vulnerabilities in network infrastructure, causing outages 

and disrupting connectivity for users. These attacks often target critical resources such as servers, 

routers, and bandwidth, crippling the network's ability to handle legitimate traffic. As 6G 

networks are expected to support a myriad of applications, including URLLC services, ensuring 

high availability becomes even more critical to meet stringent performance requirements. DDoS 

attacks hinder accessibility by saturating network links and degrading the quality of service for 

legitimate users. The excessive traffic can lead to increased power consumption as infrastructure 

components work harder to process and mitigate the bogus requests [Naser2023]. This can have 

profound implications for applications that rely on real-time data transmission, such as 

autonomous vehicles and remote healthcare systems. Ensuring equitable access to network 
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resources while mitigating the impact of malicious attacks requires a comprehensive security 

framework that proactively identifies and mitigates potential threats. The acceptability of a 6G 

network hinges on its perceived reliability, security, and resilience. DDoS attacks undermine 

acceptability by disrupting services and eroding user trust in the network infrastructure. 

Moreover, the proliferation of interconnected devices and the Internet of Things exacerbates the 

attack surface, increasing the likelihood of successful infiltration by malicious actors [Chen2024].  

To enhance acceptability, network operators must invest in robust security measures, conduct 

regular risk assessments, and collaborate with stakeholders to address emerging threats 

effectively. Affordability encompasses the economic viability of accessing and utilizing network 

services. DDoS attacks can incur significant financial losses due to downtime, mitigation costs, 

and reputational damage. For businesses and organizations, the affordability of 6G network 

services depends on the ability to mitigate these risks while maintaining cost-effective 

operations. Investing in scalable security solutions, leveraging artificial intelligence and machine 

learning for anomaly detection, and adopting resilient network architectures can help mitigate 

the financial impact of DDoS attacks and ensure the long-term affordability of 6G networks. To 

address the threat of DDoS attacks in 6G networks, a multi-faceted approach to security is 

necessary. This includes deploying intrusion detection and prevention systems (IDPS), 

implementing traffic filtering mechanisms, and leveraging DDoS mitigation techniques. 

Additionally, fostering collaboration among industry stakeholders, government agencies, and 

cybersecurity experts is essential for sharing threat intelligence and best practices. By proactively 

identifying vulnerabilities and implementing robust security measures, the 6G ecosystem can 

mitigate the risk of DoS/DDoS attacks and ensure the resilience and integrity of communication 

networks [Musa2024, Scalise2024]. 

2.3.2. eSIM Security 

Embedded Subscriber Identity Module (eSIM)-based identities and provisioning offer 

opportunities for innovation and growth in IoT ecosystems. For instance, eSIMs can enable new 

business models and revenue streams for service providers, such as pay-on-use subscriptions and 

dynamic network selections. They also facilitate adopting new IoT applications, including 

connected vehicles and smart homes or cities [Krish2024]. A European Union Agency for 

Cybersecurity (ENISA) study examines the security challenges of eSIM technology, highlighting 

issues like bloated and locked profile attacks, memory exhaustion, undersized memory exploits, 

and eSIM swapping [Bafo2023]. These vulnerabilities can allow attackers to disrupt services or 

steal confidential data. While there have been few recorded cybersecurity incidents, the 

widespread deployment of IoT devices and increased use of eSIMs could lead to more cyber 

events. Key challenges in IoT implementations include the time-consuming and costly 

provisioning and administration of devices. Secure provisioning of services, which involves 

granting access to data, applications, and updates, is crucial but traditionally requires human 
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intervention, increasing the risk of errors and attacks. eSIMs present an alternative to these 

issues. Another major challenge is the need for a common standard for eSIM technology, leading 

to potential interoperability problems between different devices and networks. Ensuring reliable 

Over-the-Air (OTA) management requires robust security protocols and infrastructures, which 

can be difficult to implement in remote or challenging environments. 

Risk 1: eSIM Swapping: Attackers can perform eSIM swapping by obtaining personal data and 

claiming device damage to gain access to the subscriber's account on the Mobile Network 

Operator (MNO)'s portal. They initiate an eSIM swap and scan the displayed QR code to activate 

the profile. This can lead to profile deactivation, loss of connectivity, unauthorized access, and 

potential espionage. Tools like Simjacker exploit SIM toolkit instructions to manipulate profiles 

and intercept subscriber credentials. 

Risk 2: Memory Exhaustion: Memory exhaustion attacks deplete the Embedded Universal 

Integrated Circuit Card (eUICC)'s memory resources, preventing it from providing the related 

services. By exploiting the remote provisioning procedure's error handling, attackers can fill the 

eUICC's memory with empty Issuer Security Domain-Profiles (ISD-Ps), leading to orphaned 

profiles. This can result in financial loss for MNOs and make device recovery impossible. The 

attack is complex to trace as it leaves no evidence besides lost messages. 

Risk 3: Under sizing Memory: A malicious Subscription Manager-Secure Routing (SM-SR) 

component can prevent profile installations by manipulating the 'remaining Memory' field in the 

Embedded Universal Integrated Circuit Card Information Set (EIS) file to zero. This stops new 

profile uploads and can remain undetected, especially in devices with multiple profiles. The 

attack disrupts MNO and Subscription Manager Data Preparation (SM-DP) operations and 

hampers service provisioning. 

Risk 4: Inflated Profile: An inflated profile attack, initiated by a compromised SM-DP or malicious 

MNO, exhausts the eUICC's available memory by creating a profile that fits the memory size. This 

prevents other operators from storing profiles on the eUICC. The attack can be detected only if 

the profile leaves sufficient memory for new profiles. 

Risk 5: Locking Profile A malicious MNO: a device can be locked to a specific network by installing 

a profile with a modified POL1 (data describing the Policy Control Functions in a profile) file that 

includes the 'Can not Be Disabled' rule. This action turns off other profiles and prevents MNOs 

from deleting the compromised profile, effectively locking the eUICC to a particular network. This 

tactic can be used for cyberwarfare, supply chain attacks, or competitive blocking. 

Risk 6: Protocol Attacks: Attackers persuade users to install malicious applications or 

compromised apps containing malicious code. These apps can access sensitive information, such 

as phone numbers and messages, especially on rooted devices. Attackers can launch 'man-in-
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the-middle' attacks and traffic eavesdropping by acquiring security files as plaintexts. The lack of 

user security awareness facilitates these attacks. 

Risk 7: Attacks on MNOs and the eSIM Supply Chain: Attackers target MNOs and other entities 

in the eSIM supply chain, including software developers and product manufacturers. By accessing 

secure source codes and infecting legitimate apps, they can spread malware and leak 

information. Such attacks erode trust in the provisioning delivery supply chain and disrupt 

operations. 

Risk 8: SIM Data Extraction: This attack involves extracting sensitive data stored on the eSIM, 

such as authentication keys, user profiles, and other personal information. Attackers might use 

physical attacks, side-channel attacks, or software exploits to gain access to the data stored on 

the eSIM. Extracted data can be used for various malicious purposes, including cloning the eSIM 

to impersonate the user, accessing the user’s network services, or selling the information on the 

black market. It compromises user privacy and can lead to significant financial and reputational 

damage. 

Several measures can be implemented to counter the risks associated with eSIM technology. For 

eSIM swapping, enhanced authentication methods such as Multi-Factor Authentication (MFA) 

should be used to secure account access and profile changes. Monitoring systems can detect 

unusual activities, such as multiple swap requests, and alert users and administrators. Ensuring 

that QR codes for profile activation are secured and accessible only through authenticated 

sessions can also help prevent unauthorized access. 

To address memory exhaustion attacks, request throttling can limit the number of provisioning 

requests within a specific timeframe, preventing resource exhaustion. For undersized memory 

attacks, integrity checks on EIS can detect and prevent manipulation. Inflated profile attacks can 

be mitigated by implementing strict validation checks for profile sizes before installation and 

setting policies to limit the maximum memory a single profile can occupy. Monitoring memory 

usage and profile installations can help detect and respond to potential inflation attacks. For 

locking profile risks, implementing policies to prevent modifications to POL1, developing 

mechanisms to revoke or disable compromised profiles, and ensuring prompt notification and 

recovery processes are essential. 

To counter protocol attacks, users should be encouraged to download apps only from trusted 

sources and keep their devices updated with security patches. App permissions should be limited, 

especially those requiring sensitive information or root access. Promoting security awareness 

among users helps them recognize and avoid malicious applications while implementing root 

detection mechanisms prevents apps from running on rooted devices. 
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To protect against attacks on MNOs and the eSIM supply chain, conducting thorough security 

assessments, regular audits, and compliance checks are necessary. Countermeasures against SIM 

data extraction will ensure that the remote provisioning of eSIM profiles is conducted over secure 

channels, which is crucial for maintaining security. This involves using strong encryption and 

authentication mechanisms to protect the data transmitted between the mobile network 

operator (MNO) and the eSIM. Secure provisioning prevents unauthorized access during profile 

download and installation, ensuring that only legitimate profiles are added to the eSIM. Using 

eSIMs with tamper-resistant hardware is essential for enhancing physical security. Tamper-

resistant eSIMs are designed to resist physical attacks and make data extraction significantly 

more difficult. These hardware components are equipped with protective measures such as 

secure memory, cryptographic modules, and physical shielding. These features prevent attackers 

from accessing sensitive information stored on the eSIM through physical manipulation or 

hardware-based exploits. By integrating tamper-resistant hardware, manufacturers can ensure 

higher security, protecting the eSIM from physical breaches and enhancing overall data 

protection. 

2.3.3. Mobility-based Attacks 

Mobility-based attacks in 6G networks pose significant challenges, particularly given the intricate 

interplay between high mobility and the need for seamless, secure connectivity. These attacks, 

such as location spoofing, handover disruptions, routing manipulations, relay attacks, sybil 

attacks, man-in-the-middle (MitM) attacks and timing attacks, exploit vulnerabilities that arise 

from the constant movement of devices. For instance, attackers can manipulate handover 

protocols to force frequent transitions between cells, leading to increased signalling overhead 

and inefficient use of network resources. Similarly, false routing information can disrupt the 

optimal flow of data, causing increased retransmissions and higher energy consumption as the 

network struggles to maintain connectivity [Liu2021].  

From the perspective of achieving net-zero energy consumption, mobility-based attacks can have 

a particularly detrimental impact. Efficient energy use is a cornerstone of net-zero initiatives, and 

the additional processing and communication overhead caused by such attacks directly 

contradict these goals. For example, excessive handovers triggered by handover attacks or the 

need to reroute data multiple times due to routing attacks can lead to increased energy 

expenditure in both network infrastructure and mobile devices. This heightened energy usage 

not only raises operational costs but also escalates the carbon footprint of the network. 

Addressing these security vulnerabilities is thus essential not only for maintaining robust and 

reliable connectivity but also for ensuring that the sustainability targets of 6G networks are met 

[Saeed2023, Naser2023]. 
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2.3.4. Radio Attacks 

Although 5G is supposed to be 90% more efficient than 4G in terms of energy consumption per 

unit of traffic W/Mbps [Williams2022], the total increase in traffic due to enhanced capabilities 

that 5G New Radio provides is somehow debated, with Ericsson suggesting  that is possible to 

quadruple the data traffic without increasing network energy consumption with the 

modernization of infrastructure and its management with the help of AI, the use of energy saving 

software and optimizing 5G network performance [Ericsson2020]. However, as mentioned in 

[Williams2022], the methods and data used to these estimations are not publicly available, so 

conclusions are difficult to draw from them. However, these predictions are made based on a 

normal behaviour of the network, which can be disrupted by several attacks. Focusing first on 

the physical layer, some of the most prominent ones are jamming, eavesdropping and pilot 

contamination attacks. 

2.3.4.1. Jamming 

Jamming is a Denegation of Service attack type, defined as the generation of interference with 

the objective of preventing legitimate communications in any wireless network. There are several 

types of jamming strategies, mostly focused on using the less possible power to effectively 

disrupt communications, as the generation of interference with enough strength is very supply 

demanding. Some of them are [Pirayesh2022]:  

• Constant jamming: the simplest one, radiating a signal in all available bandwidth 

without interruption.  

• Random jamming: instead of always being active, this jamming turns on and off at 

random time periods, saving power proportional to the amount of time that it is turned 

off.  

• Periodic jamming: similar to the previous one, but it switches between attacking and 

sleep periodically instead of randomly (which makes it easier to detect but, in some 

scenarios, more effective due to some communications in 5G and other networks are 

periodic too).  

• Reactive jamming: more complex than the previous ones, it sniffs the link and only 

attacks when detects that a legitimate communication is taking place (the disadvantage 

is that it may have a delay in its attack).  

In general, for a jamming attack to be more effective and efficient, it needs more information 

and understanding of the network behaviour. In particular, some 5G sequences such as PSS and 

PBCH are some of the less complex and effective jamming spots to prevent users from accessing 

network as shown in [Lichtman2018], which compares different 5G signals in terms of their 

complexity and power efficiency as a measure between the average received jammer power and 

the signal power, over one 5G frame). 
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The effects of jamming in network energy consumption are harmful in general. Detection and 

countermeasures usually involve additional processing which will lead to an increase in energy 

consumption. Furthermore, there is a concept known as “energy harvesting” from a jamming 

attack, as shown for example in [Al-Hraishawi2023] which interestingly proposes a scheme that 

enables multiple legitimate users to harvest energy from surrounding multiple jamming attacks 

in a 5G and beyond mMIMO scenario, where there exists a trade-off between the amount of 

energy obtained and the achievable sum rate, increasing the transmitted power or the overall 

system performance [Al-Hraishawi2021] (previous study on a non-multiple users scenario). Other 

applications of that harvested energy are shown in [Belmega2017], used to generate a secret key 

(SKG) and in [Rezgui2019], where the legitimate user can neutralize the jammer attack by tuning 

the transmit power and the energy harvesting duration. 

2.3.4.2. Other radio attacks 

Eavesdropping is a type of attack against users’ privacy, in which the attacker tries to obtain the 

data exchanged between gNodeB and UE in 5G. At its core, it is a passive attack, which makes it 

undetectable, but it can only obtain unencrypted data (although it is possible to extract statistical 

information about the communications even with encrypted messages). In 5G networks, that is 

the case of broadcast messages (like the SSB for example) and the first messages with the UE 

when it starts the synchronization procedure to access the network. As a passive attack it does 

not impact directly in the energy consumption; however, popular countermeasures as the 

injection of artificial noise [JindanXu2020] effectively demands large amounts of power usage, as 

the scheme requires to use beamforming to send the data signal correctly to their legitimate 

receiver and also needs to radiate artificial noise (like a jamming attack against possible 

eavesdroppers) over the rest of the transmission directions. In [Chen2020], energy efficiency is 

considered using a constraint on the total transmitted power on their algorithm (namely, Secrecy 

Energy Efficiency Maximization (SEEM)).  

On 6G scenarios, [Mitev2023] explains the use of secret key generation (SKG) applying the 

channel between Alice and Bob and the importance of focusing on short coding block length 

scenarios (as secrecy capacity [Wyner1975] increases with block length, but this is a constraint in 

realistic scenarios). This paper also mentions and explains the use of hybrid crypto systems in 

combination with the SKG, which let optimize the problem imposing new constraints, such as 

channel capacity or power (which could be interesting to achieve net-zero scenarios). In [Li2020], 

the authors propose a Physical Layer Security (PLS) scheme combined with an edge caching 

scenario (storing contents requested by users on edge servers) with two hops (if a BS does not 

have the content in cache, it requests this from another BS to send it to the user) optimizing the 

secure transmission probability, which is broken apart into connection probability and 

confidentiality probability, optimizing the redundancy rate jointly with the caching probability. 
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With more knowledge of the network, attackers can use legitimate signals to try to impersonate 

a node. The so called pilot contamination attacks (PCA) are based on using pilot signals (some of 

them can be replicated, computing the sequence and locating it in time and frequency following 

the 3GPP standard for 5G for example) which can lead to DoS due to mistakes in the channel 

estimation or help to eavesdrop signals when that channel estimation is used in the 

beamforming, which would be made using the deceptive pilot. Other advanced attack is the 

spoofing, which is also the use of legitimate signals, usually to perform a man-in-the-middle 

attack and obtain sensible information. In [Mitev2023], the SKG scheme is also discussed under 

an active attack with a countermeasure consisting of transmitting randomized probe signals 

instead of deterministic pilots [Mitev2019]. Another approach against PCA is the use of deep 

learning algorithms, such as generative adversarial networks (GANs) as in [Yadav2024], to 

discriminate pilot contamination signals from the legitimate ones. Finally, physical layer 

authentication (PLA), where physical characteristics of the device or channel are used to identify 

it, which can lead to discover attacks as usually all spoofing signals come from the same source 

and direction [Nguyen2020] or the hardware-specific characteristics of a device can be compared 

with a reference template [Jian2020]. As shown in [Senigagliesi2020], deep learning models can 

outperform conventional statistical methods for PLA. 

Other types of attacks are more focused on the authentication process. The work of  [Shaik2019] 

highlights that the device capabilities are exchanged in LTE and 5G without protection or 

verification, which leads to some attacks like identification ones (discovering software or 

hardware characteristics), bidding down attacks (hijack a legitimate user to use a network with 

lower data rates, like LTE or even 3G/2G) and finally, particularly delicate against the net-zero 

objective, a battery draining attack against NB-IoT devices to breakdown their power saving 

capabilities. This type of attack has also been identified as a risk in satellite communications 

[Zhang2023], preventing the satellite from entering a hibernating and making it overuse of its 

battery, and is mentioned as a critical vulnerability. Although the literature about energy drain 

attacks in B5G and 6G scenarios is limited, the work of [Moussaoui2022] mentions the 5G 

vulnerability to these battery-drain attacks as a subtype of MitM attack and set it as a security 

requirement for the incoming network. On a specific use case scenario [Hakeem2022], the 

battery drain attack is also mentioned as a hazard in the case of wireless brain-computer 

interactions (BCI) using 6G network, with this being particularly relevant as it may pose a threat 

to the user own health. 

2.3.5. DDoS in RAN 

The DDoS attacks are becoming more prevalent in recent years, with a 10x increase between 

2005 to 2022 [Hummel2022] and already in 2019 there were estimated 23 million DDoS weapons 

worldwide ready to attack [Bacon2019]. This makes the DDoS attacks some of the most damaging 

cybersecurity threats. In 5G it becomes even more dangerous compared to previous cellular 
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generations, due to the fact possibility of millions of IoT devices being able to connect to the 

network in an mMTC paradigm, thus making them also a possible target of hackers to create 

botnets which can be used for DDoS attacks. The report [BPI2019] cited DDoS as the most 

significant security concern of the 5G industry. 

The components of the 5G communication system, including User Equipment (UEs), access 

networks, and core networks, are susceptible to security breaches [Khan2022]. In a network 

slicing scenario, where access and core network functions (such as the User Plane Function (UPF)) 

are virtualized on shared physical resources, the attack surface expands. For instance, a UE 

infected with malware could inundate a virtualized UPF function with DoS traffic. In more severe 

instances, multiple compromised UEs could form a botnet to launch DDoS attacks against a UPF, 

leveraging a network of interconnected UEs. Such attacks have the potential to impact the 

performance of unaffected UEs utilizing the same or different slices that share the targeted UPF. 

Many data sets including CICDoS [Jazi2017], CICIDS2017, CSECICIDS2018 [Sharafaldin2018], and 

CIC-DDoS2019 [Sharafaldin2019] are available for DoS/DDoS attacks. Author et al. delve into user 

plane DDoS attacks leveraging the IP protocol stack to generate excessive traffic 

[Abdelrazek2024]. A thesis paper showed a simplified implementation of DDoS attack on 5G and 

analysed its performance [Shorna2021]. 

3. Data-plane 

3.1. Data plane threats 

The deployment of 5G networks introduces new vulnerabilities and threats, particularly in the 

user plane and through the data plane devices of Software Defined Networking (SDN). In the 

5G/6G core segment of the network, the attacks and the vulnerabilities conceived in the data 

plane are similar to those affecting a standard SDN/NFV environment. Interception and 

eavesdropping involve unauthorized access to data as it travels between the UE and the network 

core. Despite the enhanced encryption protocols in 5G, weaknesses in these protocols or their 

implementation can still be exploited. For instance, vulnerabilities in the encryption key 

management or flaws in the software can be targeted by attackers to intercept sensitive 

communications. Such breaches can lead to the exposure of confidential information, including 

personal data, financial transactions, and sensitive communications. This not only violates user 

privacy but can also have broader implications for data security across networks [Ahmad2019] 

[Li2021]. 

Compared to the attack using the signalling protocol on the control plane, the protocol-based 

attack on the user/data plane of the 5G/6G core network has not attracted much attention so 

far. Only a few DoS and message tampering attacks, using the SIP protocol to connect to the IMS 

server built within carriers to provide VoLTE services in the 4G network, have been announced. 
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However, because various IoT services and voice services are provided in the 5G network, it is 

expected that DDoS attacks using protocol messages on the user plane will become a major issue. 

Potential network-based attacks on the user plane have been classified into three types: GTP-U 

protocol-based attack, SIP protocol-based attack and IoT protocol-based attack.  

3.2. GTP-U, SIP protocol and IoT protocol-based threats 

The GTP-U protocol is a tunnelling protocol that operates in the user plane by connecting with 

the GTP-C of the control plane. A typical attack based on the GTP-U protocol is a DoS attack that 

overloads the 5G core equipment through the GTP-in-GTP attack. There is a possibility that an 

attacker may obtain network and subscriber information, including the tunnel endpoint 

identifier, by exploiting the vulnerabilities of the GTP protocol. It is also possible to induce a DDoS 

attack on networks with messages exploiting GTP through IoT botnets [Pineda2023].  

The SIP protocol is a voice signal control protocol used to provide VoIP over LTE services. Research 

by the authors in [Ko2016] has shown that attackers can conduct protocol-based attacks, such as 

DoS attacks and call hijacking, by exploiting SIP messages. Various messages, such as INVITE, 

which is a call control message of the SIP protocol, can be used for these attacks. 

In the 5G mobile network, the data traffic of IoT devices, in addition to the data traffic generated 

by existing smartphones/UE, is expected to increase [Li2021]. For IoT-based DDoS attacks, 

various types of DDoS are possible on the network protocol stack. These include attacks on IoT 

application protocols (e.g., MQTT, SOAP) and traditional IP attacks (e.g., SYN flood, UDP flood, 

DNS flood, HTTP flood). The main targets of these IoT DDoS attacks are the 5G network 

infrastructure (RAN, core equipment, network slice, memory of physically shared platform, etc.), 

the Internet service application servers connected via 5G network infrastructure, and the devices 

connected to the 5G network. These latter IoT DDoS attacks can deplete interconnected network 

infrastructure resources, potentially resulting in a large-scale service failure. 

Last, on IoT protocols, the most considered type of attacks (i.e., DDoS), several ways can be used 

to affect the operation of core networks resorting to the data plane, including proper inter-slice 

operation. The work in [Sathi2021] proposes a new targeted attack, the Distributed Slice Mobility 

(DSM) attack, aimed at the network slices of 5G networks. This attack exploits user-initiated inter-

slice mobility and results in performance and economic harm to the control plane functions and 

the targeted network slice. The detection of DSM attack is challenging since it originates from 

legitimate traffic. The work also outlines defence strategies to mitigate performance damage 

from the DSM attack but acknowledges the difficulty in devising practical solutions to prevent 

economic damage. A relevant threat analysis was carried on by the work in [Amponis2022], 

focusing on attacks impacting the UPF functionality. In particular, authors focus on the PFCP 

protocol running in the 3GPP N4 interface, between the Session Management Function (SMF) 
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and the User Plane Function (UPF). Attacks performed using this protocol can disassociate UE 

from the data net, exhaust the UPF resources to handle legitimate connection requests, perform 

eavesdropping attack. The authors evaluate the adoption of these attacks in a 5G-enabled drone 

swarm scenario targeting the attack to specific swarms. The same authors extend the scope of 

the attacks targeting the UPF also including the handover functionalities in the work in 

[Amponis2023], in which the authors release datasets related to malicious GTP traffic in the data 

plane. A final aspect concerns the security countermeasures adopted to enhance the UPF 

protection. Authors in [Je2022] discuss the evolution of User Plane (UP) security, highlighting the 

introduction of full-rate UP integrity protection (UPIP) in Release 16 of the 3rd Generation 

Partnership Project (3GPP) standards to enhance security. However, implementing full-rate UPIP 

requires increased computational resources, particularly in the Packet Data Convergence 

Protocol (PDCP) layer. To address this challenge, the authors propose a new concept called 

Selective UP Security at the PDCP layer. This approach identifies packets where application layer 

security (e.g., Transport Layer Security - TLS) has already been applied and applies additional 

PDCP layer security only to non-encrypted portions, reducing processing overhead significantly.
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4. Orchestration and management plane  

4.1. Orchestration and management challenges 

Metropolitan 6G core networks are foreseen to be enabled by a connected set of autonomous 

systems, consisting of multiple heterogeneous programmable transport networks and clouds 

[Ziegler2020, Alwis2021, Porambage2021, Bhat2021, Quy2023]. These require end-to-end 

decentralised management and orchestration, foreseen to be backed by intelligent decision 

support through AI services [Siriwardhana2021, Alwis2021, Bhat2021, Parra-Ullauri2024]. This is 

to enable frictionless provision of 6G network slices, distributed and connected over multiple 

heterogenous Autonomous Systems (ASes). Providing such end-to-end orchestration requires 

addressing a range of existing and emerging security challenges, to secure the 6G infrastructure 

and more so to provide security level agreements to 6G slices. The higher degree of 

decentralisation and multi heterogeneous domain interaction in 6G means that detecting 

malicious behaviour and acting on requires larger and more frequent sharing of threat 

intelligence information across domains.  

Energy efficiency is another critical factor to enabling sustainable operation of 6G services and 

the underlying infrastructure. Tackling energy-exhausting threats in 6G is a non-trivial challenge. 

Since cloudification emerged in 5G, attacks against cloud infrastructure have increased. 

Particularly, (Distributed) Denial of Service (DoS/DDoS) and more recently the evolved Denial of 

Sustainability (DoSt) - a.k.a Economic Denial of Sustainability (EDoS) - variant [Monge2019, 

Dennis2021, Catillo2023]. Both forms of attacks exploit the cloud capacity to absorb growth in 

workload by scaling up virtual resources, and the primitive decision support from threat shielding 

systems, to the orchestration counterparts. The additional challenge with DoSt attacks is the 

difficulty in detecting them. Unlike DoS/DDoS attacks, DoSt do not disable their target service. 

Instead, they increase the load/demand level to a threshold below the capacity limit, thus 

continually exhausting service resources and causing them to scale up beyond the budget limit 

of the service provider [Porambage2021, PorambageGur2021]. For cloudified services, this 

translates into higher operational costs for the service provider, incurred by the additional cloud 

cost to absorb the attack, rendering the service unsustainable to operate [Monge2019, 

Dennis2021, Lalropuia2021, Catillo2023]. The impact of DoSt can be particularly high for 

resources intensive services, such as AI and Distributed Ledger Technologies (DLTs), as a slight 

increase in demand could result in a significant increase in resource utilisation. Added to that, 

the novel ways in which such services can be abused - for example through ‘convergence 

prevention’, makes attack tracing and identification hard [PorambageGur2021]. 

Aside from the cloud, the focal point of cybersecurity in 5G has been around protecting the 

management overlays. In SDN and NFV realms, attacks against SDN controllers and NFV MANOs 
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have been the main challenges [Porambage2021, Siriwardhana2021, ShenFeng2023]. These have 

been largely driven by vulnerabilities in APIs exposed between the middleware elements 

(controller, MANO components) and data-plane elements. The vulnerability of APIs poses critical 

security challenge. Because the management and orchestration plane of modern Beyond 5G and 

future 6G telecommunication networks is reliant on APIs given its design to be automated in near 

real-time, a process standardized as Zero touch network and Service Management (ZSM) by the 

European Telecommunications Standards Institute (ETSI) [Ortiz2020], follows a cyclic closed-loop 

approach of "monitoring", "analysing", "detecting", "deciding", and "enforcing". ETSI is also the 

main Standard Development Organization (SDO) behind the Network Function Virtualization 

(NFV) standard, initiating the movement of telecommunication networks (5G and future 6G 

network) towards virtualizing its assets and enabling the software-based orchestration of 

network functions (NFs) and network slices. The ETSI NFV defined additional components for the 

security orchestration in the NFV architecture such as the OSS security manager (OSSM), NFV 

Security Manager (SM) and Security Agents (SA)[NFV-SEC024], enabling the integration of new 

automated optimized security orchestration that leverages AI/ML. 

Complementary, the stringent requirements for 6G QoS, require ultra-fast responsiveness and 

reliability from cybersecurity services, in addition to being energy efficient. These, namely energy 

efficiency, responsiveness and reliability may well be some of the biggest challenges to be 

addressed for 6G cybersecurity services [Porambage2021, ShenFeng2023, SalahdineHan2023, 

Parra-Ullauri2024]. 

To enable cloudified and sustainable 6G networks at scale, it is critical to develop scalable 

cybersecurity solutions that: a) feed threat intelligence of D/DoS and DoSt to orchestration 

middleware layers; b) develop novel anomaly detection solutions for emerging services (e.g. AI 

and DLT); and c) extend said middleware with logic and intelligence to make orchestration 

decisions (e.g. service placement, migration, routing, mapping) based on the security ‘hardness’ 

of infrastructure and the pattern of demand offered to 6G services. Moreover, the trajectory of 

requirements stringency, strongly suggests increased reliance on proactive decision-making 

based on continual learning and predictions to achieve the high responsiveness needed to meet 

said requirements. 

4.2. ML based orchestration threats 

As the telecommunications industry progresses towards the deployment of 6G networks, 

numerous security challenges related to data and machine learning (ML) are emerging. The 

anticipated capabilities of 6G, such as ultra-low latency, massive connectivity, and enhanced data 

rates, will heavily rely on advanced ML algorithms for efficient operation and management. 

However, the integration of ML in 6G also introduces new vulnerabilities and threats. This section 

explores the current state of research and identifies the key security challenges in this domain. 
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4.2.1. Machine Learning Security Challenges 

4.2.1.1. Model Security 

The integration of machine learning (ML) in 6G technologies introduces several security 

challenges that need to be addressed to ensure robust and secure networks. Protecting ML 

models from various attacks is vital for maintaining the reliability of 6G networks: 

• Model Inversion Attacks: Attackers can reconstruct input data from the outputs of ML 

models, posing a threat to data privacy. Techniques like secure multi-party computation 

and homomorphic encryption are being explored to protect against such attacks 

[HussainR2020]. 

• Adversarial Attacks: One of the primary security concerns is the susceptibility of ML 

models to adversarial attacks. These attacks involve subtly manipulating input data to 

deceive the ML model into making incorrect predictions or classifications. For example, 

adversarial attacks like the Fast-Gradient Sign Method (FGSM) can significantly increase 

the mean square error of ML models used for tasks such as mmWave beam prediction, 

rendering them ineffective under attack [HussainR2020]. 

• Reinforcement Learning attacks: In this type of attack, a malicious user utilizes 

Reinforcement Learning algorithms to autonomously learn and execute strategies that 

disrupt 5G and 6G components [SANCUS]. In these attacks, an RL agent is trained to 

identify and exploit vulnerabilities within a network by executing various attack 

scenarios. Through a process of trial and error, the agent optimizes its actions to 

maximize disruption, such as overwhelming network resources or manipulating traffic 

patterns to cause service outages. This method allows for adaptive and intelligent 

attacks that can dynamically adjust based on the network's defences and 

configurations, making them particularly challenging to detect and mitigate.  

• Model Integrity and Data Poisoning: Ensuring the integrity of ML models and training 

data is crucial. Data poisoning attacks can corrupt training datasets, leading to 

compromised models that make erroneous decisions. This is particularly dangerous in 

critical applications like autonomous driving or healthcare, where accurate predictions 

are vital [Zhang2020][Zhou2021][Ramirez2022]. 

• Privacy Concerns: ML models often require large amounts of data, which can include 

sensitive personal information. Protecting this data from unauthorized access and 

ensuring compliance with data protection regulations is essential. Techniques like 

federated learning, which allows models to be trained on decentralized data, can help 

mitigate these privacy concerns [Zhang2020]. 

• Model Stealing and Evasion: Attackers can also attempt to steal ML models or evade 

them. Model stealing involves reverse-engineering a deployed model to understand its 

parameters and functionality, potentially leading to intellectual property theft. Evasion 
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attacks aim to make the ML model miss certain patterns, such as not detecting a 

specific type of network intrusion [Truong2021]. 

• Explainability and Trustworthiness: Ensuring that ML models are explainable, and their 

decisions are transparent, is important for building trust. Explainable AI techniques can 

help provide insights into how decisions are made, which is crucial for human security 

experts to verify and validate the models' outputs [Truong2021]. 

• Adaptive Security Mechanisms: The dynamic nature of 6G networks necessitates 

adaptive security mechanisms that can respond to evolving threats in real-time. ML 

models themselves must be capable of adapting to new types of attacks and 

continuously improving their defense mechanisms through techniques such as 

adversarial training and reinforcement learning [Truong2021]. 

4.2.1.2. Trustworthiness and Explainability 

Machine learning (ML) trustworthiness and explainability are critical challenges in the context of 

6G technologies. As 6G networks integrate more advanced and ubiquitous ML and AI 

technologies, ensuring these systems are both trustworthy and explainable becomes paramount 

for the security, reliability, and user acceptance of the network. The primary challenges are 

outlined in [Brik2023, Wang2022] and include the following: 

• Security and Privacy: The deployment of ML models in 6G networks introduces 

significant security and privacy concerns. Models can be susceptible to adversarial 

attacks, where inputs are subtly altered to mislead the model, causing incorrect 

predictions without being detected. Additionally, data privacy is a critical issue, 

especially with the vast amount of personal and sensitive information processed by 6G 

networks. Ensuring the integrity and confidentiality of this data is crucial for 

maintaining trust in ML applications. 

• Bias and Fairness: ML models can inherit biases present in the training data, leading to 

unfair and discriminatory outcomes. In a diverse and globally connected 6G 

environment, biased ML decisions can have widespread negative impacts. Ensuring 

fairness involves rigorous auditing of training datasets and implementing bias 

mitigation techniques throughout the model development process. 

• Robustness: ML models need to be robust to variations and uncertainties in data. In 

the dynamic and heterogeneous 6G environment, models must perform reliably across 

different contexts and conditions. Robustness testing and the development of models 

that can generalize well to new, unseen data are essential for trustworthiness. 

• Complexity of Models: As ML models, particularly deep learning models, become more 

complex, understanding how they make decisions becomes increasingly difficult. This 

lack of transparency can hinder the ability of users and operators to trust and 

effectively manage these models. Techniques for explainability, such as interpretable 
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models, feature importance scoring, and model-agnostic explanation methods, are 

necessary to make these complex models more understandable. 

• Regulatory Compliance: With stringent regulations around data protection and 

algorithmic transparency, particularly in regions like the EU with GDPR, there is a 

pressing need for ML models to be explainable. Regulatory bodies require explanations 

for automated decisions, especially those impacting consumers' lives, such as in 

healthcare or finance, which are services likely to be integrated with 6G technologies. 

• Human-AI Interaction: For effective deployment of ML in 6G, there must be a synergy 

between human operators and AI systems. Explainability plays a key role in fostering 

this interaction by allowing operators to understand, trust, and effectively intervene in 

AI-driven processes. This is crucial for maintaining control over critical network 

operations and ensuring that AI systems augment rather than undermine human 

decision-making. 

Ongoing research focuses on developing frameworks and tools to enhance both trustworthiness 

and explainability in ML models used in 6G networks. For example, the SIX-Trust framework 

introduces layers of trust (Sustainable Trust, Infrastructure Trust, and Xenogenesis Trust) to build 

a holistic trust model for 6G networks. Additionally, explainable AI (XAI) techniques are being 

integrated into the design of 6G networks to provide transparency and accountability in AI-driven 

processes. 

4.2.2. AI-based Attacks 

Considering the advancements in AI, particularly in the use of adversarial neural networks for 

DoS attacks on 5G and beyond networks, it is crucial to prioritize the development of defence 

mechanisms. AI systems' capability to execute sophisticated and coordinated attacks across 

various protocols underscores the vulnerability of modern infrastructures to AI-based threats 

[Zolotukhin2022].  

The research by [Sagduyu2021] examines the vulnerabilities of 5G networks to adversarial 

machine learning attacks. It focuses on disrupting spectrum sharing and spoofing physical layer 

authentication in network slicing using Deep Learning classifiers and Generative Adversarial 

Networks (GANs). The authors propose defence strategies to increase adversarial uncertainty 

during model training, emphasizing the need for robust defences in the 5G context. The paper 

also explores the use of Reinforcement Learning to optimize 5G network operations, 

underscoring the vital role of advanced machine learning techniques in enhancing 5G security 

and efficiency. 

[Hu2018] developed a novel GAN-based framework called GANFuzz to enhance the security and 

robustness of industrial network protocols through advanced fuzz testing techniques. This 

framework utilizes Deep Learning to automatically learn and generate test cases that simulate 
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realistic network traffic, enabling more effective identification of vulnerabilities and errors in 

industrial network protocol implementations. This approach marks a significant departure from 

traditional methods, offering a more efficient and automated way to test and secure critical 

industrial systems. 

4.2.3. Net-Zero Projects 

Two telecommunications giants, Vodafone UK [Baldock] and Ericsson [Ericsson] are spearheading 

ambitious projects aimed at combatting climate change through technological innovation. 

Vodafone UK emphasizes the transformative potential of 5G Standalone (SA) technology in 

reducing energy consumption and carbon emissions across various industries. By leveraging 5G 

SA-enabled solutions such as IoT, drones, and smart grids, Vodafone UK envisions substantial 

advancements in renewable energy production, particularly in wind farms, and the optimization 

of traditional sectors like agriculture. Their proposed merger with Three UK signals a commitment 

to accelerating the rollout of 5G SA networks nationwide, vital for maximizing the impact of these 

initiatives and driving the UK's transition to Net Zero.  

Meanwhile, Ericsson's commitment to sustainability extends beyond its operations to encompass 

its entire value chain. With a clear understanding of ICT's potential to mitigate climate change, 

Ericsson sets ambitious targets to achieve Net Zero emissions by 2040. Through a systematic 

approach involving emission reduction in both its supply chain and portfolio, as well as the 

neutralization of remaining emissions through approved carbon removal credits, Ericsson aims 

to lead the way in corporate climate action. Their dedication to aligning advocacy activities with 

the Paris Agreement's goals underscores a holistic approach to sustainability, positioning Ericsson 

as a key player in the global effort to limit global warming and create a more sustainable future. 
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5. Clouds: edge-to-core   

5.1. Network core threats  

The advent of 5G and upcoming 6G technologies promises to transform connectivity, offering 

speeds multiple times faster than current LTE networks. This leap will significantly boost the 

number of Internet of Things (IoT) devices linked to these networks, fostering an intricately 

connected ecosystem. This ecosystem will be capable of supporting massive Machine Type 

Communications (mMTC), enabling a multitude of IoT devices to access and operate over the 

network effortlessly. 

Despite these advancements, substantial security challenges remain. A significant number of IoT 

devices suffer from inadequate security measures, making them susceptible to malicious attacks. 

If these devices are compromised, they can be used to launch widespread distributed denial-of-

service (DDoS) attacks, which are a significant problem currently [Global Research and Analysis 

Team2024] and have the potential to worsen in the future, severely disrupting 5G network 

operations. Establishing comprehensive security standards for IoT devices is particularly difficult 

due to the diversity of devices spanning various sectors—ranging from smart manufacturing and 

urban sensors to surveillance systems—each with distinct uses and supply chains. 

Securing lower-end IoT devices poses an even greater challenge because these devices often use 

weak passwords and outdated security protocols, rendering them vulnerable to tampering. Such 

vulnerabilities make these devices easy targets for unauthorized access and man-in-the-middle 

attacks, potentially leading to the exposure of sensitive subscriber data, such as International 

Mobile Subscriber Identity (IMSI). Cybercriminals can exploit these security gaps, using malware 

to co-opt IoT devices into large-scale botnets, which they can remotely control to execute 

coordinated attacks. 

The evolution of 5G/6G networks has transitioned from relying on hardware to utilizing software-

based infrastructure. This new infrastructure leverages communication servers, network devices, 

and network slicing services through SDN (Software-Defined Networking) and NFV (Network 

Functions Virtualization) technologies. By employing these technologies, it is possible to partition 

a single physical network into multiple virtual networks, thereby offering tailored network slicing 

services for applications. Instead of using specialized hardware, network functions can be 

implemented on general-purpose x86 servers as virtual machines. Although virtualization 

technology, which underpins 5G/6G equipment and service implementation, offers benefits like 

resource efficiency, flexibility, and availability by sharing physical network and hardware server 

resources (such as CPU and memory), it also presents vulnerabilities. These vulnerabilities include 

susceptibility to load attacks on shared hardware resources, unauthorized access to network 
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slices and shared resources, malicious software distribution through shared resources, and 

configuration errors in virtualization management software. 

SDN technology separates the network control plane (SDN controller) from the data plane (SDN 

switch), which was traditionally processed in hardware. This separation introduces potential 

security risks, such as traffic bypass attacks that exploit vulnerabilities in the control protocol 

between SDN controllers and switches, unauthorized access between switches and controllers, 

and resource depletion in SDN systems due to DoS attacks. For instance, a saturation attack could 

overwhelm the SDN switch flow table by targeting SDN controllers. Similarly, NFV technology, 

when implemented on general-purpose servers, is prone to security issues unless there is 

stringent control over hypervisor security, malicious VM migrations, changes or authentication 

of applications running on virtualized network functions, and authorization of networking 

functions. Without adequate mechanisms for application authentication and authorization, 

malicious third-party applications could potentially extract network information from SDN 

controllers [Ahmad2018, Chica2020, Maleh2023, Farooq2023]. 

Network slicing, a new feature in 5G networks, logically separates traffic for service while utilizing 

the same physical network. If these slices are not properly isolated, attacks from one slice could 

impact others. For example, an attacker could execute a network slicing resource depletion 

attack by overloading a specific service's network slice, thereby affecting other slices or triggering 

specific applications. Additionally, without proper encryption of network slices, attackers might 

intercept or alter data from other slices [Cunha2019, Olimid2020]. 

The softwarization of networks, given the aforementioned characteristics, may also provide new 

opportunities for Advanced Persistent Threats (APTs). These threats involve resourceful attackers 

establishing a long-term presence within a system to carry out malicious activities over an 

extended period. APTs have been an emerging issue for some time now [Global Research and 

Analysis Team 2024], and with the growing reliance on cyber systems, their persistence is likely. 

Consequently, researching APT models, exploring potential solutions, and formulating open 

questions for further investigation is imperative [A. Alshamrani2019, Salim2023]. 

Orchestration today encompasses various methods for managing the application lifecycle, 

particularly within cloud environments. Modern service and network management platforms are 

structured in multiple layers, which allows for individual management and maintenance of each 

layer. These layers are typically operated by different administrative entities; for example, a cloud 

infrastructure provider manages the underlying servers using virtual infrastructure manager 

(VIM) software (such as [Kubernetes2023] or [OpenStack2023]), while connectivity between 

these servers may be handled through a programmable fabric controlled by an SDN controller 

(like ONOS [1_ONF2023], ODL [1_TheLinuxFoundation2023], or ETSI TFS [1_ETSI2024]). 

Additionally, a local NFV Management and Orchestration platform (such as ETSI OSM 
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[2_ETSI2024] or ONAP [2_TheLinuxFoundation2023]) might oversee several VIMs and SDN 

controllers at each site, while an overlay operation support system (OSS) supervises multiple, 

possibly geographically dispersed, MANO platforms across different network domains. On top of 

these systems, application-level orchestrators aim to achieve optimal service deployments based 

on high-level user-defined orchestration policies. This complex software stack allows for 

seemingly seamless integration between various layers, thanks to significant efforts by the 

industrial and research communities to standardize APIs through global standardization bodies 

(like ETSI [ETSI2023] and IETF [IETF2023]) and technology consortia (such as ONF [2_ONF2023] 

and the Linux Foundation [3_TheLinuxFoundation2023]).    

Despite significant advancements, several critical issues remain unresolved, necessitating drastic 

solutions for sustainable service orchestration in the future. Firstly, the partial detachment of 

orchestration layers makes end-to-end orchestration nearly impossible. Each layer has a limited 

view of the entire system, providing orchestration APIs for a restricted set of resources and only 

leveraging local events. While this isolation simplifies orchestration, it complicates achieving a 

comprehensive end-to-end orchestration. Secondly, the current single-objective orchestration 

model is inadequate. Each layer's control loops are centred around a single goal (e.g., 

performance), failing to meet the diverse and often conflicting requirements of modern overlay 

services. Future orchestration must handle multiple objectives and dynamically prioritize them 

based on business needs. Thirdly, future orchestrators need to incorporate AI to determine the 

necessary changes, contrasting with today's MANO systems (e.g., OSM) that only manage 

feasible changes. Optimizing for both rapidly changing system conditions and external market 

factors is challenging but well-suited for AI. Finally, the scalability of end-to-end orchestrators 

will face significant challenges in the 6G era. Future platforms must manage the ad-hoc behaviour 

of 6G devices forming spatiotemporal IoT swarms and swiftly respond to numerous events. These 

demands will strain the current centralized orchestration frameworks. Despite advancements in 

frameworks like ONF's Aether, OSM, and ONAP, no system currently addresses all these 

challenges. 

5.2. Edge runtime Management and workload isolation 

Due to the resource constraints and the unique security environment of edge computing, edge 

runtimes require designs that foster performance security and sustainability. Several edge-

oriented Kubernetes-based platforms are currently available, for example KubeEdge1 and Eclipse 

ioFog [Cilic2023]. KubeEdge has a memory overhead of only 70 MiB for its worker nodes, 

although its edge architecture requires custom components and is not compatible with other 

Kubernetes nodes by default. ioFog2, another popular orchestration platform for the edge, has a 

 
1 https://kubeedge.io/ 
2 https://iofog.org/ 
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memory footprint of only 100 MiB on worker nodes, which is fairly low in comparison with other 

Kubernetes distributions. However, while these frameworks are aimed at edge computing, they 

are limited to container workloads. 

Some studies [Mavridis2021] use KubeVirt3 to deploy and evaluate (micro)VM alternatives on 

Kubernetes clusters. However, while KubeVirt enables the deployment of virtualized workloads, 

it also requires extensive intervention in a Kubernetes cluster to work (e.g. custom resources, 

daemonsets). Unlike KubeVirt, Feather [Goethals2024] is aimed specifically at creating a multi-

runtime agent for edge computing, without the need to modify an existing Kubernetes cluster in 

any way. 

FLEDGE [Goethals2020] is a Kubernetes-compatible edge agent based on Virtual Kubelets4, and 

designed for minimal resource overhead, using only around 50MiB of memory. A Virtual Kubelet 

is essentially a proxy which poses as an actual kubelet to the Kubernetes API but allows any sort 

of underlying provider to interpret and execute the received commands. Feather aims to extend 

the State of the Art by allowing the OCI-compliant side-by-side orchestration of various types of 

workload images (e.g. containers, microVMs) on edge devices, without architectural or 

operational changes to an existing Kubernetes cluster or its control plane nodes. 

Due to limited device resources, State-of-the-Art (SotA) edge computing platforms and solutions 

focus primarily on containers to isolate workloads, even in multi-stakeholder scenarios. 

Kubernetes-derived systems such as KubeEdge and FLEDGE [Goethals2020] use containers 

exclusively, as does ioFog [Cilic2023]. More recently, Feather [Goethals2024] has expanded edge 

workload isolation to OSv unikernels. 

5.3. Edge-clouds threats 

DoSt (a.k.a EDoS) is a special form of attacks, targeting cloud systems and by virtue their 

extension towards the edge. Such attacks aim to strain the resources allocated to service, but not 

to the point of causing a Denial of service (DoS), thereby causing a scale-out of resources that 

increases operational costs. This form of attacks is increasingly being addressed in the literature, 

with examples including the work of [Ficco2019, Xu2020, Dinh2020, Dinh2021, Dennis2021, 

Ta2022, Kashi2022]. Typically, this form of attack has been targeting cloudified services, as it 

causes a scale up of infrastructure resources to absorb the attack, effectively causing 

unsustainable operation of the target service and its provider (namely a cloud user/customer). 

The work of [Dinh2020, Dinh2021, Ta2022] investigates DoSt in SDN-enabled cloud systems. They 

argue that DoSt attacks are an alternate version of classic DDoS attacks, with modified intensity 

to remain below the threshold of typical anomaly detection filters. In that sense, DoSt may 

 
3 https://kubevirt.io/ 
4 https://github.com/virtual-kubelet/virtual-kubelet 
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include TCP SYN and HTTP flood attacks, Slowloris and Low and Slow attacks. The work of 

[Dennis2021] similarly outlines three main classes of EDoS attacks targeting: specific cloudified 

services (e.g. through HTTP-based intrusion), cloud/network infrastructure (CPU, storage, 

bandwidth [Dinh2020]) and those targeting network connections (e.g. TCP, UDP flooding 

attacks). Notably, attacks can be launched against not only cloud resources allocated to a service, 

such as CPU and storage, but against the SDN infrastructure (bandwidth on links and flow tables). 

More so, DoSt/EDoS can further target the cloud service provider and the corresponding 

infrastructure. For example, the work of [Ficco2019] investigates how EDoS can be launched 

against cloud service providers with the aim of causing excessive energy consumption that render 

the OPEX of cloud infrastructure unsustainable. The work of [Xu2020, Kashi2022] investigates a 

variant of EDoS attacks named Yo-Yo, in which a threat actor would induce oscillating periods of 

high and low demand; causing continued scale-out/scale-in. While this form of attacks results in 

the typical effect of increasing the OPEX of cloud customers to unsustainable levels, it further has 

the side effect of inducing higher orchestration and resource management overhead on the cloud 

provider, beyond sustainability levels of the provider themselves. 



D2.1-SoA Analysis & Benchmark Assessment.v1.0 (UESSEX).docx 

 

Page 44 of 112 
 

6. Data & Privacy 

6.1. Data privacy regulation landscape and challenges 

Data privacy involves safeguarding sensitive information from unauthorized access, use, or 

disclosure, allowing individuals to control their personal data [Chua2021]. The rise of digital 

technologies and the rapid increase in data volume have made protecting data in digital 

environments more crucial [Saraswat2022]. With the emergence of cloud computing, the 

Internet of Things (IoT), and big data analytics, data has become more accessible and 

interconnected. This enhanced accessibility has exposed organizations to numerous cyber 

threats and vulnerabilities. Cyberattacks on sensitive data have grown more sophisticated, 

presenting significant challenges to organizations across different sectors [Djenna2021]. 

Additionally, regulatory frameworks like the General Data Protection Regulation (GDPR) and the 

California Consumer Privacy Act (CCPA) have increased the legal responsibilities of organizations 

regarding data protection and privacy [Hartzog2020]. Consequently, there is a pressing need for 

organizations to implement strong data privacy and security measures, such as encryption, 

access controls, data anonymization, and threat intelligence, to mitigate risks and comply with 

regulatory requirements [Villegas2023]. 

Key points to consider of privacy and data protection in the context of 6G networks, which are 

anticipated to be a significant advancement over current 5G technology are presented below: 

1. Vast Data Handling: 6G networks will facilitate the handling and transmission of 

enormous amounts of data from a diverse array of sources. These sources include: 

• IoT Devices: Internet of Things devices such as smart home appliances, 

wearable technology, and industrial sensors. 

• Autonomous Vehicles: Self-driving cars and drones that require real-time data 

processing and communication.  

• Smart Cities: Urban environments equipped with interconnected systems for 

traffic management, utilities, public services, and surveillance. 

2. Privacy Concerns: The sheer volume and variety of data being processed in 6G 

networks raise significant privacy concerns: 

• Personal Data: Sensitive information related to individuals' health, habits, 

location, and behaviour may be collected and transmitted. 

• Anonymization Challenges: Ensuring data is anonymized to protect individual 

identities can be difficult, especially when multiple data sources are combined. 

• Consent Management: Ensuring users are fully aware of what data is being 

collected and how it is used is crucial. Obtaining and managing user consent 

effectively is a key challenge. 
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3. Data Protection: Protecting data in 6G networks involves several layers of security 

measures: 

• Encryption: Encrypting data during transmission and storage to prevent 

unauthorized access. 

• Authentication: Ensuring that devices and users accessing the network are 

legitimate and authorized. 

• Access Controls: Implementing strict access controls to limit who can view or 

manipulate data. 

4. Potential for Data Breaches: With more data being transmitted, the potential for data 

breaches increases. Key considerations include: 

• Advanced Threats: Cybercriminals may use more sophisticated techniques to 

breach 6G networks. 

• Attack Surfaces: With more devices and interconnected systems, the potential 

entry points for cyber-attacks increase. 

• Incident Response: Rapid and effective response mechanisms are necessary to 

mitigate the impact of any data breaches that occur. 

5. Data Misuse: Beyond breaches, there is also the risk of data being misused by 

authorized entities: 

• Surveillance: Increased data collection can lead to privacy infringements 

through excessive surveillance. 

• Profiling: Data can be used to create detailed profiles of individuals, which can 

then be exploited for commercial or political purposes. 

• Ethical Considerations: The ethical use of data must be considered, ensuring 

that it is not used in ways that harm individuals or society. 

6. Regulatory Compliance: Ensuring compliance with data protection regulations will be 

critical: 

• Global Regulations: Different regions have varying regulations, such as GDPR 

in Europe, CCPA in California, and others globally. 

• Data Sovereignty: Data may need to be stored and processed within certain 

geographical boundaries to comply with local laws. 

• Continuous Updates: Regulations may evolve, requiring networks to 

continuously update their compliance measures. 

The introduction of new regulations (e.g. GDPR, EU Right to be Forgotten etc.) has led to the 

development of privacy preservation techniques such as radio fingerprinting at the physical layer 

[Zhang2023], data and communication anonymization at the connection layer, and differential 

privacy, homomorphic encryption, data masking, or secure multi-party computing at the service 

layer. However, ensuring privacy protection in 6G networks is more critical for several reasons. 
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Firstly, 6G is expected to support key applications like wearable devices that handle highly 

sensitive user data. While these applications can enhance human lives by reducing fatal 

accidents, improving sleep quality, and aiding in the rehabilitation of people with disabilities, they 

also risk the illegal collection and misuse of physical and medical data used by interconnected 

control systems [Niksirat2024]. Although these threats are not new, 6G will intensify them. 

Moreover, the strategy of migrating many core components and applications to the cloud in 6G 

is flawed. This "cloudification" increases the risk of unauthorized access and exposure of 

customer data, including the potential for illegal disclosure by unauthorized employees. Lastly, 

securing personal data becomes more challenging with the advent of supercomputing and 

intelligent agents. The expected rise in AI-enabled smart applications with 6G will connect 

humans and objects, allowing AI to extract more contextual information about individuals and 

their environments [Timan2021]. While this can provide consumers with personalized services 

like recommendations for attractions, films, and routes, it also raises significant privacy concerns. 

Furthermore, as 6G networks emerge, the intersection of machine learning (ML) and privacy 

presents both challenges and opportunities. There are two aspects in this alliance: privacy 

invasion and protection through ML. On one hand, there are malicious actors that can exploit ML 

models to breach privacy and on the other hand, a secure ML structure (pre-emptive privacy 

considerations during the design), or the correct application of ML, can protect privacy in 6G 

networks [Sun2020]. 



 

 
 

7. Affected network service KPIs 
This section states the network service KPIs, notably aligned with NATWORK’s Performance, 

Security and Sustainability key values.   

 

7.1. Performance 

• Round Trip Time Latency: measures the time it takes for a packet to travel from its source 

to its destination, and the time taken to receive the reception confirmation. This 

parameter informs not only about the data transfer delay but also about the processing 

time of the channel (including all hops and network nodes). 

o How it is affected: The observation of the results of the impact on latency shows 

a general, exaggerated increase in latency during the DDoS attacks. 

[Djuitcheu2023] 

• One-way latency (Network Function): measures the time it takes for a packet to travel 

across the network function, supposing there is a 1:1 relationship with the input-output 

function with respect to the considered packet. 

o How it is affected: depending on the load of the system (OS, guest system, 

containerized environment) and the number of operations needed for the packet, 

the one-way latency may vary in an unpredictable way. In case of attacks, CPUs are 

overloaded bringing to network function disruptions or very high latency values.  

• Jitter: informs about the variation in the reception delays of packets at the destination. 

This parameter informs about network saturation or congestion. 

o How it is affected: Jitter exhibits high and irregular fluctuations, signifying the 

disruptive nature of DDoS attacks on maintaining consistent communication 

quality. [Djuitcheu2023] 

• Packet loss: measures the rate of received packets for a given period compared to the 

number of packets sent. This parameter informs about the quality of reception of the 

recipient and the quality of the transmission medium to properly route packets on the 

network. 

o How it is affected: Substantial rise in packet loss percentages during attack 

scenarios, leading to increased floodings and the saturation of the gateway have 

been observed. [Djuitcheu2023] 
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• Bitrate/ Throughput: is the number of bits transmitted or processed per unit of time. 

Understanding this parameter can help characterize a service or a communication, 

because its abrupt and irregular growth can indicate improper network activity. 

o How it is affected: It is affected in a twofold manner during DDoS attack. On one 

hand a fall in bit rate caused by network congestion or exhaustion of network 

resources leading to a drop in the overall bit rate of the network can be observed. 

On the other hand, observing the growth of the network’s bit rate on the gateway 

side, a spike is observed owing to the system being flooded with a massive amount 

of data arriving at the gateway, pushing it to process more packets than necessary. 

[Djuitcheu2023] 

• Spectral Efficiency: The amount of data transmitted over a given bandwidth in a specific 

time period. Higher spectral efficiency ensures that the network makes the most efficient 

use of available spectrum resources. 

o How it is affected: Jamming reduces the signal-to-noise ratio (SNR), causing 

increased errors in data transmission. This leads to retransmissions, lower data 

rates, and inefficient use of spectrum resources. Whilst, by consuming excessive 

bandwidth and causing network congestion, DoS attacks can prevent efficient 

spectrum utilization and degrade overall network performance [ITU2023]. 

• Bandwidth Utilization: The percentage of the network's total available bandwidth that is 

currently being used. Higher utilization indicates efficient use of available resources, but 

excessive utilization can lead to congestion and performance degradation. 

o How it is affected: Bandwidth utilization is influenced by the volume of data traffic, 

the efficiency of data transmission protocols, and the network's ability to manage 

and prioritize different types of traffic. Implementing traffic management 

techniques such as load balancing, dynamic bandwidth allocation, and quality of 

service (QoS) policies can optimize bandwidth utilization. 

• Throughput of LLM (Tokens/second): The number of tokens generated per second. It’s a 

critical performance metric, particularly for real-time applications. This metric depends 

on model size, hardware capabilities, and optimization techniques. 

o How it is affected:  i) Model Size (parameters) and Complexity (model 

architecture), ii) Hardware capabilities (AI-specific chips and parallelism), iii) 

Optimization Techniques (quantization, pruning). 
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7.2. Security 

In the context of 6G, security is a paramount concern due to the increased sophistication of 

cyber-attacks and the need to protect sensitive data across a highly complex and interconnected 

ecosystem. According to [Nguyen2021, Tataria2021], some key performance indicators (KPIs) 

related to security in 6G networks are as follows: 

• Threat Detection Rate: The percentage of security threats successfully identified by the 

system out of the total number of threats. High threat detection rates are essential to pre-

emptively counteract potential security breaches. 

o How it is affected: 6G networks will connect a vast number of devices, ranging 

from IoT devices to autonomous vehicles, significantly increasing the attack 

surface. With more entry points for potential attacks, it becomes more challenging 

to maintain a high TDR. The diversity of connected devices necessitates more 

sophisticated detection mechanisms capable of handling a wide range of threat 

vectors. 

• Threat Detection time: The mean time to detect a security threat considering the data 

collection time, data transition time, and the analysis/inference time leading to detecting 

the threat. 

o How it is affected: The distributed nature and cloud-to-edge continuum of 6G can 

affect the duration of data gathering and data aggregation needed for large-scale 

monitoring, possibly increasing threat detection time. On the other hand, shifting 

the decision-making process to the edge can expedite the detection of localized 

threats targeting the specific network entry point.  

• Response Time to Security Incidents: The average time taken to detect, analyse, and 

respond to security incidents. Rapid response times minimize the impact of security 

incidents on network performance and user data. 

o How it is affected: The ultra-low latency, high bandwidth, and massive scale of 6G 

networks pose unique challenges to security incident response. With threats 

evolving rapidly and attacks becoming more distributed, security teams must 

employ real-time detection and response mechanisms, leveraging advanced 

technologies such as AI-driven threat detection and automated mitigation. 

Compliance with privacy regulations adds an additional layer of complexity, 

necessitating proactive measures such as regular security assessments and 

employee training to ensure effective incident response in 6G networks. 
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• False Positive Rate: The rate at which legitimate activities are incorrectly flagged as 

malicious. Lower false positive rates improve operational efficiency by reducing the 

workload on security teams and avoiding unnecessary disruptions, but it is equally 

important to strike a balance to prevent the oversight of genuine threats. 

o How it is affected: Network monitoring tools can identify false alerts for network 

scans and the algorithms for attack detection (core, RAN) can be too sensitive. 

Security systems that monitor user activities may generate a false positive in user 

behaviour when an individual’s actions are flagged as abnormal or potentially 

malicious. 

• False Negative Rate: The rate at which actual security threats go undetected. A false 

negative is more damaging than a false positive because it lets a problem go undetected, 

creating a false sense of security. Minimizing false negatives ensures that real threats are 

identified and addressed promptly.  

o How it is affected: Detection limitations may come from different sources such as 

non-identified newly emerging threats, zero-day attacks and sophisticated attacks. 

The attack detection algorithms may also underperform and lead to false 

classification of suspicious behaviour as normal.  

• Data Breach Rate: The frequency of successful unauthorized data access incidents. A low 

data breach rate indicates strong data protection measures and high overall security. 

o How it is affected: The ultra-low latency and high bandwidth increase the speed 

and volume of data transmission, potentially accelerating the spread of breaches. 

The massive scale and complexity of 6G networks expand the attack surface, 

making it harder to detect and prevent breaches. Advanced and evolving threats, 

such as AI-driven attacks and IoT exploitation, further heighten the risk of 

breaches. Additionally, the distributed nature of attacks and the need for real-time 

threat detection and response mechanisms make it challenging to effectively 

mitigate breaches. 

• Encryption Coverage: The percentage of data that is encrypted both at rest and in transit. 

Comprehensive encryption coverage is crucial for protecting data privacy and integrity. 

o How it is affected: The vast scale and increased number of interconnected devices 

expand the encryption requirements, making comprehensive coverage more 

difficult to achieve. High-speed data transmission and ultra-low latency demand 

efficient encryption methods that do not compromise performance. Advanced 

threats and AI-driven attacks may exploit weaknesses in encryption algorithms, 
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necessitating continuous updates and advancements in cryptographic techniques. 

Additionally, the diverse range of devices, including IoT and edge computing, 

requires consistent and robust encryption protocols to protect data across the 

entire network. 

• Authentication Success Rate: The percentage of legitimate user authentication attempts 

that are successful. High authentication success rates ensure secure access while 

maintaining user convenience. 

o How it is affected: The massive increase in connected devices, including IoT and 

edge computing, complicates the authentication process, potentially leading to 

higher failure rates. The ultra-low latency and high-speed requirements 

necessitate efficient and rapid authentication mechanisms, which must balance 

security with performance. Advanced and evolving threats, such as AI-driven 

spoofing and sophisticated identity theft, can undermine authentication methods, 

reducing their effectiveness. 

• Patch Management Efficiency: The average time taken to deploy security patches across 

the network. Efficient patch management reduces vulnerability windows and protects the 

network from known exploits. 

o How it is affected: The sheer scale and complexity of interconnected devices, 

including IoT and edge computing, make it difficult to ensure timely and 

comprehensive patch deployment across the network. High-speed data 

transmission and ultra-low latency demands require that patches be applied 

without disrupting service, which can be technically challenging. The rapid 

evolution of threats, including AI-driven attacks, necessitates frequent updates, 

straining patch management processes. 

• Access Control Violation Rate: The frequency of unauthorized access attempts that are 

detected and blocked by the system. A low violation rate indicates robust access control 

mechanisms, essential for maintaining network security. 

o How it is affected: The massive increase in connected devices and the complexity 

of network environments make it harder to enforce consistent access control 

policies. Ultra-low latency and high-speed requirements necessitate efficient 

access control mechanisms that can operate seamlessly without slowing down the 

network. Advanced threats, such as AI-driven attacks and sophisticated 

unauthorized access techniques, can exploit weaknesses in access control systems, 

increasing violation rates. 
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• Service Availability During Attacks: The percentage of time that services remain available 

and operational during security attacks. High service availability ensures continuous 

operation and minimizes the impact of attacks on users. 

o How it is affected: The ultra-low latency and high-speed requirements mean that 

even minor disruptions can have a substantial impact on services. The vast number 

of interconnected devices increases the attack surface, making it easier for 

attackers to launch distributed denial-of-service (DDoS) attacks that can 

overwhelm network resources. Advanced threats, such as AI-driven attacks, can 

quickly adapt and target vulnerabilities, complicating defence efforts. 

• User Privacy Compliance: The extent to which the network complies with relevant privacy 

regulations and standards (e.g., GDPR, CCPA). Ensuring compliance with privacy 

regulations protects user data and avoids legal repercussions. 

o How it is affected: The vast amount of data generated by interconnected devices 

in 6G ecosystems necessitates robust data protection measures. Compliance is 

challenged by the complexity of monitoring and securing data flows across diverse 

and distributed systems. Moreover, sophisticated attacks can exploit 

vulnerabilities in data handling processes, potentially leading to breaches that 

violate privacy regulations and standards. Additionally, the diverse range of 

devices and the need for seamless interoperability can lead to inconsistencies in 

privacy protection across different parts of the network. Compliance with privacy 

regulations in such a dynamic and complex environment necessitates continuous 

monitoring, regular audits, and the implementation of adaptive privacy-preserving 

technologies. 

• Security Audit Frequency and Success Rate: The regularity and outcomes of security 

audits conducted to assess network vulnerabilities and compliance. Frequent and 

successful security audits help identify and mitigate potential security risks proactively. 

o How it is affected: The vast amount of data generated by a massive number of 

interconnected devices makes it difficult to ensure comprehensive privacy 

protection. High-speed data transmission and ultra-low latency require advanced 

encryption and real-time data processing, complicating the implementation of 

privacy measures. Sophisticated threats, including AI-driven attacks, can target 

and exploit personal data, increasing the risk of privacy breaches. 

• Intrinsic Security of AI: Measures the inherent security capabilities built into an AI system 

to protect against threats, vulnerabilities, and unauthorized access. Higher values indicate 

stronger intrinsic security. 
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o How it is affected: Intrinsic security of AI is influenced by several factors, including 

the robustness of the algorithms used, the quality of training data, and the security 

measures integrated during the development process. Implementing secure 

coding practices, employing robust authentication and encryption techniques, and 

ensuring rigorous validation and testing of AI models can enhance intrinsic 

security. 

These KPIs are essential for maintaining a robust security posture in 6G networks, ensuring that 

they can effectively counteract emerging threats while protecting user data and maintaining 

regulatory compliance. 

 

7.3. Reliability 

• Network Availability: The percentage of time the network is operational and available for 

use. High availability ensures continuous service for critical applications [ITU2023]. 

o How it is affected: 6G will support massive connectivity for IoT devices, many of 

which have limited processing capabilities and may not support advanced security 

features. The heterogeneity and resource constraints of IoT devices can complicate 

network management, leading to potential vulnerabilities and points of failure. 

Ensuring high availability will require scalable and efficient management solutions 

capable of handling a large number of diverse devices. 

• Connection Density: The number of connected devices per unit area. It ensures the 

network can handle a high number of simultaneously connected devices, especially in 

dense environments [ITU2023]. 

o How it is affected: device connectivity may be affected by several factors. 

Authentication failure and DoS attack (in both the RAN and core parts of the 

network) may provoke this lack of connectivity. Low energy efficiency in both 

devices and network access components (e.g., gNB) may also cause a reduction in 

the connectivity capacity of the network.  

• Service Recovery Time: The time it takes to restore service after a failure or disruption. 

Minimizing service recovery time is crucial for maintaining continuous service in critical 

applications [ITU2023].  

• Mean Time Between Failures (MTBF): The average time between system failures. A 

higher MTBF indicates a more reliable network infrastructure [ITU2023]. 
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• Mean Time to Repair (MTTR): The average time required to repair a failed component or 

system. Lower MTTR helps in quickly restoring services and maintaining reliability 

[ITU2023]. 

• Packet Loss Rate: Proportion of packets lost during transmission, indicating network 

reliability. 

• Redundancy: Measures the extent to which additional resources, or pathways are 

incorporated into a network to ensure continued operation in the event of a failure. Higher 

values indicate greater ability to maintain service continuity and reliability. 

o How it is affected: Redundancy is influenced by the design and architecture of the 

network, including the inclusion of backup systems, duplicate communication 

paths, and failover mechanisms. The use of fault-tolerant hardware and software, 

along with automated recovery processes, further contributes to the network's 

ability to withstand failures. 

 

7.4. Energy 

• Network Energy Consumption: The total energy consumed by all network components, 

including base stations, core network elements, and edge devices. Monitoring network 

energy consumption helps in identifying energy-saving opportunities across the network. 

o How it is affected: 6G networks will connect a diverse array of devices, including 

high-mobility devices like drones and autonomous vehicles. Maintaining 

connectivity and performance for highly mobile and heterogeneous devices 

requires adaptive and dynamic network management, which can be energy-

intensive. Mobility-induced handovers and the need to provide consistent service 

levels across various environments further increase energy demands. 

• Energy Consumption per User Equipment (UE): The average energy consumed by user 

devices during communication. Lower energy consumption per UE leads to longer battery 

life and reduced energy demand from user devices. 

o How it is affected: Compromised end devices join ranks of botnets performing 

DDoS attacks or crypto mining which drains the devices’ batteries 

[Bobrovnikova2020]. The target device of DDoS attack also experiences elevated 

energy usage due to processing additional packets. 

• Energy Consumption per packet: Measures the energy required to transmit a single 

network packet. Lower values indicate higher energy efficiency. 
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o How it is affected: This metric is influenced by the type of network hardware used, 

the efficiency of the transmission protocols, and the overall network architecture. 

By optimizing the deployment of network functions and choosing energy-efficient 

hardware, the energy consumption per packet can be reduced. Additionally, 

improvements in software algorithms that manage packet routing and 

transmission can further enhance energy efficiency. 

• Energy Consumption per Bit (J/bit): Measures the energy required to transmit one bit of 

data. Lower values indicate higher energy efficiency. 

o How it is affected: The energy consumption per bit is affected by factors such as 

the efficiency of data encoding and transmission technologies, the quality of the 

network infrastructure, and the effectiveness of energy-saving protocols. Utilizing 

advanced data compression techniques, energy-efficient transceivers, and 

optimizing signal processing can significantly reduce the energy required per bit. 

Additionally, reducing interference and improving signal quality can also lower the 

energy consumption for data transmission. 

• Carbon Footprint: The total amount of greenhouse gases (GHG) emitted due to network 

operations, usually measured in CO2 equivalents (CO2e). Reducing the carbon footprint is 

crucial for achieving sustainability goals in 6G networks. 

o How it is affected: Devices exploited during DDoS or illicit crypto mining increase 

the carbon footprint 

• Energy efficiency of LLMs (tokens/kWh): The number of tokens generated per unit of 

energy on Large language models (LLMs). It is influenced by multiple factors including 

model architecture, hardware utilization, and optimization techniques. 

o How it is affected: i) Model Architecture: The design of the neural network 

significantly impacts its energy consumption, ii) Hardware Utilization: The type of 

hardware used for training and inference plays crucial role, iii) Optimization 

Techniques: Techniques like model pruning and quantization can reduce the 

energy footprint of LLMs. 

• Energy Footprint of ML (FLOPS): Measures the Floating-Point Operations per Second 

(FLOPS) that a ML model is using and based on this metric we are able to estimate the 

energy consumption of the ML tasks [Henderson2020] 

o How it is affected: i) Model Complexity: The number of parameters in a model 

significantly impacts its FLOPS. Moreover, different architectures have varying 

computational efficiencies, ii) Hardware: Graphics Processing Units (GPUs) AND 
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Tensor Processing Units (TPUs) are optimized for parallel processing, making them 

more efficient for ML tasks compared to CPUs. Furthermore, newer AI-specific 

chips are designed to maximize performance per watt, thus improving the energy 

efficiency of ML operations. 

 

7.5. Cost 

• Revenue: total income generated by a company 

o How it is affected: Server downtime due to DDoS attacks, security breaches and 

other incidents directly translates to the loss of revenue for the companies. In 

2020, 25 percent of respondents worldwide reported the average hourly 

downtime cost of their servers as being between 301,000 and 400,000 U.S. dollars. 

[Alsop2019] 

• Employee productivity: employees’ performance in fulfilling their tasks 

o How it is affected: Employee’s efficiency is impacted by a degraded or a completely 

down business application or service. Cost per hour of employee downtime should 

thus be factored into total costs of security breach [Sansone]. 

• Remediation costs: costs of mitigating the impact of an attack or security breach 

o How it is affected: To remedy the attack, companies incur additional costs such as 

overtime, outside consultants, and compensations to customers [Sansone]. 

• Market share: percentage of a total revenue in a market on which a company operates 

o How it is affected: Customers dissatisfied due to downtime and security breaches 

might choose the competitors instead, causing the company to lose market share 

[Sansone]. 

• Ransom costs: payment demanded by an attacker to unlock a computer or access to data 

o How it is affected: Attackers threaten an organisation by holding their files hostage 

and requiring a ransom fee [Sansone]. 

• Total Cost of Ownership (TCO): Overall cost to own and operate the network, including 

capital expenditures (CapEx) and operational expenditures (OpEx). 

o How it is affected: TCO is influenced by factors such as the initial investment in 

network infrastructure, ongoing maintenance costs, energy consumption, and the 

efficiency of network management. Advances in technology that reduce energy 
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usage and improve operational efficiency can lower the TCO. Additionally, the 

scalability and upgradeability of the network infrastructure play a significant role 

in managing long-term costs. 

• Cost per Bit Transmitted: Financial cost associated with transmitting a single bit of data. 

o How it is affected: This metric is impacted by the efficiency of the network's data 

transmission protocols, the energy consumption of the transmission process, and 

the overall utilization of network resources. Enhancements in compression 

technologies, improvements in energy efficiency, and optimization of data routing 

can reduce the cost per bit transmitted. 

• Cost per Device: Average cost to connect and maintain a single device within the network. 

o How it is affected: The cost per device is influenced by the price of the hardware, 

installation costs, maintenance requirements, and the network's ability to support 

a high density of devices efficiently. Technological advancements that enable 

easier installation, remote management, and reduced maintenance needs can 

decrease the cost per device. 
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8. Solutions and Technologies 

8.1. Security-by-Design 

Security by design is an approach that integrates security from the initial conception and design 

stages of a system or application up to its implementation and testing stages [Sequeiros2021]. 

The goal of this strategy is to anticipate and mitigate potential threats and vulnerabilities at 

various levels of the system. This is achieved through methodologies such as threat modelling 

during conception, authorization and access management during design, secure coding during 

implementation, and security testing and audits during the maintenance phase.  

A fundamental principle of the security by design approach is Defence in Depth (DiD), which 

advocates for a layered defensive system to enhance the resilience and security of systems and 

networks [Kuipers2006]. DiD ensures that if one layer of defence is compromised or fails, 

additional layers will help mitigate the impact of the attack and prevent further compromise. A 

practical example of this principle is multi-factor authentication (MFA), which extends 

authentication beyond just a secure password by requiring additional verification steps.  

One way to implement DiD security using 6G orchestration is through Moving Target Defense 

(MTD) strategies.  As further detailed in Section 9.3.4, MTD can leverage the virtualization of 

network functions in isolated and portable workloads (e.g., VMs, microVMs, and containers) to 

dynamically migrate them across the 6G infrastructure. This continuous movement disrupts 

attacker targeting strategies and renders their gathered intelligence obsolete. 

In 6G network orchestration and management, while MTD uses strategic placement and 

movement of network resources to improve security, equally important are also improving 

service performance, operational cost efficiency, and energy consumption efficiency. These 

objectives often conflict, potentially favouring one goal on the detriment of another. For 

example, relocating a VNF from a remote Virtual Infrastructure Manager (VIM) to an edge node’s 

VIM can optimize communication but may be predictable to attackers, thus limiting the security 

gain. Conversely, random placement enhances security by reducing predictability but can 

negatively impact network performance and the QoS of the relocated service. Therefore, 

developing a cognitive decision system is essential to determine the optimal MTD strategy, 

addressing this multi-objective decision problem [Soussi2023].  

The virtualization and the types of virtualized workloads leveraged by MTD is described in the 

following Section 8.1.1. 
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8.1.1. Workload isolation 

Virtualization has blurred the traditional boundaries between hardware, software, and 

networking components in ICT systems, paving the way for the microservices paradigm. This 

paradigm shift has transformed how software is developed, deployed, and managed within 

modern cloud-based networking infrastructures. By isolating and encapsulating workloads within 

isolated or semi-isolated environments, virtualization enhances the modularity, portability, 

replicability, distribution, and autonomous orchestration of microservices-based ICT systems. In 

microservices architecture, availability and fault tolerance are primarily achieved through 

application replication and load balancing, which distribute requests across multiple replicas to 

ensure continuous and reliable service.  

Live migration, another feature enabled by workload encapsulation, maintains the resilience and 

availability benefits of having replicas across distributed nodes without the resource overhead 

associated with multiple copies. This method ensures that the number of copies remains 

constant, optimizing resource use.  

Additionally, live migration is employed to regulate and reduce energy consumption, particularly 

in cloud datacenters, through "consolidation" methods. These methods involve live migrating 

active workloads to a minimal number of hosts, allowing other datacenter nodes to enter 

hibernation, thus conserving energy [Hermenier2006]. Security is also enhanced through both 

isolation and portability. Portability, for instance, facilitates the implementation of MTD 

operations such as evasion techniques [Soussi2021]. The following subsections describe the 

characteristics of state-of-the-art virtualization technologies, specifically VMs, microVMs, 

containers and system interfaces such as WASI. 

8.1.1.1. MicroVMs 

There are several technologies that enable the creation of microVMs, among which unikernels 

are a varied group with excellent security and performance features [Kuenzer2021, Abeni2023]. 

Unikernels are a type of library operating system in which a program, along with only the required 

system libraries and system calls, is compiled into a single kernel space executable embedded in 

a VM image, thus minimizing image size and attack surface. Furthermore, they can be roughly 

classified into two types: POSIX-compatible ones that focus on existing software, and those based 

on non-POSIX system interfaces which sacrifice compatibility for smaller images and lower 

resource requirements. OSv [Kivity2014] in particular is a POSIX-compatible unikernel platform 

with wide compatibility for existing programs and programming language runtimes. Although 

microVMs generally support a wide variety of hypervisors for their execution, QEMU with KVM 

(Kernel-based Virtual Machine) acceleration is a widely supported option. Different classes of 

virtualization technologies, including gVisor and Firecracker, have been compared and 

benchmarked [Goethals2022], and their performance examined at the kernel level [Anjali2020]. 
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8.1.1.2. Containerization 

Containers represent partially isolated workloads that, in contrast to VMs, do not run a full OS 

kernel of their own but operates with the OS kernel of the host machine. This reduces container 

image size and memory overhead on the host during its life cycle, and makes it faster to spin-up 

(because VMs have to initiate a full OS), reduces backups duration and storage (because of 

reduced images size), and generally makes it faster to manipulate (i.e., to replicate, to snapshot, 

to migrate, and to restore). On the other hand, VMs have more technological maturity and 

knowledge base, as it came long before the usage of containers, and provides a higher isolation 

of the workload independent of the host's OS (but not the host's hypervisor), making VMs 

arguably more portable than containers, which mainly depend on the OS kernel being Linux. 

Containers can be of two types, application containers (e.g., Docker), and system containers (e.g., 

LXC). The latter provides an improved semi-isolated environment with an OS of its own, but still 

reliant on the host's OS kernel for functionalities like device management and system 

configuration, maintaining containers’ lightweight properties. 

Another significant difference lies in how applications are implemented using VMs compared to 

containers. For instance, 5G/6G vendors developing virtual network functions (VNFs), following 

the ETSI NFV standard, typically consolidate all necessary components into a single VM. This 

results in a single sizeable monolithic application. In contrast, for cloud-native network functions 

(CNFs) using containers the microservices development approach is adopted. This involves 

implementing multiple smaller services in portable and relatively independent containers, easier 

to transfer and manage by automated orchestrators (such as Kubernetes). 

The primary methods for isolating containers rely on three key Linux features known as 

namespaces, control groups (Cgroups), and rootfs [Kumaran2017]. The reduced isolation exposes 

the risk of container escaping vulnerabilities and system privilege escalation [Souppaya2019]. 

Recent examples of such exploited vulnerabilities include CVE-2019-5736, CVE-2022-0185, and 

CVE-2022-0811. 

Containers can be classified into two types, i.e., operating system-level containers and 

application-level containers. Both types run within an isolated environment within the host and 

share the underlying kernel of the host. By sharing the underlying kernel of the host operating 

systems, containers are more lightweight compared to VMs, with boot times of only a couple of 

seconds, and almost native host performance. Operating system level containers run an entire 

operating system, whereas application-level containers run an application or service, bundled 

with a minimal set of dependencies required by that application [Kumaran2017]. 

Figure 1 depicts a simplified overview that illustrates how application-level containers are 

organized on a host. Note the container runtime in between the host operating system and the 
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containers. A container runtime is the counterpart of a VM hypervisor and is responsible for 

running and managing containers. Container runtimes can be divided into two groups, i.e., low-

level and high-level container runtimes. A low-level container runtime mainly focuses on running 

a container, while a high-level container runtime has more advanced functionality, such as, 

managing container lifecycles and images, providing certain application programming interfaces, 

etc. 

 
Figure 1 Simplified schematic overview of application-level containers. 

8.1.1.3. WebAssembly 

As a more secured and performant variant of Javascript, WebAssembly (Wasm) fosters payload 

migratability, in perfect alignment with NATWORK project. Wasm is a binary instruction format 

for a stack-based VM. Wasm was originally developed for improving the performance of Web 

applications in Web browsers and allowing fully featured complex applications to securely run in 

the browser. Wasm is designed as a portable compilation target for a wide variety of 

programming languages [Haas2017]. 

Since Wasm was originally developed to run untrusted code, i.e., code provided by unknown 

websites, security is one of the main focuses. Just like JavaScript code runs inside a secure 

sandbox inside the browser’s runtime to prevent malicious code to access system files or 

resources, Wasm is also sandboxed. Wasm binary code is executed by a Wasm VM (i.e., Wasm 

runtime) by either using Just In Time (JIT) compilation to compile the binary code to native 

machine code at runtime, or by running native machine code which was transpiled from Wasm 
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binary code beforehand using Ahead Of Time (AOT) compilation. Although the name implies it, 

Wasm is not merely limited to the Web. Several runtimes enable the execution of Wasm binaries 

on a myriad of platforms via a system interface that enables direct OS communication, called 

WASI (WebAssembly System Interface) [Spies2021]. 

To employ Wasm outside the browser as a replacement for traditional application 

containerization, access to OS functionality is provided by the WASI Application Programming 

Interface (API). WASI is a fast, secure and security focused system interface for the Wasm 

platform and consists of a modular collection of API proposals defined with the Wasm Interface 

Type (WIT) Interface Description Language (IDL). WASI provides a secure and portable way to 

access several system resources, such as files, networking, Document Object Model (DOM) 

manipulations, peripheral devices, etc [Clark2019]. The Bytecode Alliance 5 , an industry 

partnership focussing on developing Wasm outside the browser by collaborating on 

standardization proposals and implementation, maintains two Wasm runtimes: Wasmtime6 and 

WAMR7. 

Wasmtime [Clark2022] can be considered as a general-purpose runtime, focussing on server-side 

and non-web embeddings with components. It has full component model support and first-class 

support for eight programming languages, and community support for an additional two. On the 

other hand, WebAssembly Micro Runtime (WAMR) [BytecodeAlliance2019] is specifically 

designed to be as lightweight as possible, targeting embedded devices and the edge. This 

translates itself into the provided features and the supported guest languages. Support for the 

component model is planned for the end of 2024, and it only has robust support for C and C++. 

Due to this, Wasmtime is currently the de-facto Wasm runtime to run Wasm outside of the 

browser. 

WasmEdge8 is a Wasm runtime that is not maintained by the Bytecode Alliance, but is a Cloud 

Native Computing Foundation Sandbox project, maintained by The Linux Foundation. WasmEdge 

mainly focuses on bringing Wasm to the Edge by enabling cloud-native, serverless, and 

decentralized applications to run on edge devices, such as low powered IoT Single Board 

Computers (SBC). The WebAssembly Component Model is an architecture for building 

interoperable Wasm libraries, applications and environments. It builds on top of the core 

WebAssembly specification by introducing a standardized way of specifying modules. These 

components express their interfaces and dependencies via WIT and the canonical Application 

Binary Interface (ABI). The canonical ABI defined by the component model defines the binary 

representation of the WIT type definitions. Unlike core Wasm modules, components may not 

 
5 https://bytecodealliance.org/ 
6 https://wasmtime.dev/ 
7 https://bytecodealliance.github.io/wamr.dev/ 
8 https://wasmedge.org/ 

https://bytecodealliance.org/
https://bytecodealliance.org/
https://wasmtime.dev/
https://wasmtime.dev/
https://bytecodealliance.github.io/wamr.dev/
https://bytecodealliance.github.io/wamr.dev/
https://wasmedge.org/
https://wasmedge.org/
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export Wasm memory, reinforcing Wasm sandboxing and facilitating interoperation between 

languages with different memory assumptions. 

8.2. Trust management 

Trust management is the process of establishing, maintaining, and evaluating trust relationships 

to ensure secure and reliable interactions between individuals, organizations, or entities. When 

dealing with trust management, one has to bear in mind that trust relations naturally appear on 

different levels and with different characteristics. There is administrative trust in form of 

agreements, written in conventional contracts (i.e. analogue paper contracts), and signed by 

trusted and authorized humans of each participating party and there is the technical level of trust 

which based on the conventional contracts applies the administrative trust between the technical 

components. Below we present the current State of the Art for trust management systems 

between actors, systems (assets) also providing some information considering Trust assessment. 

8.2.1. Trust between actors 

Trust among different stakeholders is fundamental to the integrity and functionality of many 

systems like digital communications, financial transactions, business operations etc. Establishing 

trust ensures that parties can reliably interact, exchange information, and perform transactions 

with confidence in each other's authenticity and intentions. 

8.2.1.1. Reputation based systems 

Reputation-based systems evaluate the trustworthiness of entities based on their past behaviour 

or interactions, assigning reputation scores to influence decision-making processes and promote 

trust within a community. Based on architecture, only two ways of implementation exist, 

distributed (decentralized) or centralized. 

Centralized systems rely on a central node to collect, aggregate and manage reputation data. 

Sites like e.g. Amazon are classic examples of centralized reputation systems, where a central 

server manages and processes all data [Resnick2002]. This is effective in environments where 

trust is high. A system with unlinkable user behaviour was proposed in [Garms2019], shifting the 

reputation values, from items to users, in order to be more realistic and secure. Distributed or 

decentralized systems distribute reputation management among all nodes participating. Many 

approaches exist, such as the EigenTrust algorithm [Kamvar2003], which calculates global trust 

values based on the transitive trust of peers, significantly improving trust in peer-to-peer 

networks and reducing the effect of cooperating malicious nodes. A more complex system is 

PeerTrust [Xiong2004], which calculates multiple parameters, including the number of 

transaction and credibility of feedback sources, among others and is context aware. Another 

paper proposed DRBTS [Srinivasan2006], where sensor nodes depend on trusted beacon nodes, 

using a simple majority principle for providing location information. Simulations demonstrate the 
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scheme's robustness in dense networks, its adaptability to various security requirements, and its 

minimal overhead compared to similar approaches. Blockchain based solutions also exist 

[Mrabet2023], in order to create immutable and transparent reputation systems, where secure 

multiparty computation ensures confidentiality of feedback. 

8.2.1.2. Trusted third-party 

Trusted third parties (TTPs) are entities that facilitate trust between parties in digital transactions 

by verifying identities and credentials. The concept of TTPs has evolved from the need for 

intermediary entities that can vouch for the trustworthiness of participants in a digital ecosystem, 

resulting in many different types. 

A TTP-based scheme was introduced [Rizvi2014], that enables cloud customers to encrypt data 

using symmetric key algorithms, with the TTP handling key management and heavy computations 

to ensure data confidentiality while reducing client-side computational burden. A novel TTP-

based e-service was proposed, using blockchain technology and cryptographic methods to 

securely manage and store sensitive electronic documents, with an independent company acting 

as the TTP [Bazydło2024]. TTP-mtOTP [Trahan2022] is a protocol for transferring multiple RFID-

tagged items from an old owner to a new owner using a trusted third party (TTP) to ensure privacy 

and security. The TTP authorizes the transfer, authenticates the new owner, and the protocol is 

shown to be resistant to multiple security attacks while being compared favourably against other 

TTP-based OT protocols in terms of privacy, security, computation, and communication. There, 

also, exists a TTP-based signcryption scheme [Ullah2020] using symmetric session key exchange 

protocols to protect against man-in-the-middle and Denial-of-Service attacks in cloud computing. 

This scheme offloads encryption and decryption from the TTP, providing enhanced security 

features such as data integrity, confidentiality, authenticity, non-repudiation, forward secrecy, 

unforgeability, and un-traceability, and demonstrates superior performance in flexibility, 

reliability, and efficiency compared to existing schemes. A contract signing protocol introduces a 

TTP as an offline arbitrator that intervenes during disputes, ensuring fairness and security in the 

contract signing process [Wang2018]. It utilizes an identity-based confirmation signature 

scheme, which is secure against existential forgery under the CDH assumption and offers a 

flexible construction that avoids the impracticality of classical public-key techniques for identity-

based signatures from bilinear pairings. 

8.2.1.3. Use of Certificates 

Certificates are digital documents used to establish the identity and credentials of entities 

(individuals, organizations, or devices) involved in electronic transactions and communications. 

They are a critical component of Public Key Infrastructure (PKI) systems, ensuring secure data 

exchange over the internet by enabling authentication, data integrity, and encryption.  

An experimental protocol for publicly logging Transport Layer Security (TLS) certificates exists, 
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enabling auditing of certificate authority (CA) activity and identification of suspect certificates 

[Laurie2013]. The protocol aims to increase transparency by allowing anyone to audit both CA 

activity and the certificate logs themselves. It often works in conjunction with public key pinning, 

where a new HTTP header is introduced, enabling web host operators to instruct user agents to 

"pin" cryptographic identities for a defined period [Evans2015]. This pinning requires hosts to 

present certificates matching pinned fingerprints, thereby mitigating man-in-the-middle attacks 

by limiting trusted authorities and reducing reliance on potentially compromised Certification 

Authorities. A novel solution for certificate revocation was offered [Naor2000], utilizing 

authenticated dictionaries to represent revocation lists for efficient verification and updates. It 

improves scalability, communication costs, and robustness compared to traditional methods, 

with compatibility with X.500 certificates. Also, a certificate-based encryption (CBE) was 

introduced [Gentry2003], as a means to simplify Public Key Infrastructure (PKI) by enabling 

implicit certification, eliminating third-party queries on certificate status. Additionally, its 

incremental CBE scheme significantly reduces CA's computation and bandwidth requirements 

without employing hash chains or trees typical in previous PKI proposals. Another paper defines 

certificate-based signatures [Kang2004], aligning with Gentry's encryption scheme, and presents 

two specific schemes with security proofs under a GDH group assumption. This approach may aid 

in constructing an efficient PKI integrating Gentry's CBE scheme and provides a delegation-by-

certificate proxy signature scheme with proven security. 

8.2.2. Trust of systems and assets 

As networks get more diverse, the need for verification on components and assets becomes 

increasingly more important. In this context, assets include hardware and software components 

but not data. 

8.2.2.1. Zero trust architectures  

Among the most notable design approaches for trusting digital assets and systems is zero trust 

architectures (ZTAs). This approach focuses on establishing authentication and trust relationships 

for each asset rather than implicitly trusting an asset based on its location (for example an asset 

located on an internal company network). At each core, ZTA has a policy engine which is 

responsible for verifying components according to a set of rules. A summary of methodologies 

can be seen here [Stafford2020, He2022, Syed2022, Buck2021]. These are generally divided into 

user to machine verification, where proposed solutions include certificates, organization issued 

identities and biometrics among others, and machine to machine verification where techniques 

can also include measurements on standard device usage and machine learning assisted 

authentication. 
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8.2.2.2. Remote attestation  

Another innovative approach deals with verification of remote systems and applications running 

on them is remote attestation. Current literature presents several approaches based on the 

target platform application. Clemens et al [Clemens2018] present a framework for resource 

constraint IoT devices where the required metrics are taken on the device during runtime, while 

the rest of the functionalities are offloaded to a node with more available resources. Another 

example of IoT remote attestation [Gonzalez-Gomez2024] leverages performance metrics 

modules available to a device and a pre-trained device specific machine learning classifier to 

predict if the device is behaving normally or not. Other examples focus on cloud computing 

solutions. One such example is seen here [Hassan2020] where a QoS metric is used to assess 

whether a cloud provider abides by the agreed upon SLAs and user requirements. Thijman et al 

[Thijsman2024] present another scenario where cloud-edge trust is required, but edge devices 

may be accessible to the attacker. To mitigate this threat, devices are enrolled as Kubernetes 

worker nodes and are classified into Kubernetes clusters, which provide metrics on device 

behaviour. Other approaches to remote attestation include utilizing trusted platforms modules 

and are split into singular attestation, where one device is evaluated, and swarm attestation, 

where a network of devices is being collectively evaluated. An overview of those techniques can 

be found here [Banks2021].  

8.2.2.3. Local & Remote Attestation 

Local & Remote attestation considers the trust of the software stack based on hardware root of 

trust and remote verifying parties. Figuring out what to measure remains a major challenge. Bravi 

et al. [Bravi2023] present a trust monitor that takes input from multiple attestation technologies 

to manage trust in heterogeneous infrastructures, allowing multiple technologies to work 

together in protecting the entire device (firmware, kernel, runtime). 

Research on automated policy decisions based on attestation inputs remains underdeveloped. 

Thijsman et al. [Thijsman2024] present a platform to enroll physically vulnerable edge devices in 

a cluster after remote attestation. They provide a link between attestation events on the device 

and its cluster permissions. The binary nature of these measurements, either pass or fail, is 

identified as an open challenge. To meet required security-SLAs a more flexible system is 

required, capable of dynamically adjusting trust levels based on SBoMs or other reference 

sources.  

This heterogeneity is a cause for concern and an active part of the research field. Attestation 

relies on a strong root of trust for measurement, using a TPM as this RoT has proven beneficial 

due to its rigorous standardization benefiting homogeneity in an otherwise heterogeneous field. 

Problems arise however when identifying the anchor for this RoT, which often relies on 

proprietary CPU implementations such as Intel TXT leading to a plethora of TPM based solutions 
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without a clear anchor for the RoT. Efforts to bypass this have resulted in (partial) TPM 

implementations based on trusted execution technologies (Song2022, Narayanan2023), while 

these solutions do not take away the use of proprietary solutions such as ARM TrustZone or Intel 

SGX they do provide more clarity on the anchor for a RoT. 

Finally, decentralized attestation is an active topic of research. In edge or IoT networks, devices 

might not always have access to a centralized trust server or might not want to rely on such a 

single point of failure. Devices might also want to extend their trust to another party’s trust 

domain and prove themselves there. Blockchain and smart contracts are often used to provide 

trust in such situations [Zhang2024]. 

Complementary, few trust-based solutions have been proposed to mitigate DoSt/EDoS attacks, 

including EDoS shields and self-verifying Proof-of-Work (sPoW) [Ta2022]. The former is a filtering 

approach that allows cloud nodes to accept/reject incoming requests based on trust in the 

source; whereas the latter is an integrity verification mechanism that requires a source of 

demand to solve a PoW to verify their identity. 

8.2.2.4. Natwork’s considered Platform-agnostic payload trust leveraging blockchain  

Trust on deployed payloads will be improved by considering platform-agnostic blockchain remote 

attestation by SECaaS, as a continuity of work processed in [DESIRE-6G D3.1]. This work fosters a 

simplified mutual attestation scheme where any SECaaS-processed software nodes can mutually 

be verified, then verify other nodes, breaking all forms of hardware based or kernel-based 

dependences and drastically simplifying the reference measurement provisioning of classical 

remote attestation. During Natwork, this work will expand the support to three types of covered 

payloads of the project (i.e., machine compiled payloads, containerized payloads and WASM). In 

that vein, the project will cover different sorts of claims including static claims (e.g., memory 

footprint of the payloads, reflecting authenticity at bootstrapping stage or runtime integrity 

preservation during execution) and novel claims such as proof of execution or performance rating 

as initiated in [DESIRE-6G D4.1] by control flow monitoring when an instrumentation is made 

possible, typically through a SECaaS payload rewriting or processing. Last, the project will 

consider up to date progresses made by processor vendors and Linux working groups and 

associations to reach platform-agnosticity with trusted execution environments. 

Complementary, few trust-based solutions have been proposed to mitigate DoSt/EDoS attacks, 

including EDoS shields and self-verifying Proof-of-Work (sPoW) [Ta2022]. The former is a filtering 

approach that allows cloud nodes to accept/reject incoming requests based on trust in the 

source; whereas the latter is an integrity verification mechanism that requires a source of 

demand to solve a PoW to verify their identity. 
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8.2.3. E2E trust assessment 

Understanding, classifying, measuring and assessing the levels of trust have been some of the 

fundamental research challenges in trust management [Jøsang2005], uncertainty reasoning 

[Jøsang2016], computing [Marsh1994], information security [Grandison2003, Jensen2014], and 

security risk analysis [Lund2010]. Trust fusion from different sources and discounting of a re-

commented evaluation based on confidence in the entity conducting the evaluation have always 

been two focal points in trust management and recommendation networks. Trust fusion has 

been formalized in Subjective Logic (SL) and used for in a variety of applications including multi-

source and biometric information fusion [Vishi2017]. In recent years, the semantics initially 

attributed to fusion operators in SL, have been the subject of criticism [Dezert2014] and 

subsequent improvement [Jøsang2017, Heijden2018] after better clarifying the relationship of 

SL to Dirichlet distributions and Dempster-Shafer belief functions [Jøsang2007]. Bayesian 

distributions and networks have been studied for trust level evaluation and recommendation 

networks [Nguyen2018], for managing uncertainty in relation to trust [Ivanovska2015] and for 

trust fusion [Rafailidis2019]. Recent work [Ivanovska2018] has brought together Bayesian 

networks with subjective trust networks [Jøsang2016] into subjective networks that extend 

subjective trust networks with the ability to reason not only over uncertainty but also about 

previously unknown relationships.  There is a growing research interest in using trust 

management and uncertainty reasoning for highly distributed and/or federated environments 

and 5/6G related verticals including misbehaviour detection [Dietzel2014, Heijden2019, 

Kamel2020, Müller2021]. 

8.3. Attack detection & Protection 

8.3.1. RAN Jamming detection and protection 

In recent years, several research efforts have been performed to investigate the different anti-

jamming techniques in wireless communication, especially in the RAN domain. These includes 

massive MIMO techniques, spectrum spreading techniques, alternative eNodeB, dynamic 

resource allocation, jamming detection mechanisms, and coding techniques.  

The interference cancellation efficacy of MIMO communications improves significantly with the 

increase in the number of antennas, a characteristic of massive MIMO technology. However, due 

to its high power demands and the extensive space required to house a large array of antennas, 

massive MIMO is typically implemented in cellular base stations (eNodeB). As a result, massive 

MIMO techniques are utilized to counteract jamming attacks in cellular uplink transmissions. 

Vinogradova et al. [Vinogradova2016] suggested projecting the received signal onto the 

estimated signal subspace as a method to nullify jamming signals. The principal challenge with 

this technique lies in accurately identifying the user’s signal subspace.  
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Researchers [Do2017] developed a jamming-resilient receiver for massive MIMO systems to 

handle constant broadband jamming in cellular network uplink transmissions. Their approach 

involves reserving some pilot signals within a frame, which are then used to estimate the 

jammer's channel. Concurrently, legitimate users estimate their desired channels amidst the 

jamming. Leveraging the law of large numbers, thanks to the multitude of antennas on the base 

station (BS), this method allows for the creation of a linear spatial filter at the BS. This filter 

mitigates the jamming signal and helps recover the legitimate signal. Akhlaghpasand et al. 

[Akhlaghpasand2017] introduced a method to detect jammers in massive MIMO systems using 

unused pilots during the training phase, applying a generalized likelihood ratio test on these pilots 

in uplink transmissions to evaluate the method’s accuracy and study how the number of unused 

pilots and antennas at the base station affects performance. 

Besides MIMO-based jamming mitigation, rerouting traffic via an alternative eNodeB offers 

another strategy [Makarevitch2006] for dealing with jamming attacks in cellular networks. If the 

currently serving eNodeB is compromised by jamming and becomes non-functional, users can 

switch to a different eNodeB if one is available. Coding and scrambling methods are also 

employed to safeguard wireless communications from jamming attacks in cellular networks. 

Jover et al. [Jover 2014] concentrated on enhancing the security of the physical channels in LTE 

networks, specifically the PBCH, PUCCH, and PDCCH. Arjoune et al. [Arjoune2020] analyzed the 

effectiveness of current machine learning techniques for detecting jamming in 5G 

communications, specifically assessing the performance of neural networks, support vector 

machines (SVM), and random forest algorithms. They created a database for this purpose using 

metrics such as packet error rate, packet delivery ratio, and received signal strength. They used 

different machine learning algorithms using PER, RSS, and PDR features for the constant jamming 

attack application scenario. Sadeghi et al. developed an algorithm to create physical adversarial 

perturbations targeting an end-to-end auto-encoder wireless system. They demonstrated that 

these designed adversarial attacks are more disruptive than traditional noise-like constant 

jamming attacks. Zhong et al. introduced two learning-based adversarial attacks aimed at 

diminishing a legitimate user's channel access performance. Within their framework, the user 

employs a dynamic channel access mechanism facilitated by an actor-critic deep reinforcement 

learning (DRL) model. The attacker transmits a jamming signal to a single channel during each 

time slot, thereby decreasing the accuracy of the user's channel selection. Zhu et al. explored 

jamming attacks on mmWave MU-MIMO systems and proposed a hybrid beamforming strategy 

that enables users to reclaim their signals despite jamming. Specifically, they designed analog 

beamforming vectors to nullify jamming at each user and digital beamforming vectors to 

eliminate inter-user interference. Xiao et al. investigated the resilience of mmWave massive 

MIMO systems against smart jamming attacks, proposing a learning-based power allocation 



D2.1-SoA Analysis & Benchmark Assessment.v1.0 (UESSEX).docx 

 

Page 70 of 112 
 

strategy for massive-antenna base stations. They assessed how the number of transmit antennas 

influences the network's achievable sum rate. 

Moreover, Reconfigurable Intelligent Surfaces (RIS) [Naeem2023] represent a state-of-the-art 

technology that facilitates the control and manipulation of electromagnetic waves via a planar 

surface comprising multiple, reconfigurable unit cells. Key attributes of RISs include the ability to 

manipulate electromagnetic waves in a controlled and precise manner, their high degree of 

flexibility and compatibility with existing communication systems, and their relatively low cost. 

RISs offer extensive functional versatility, as they can be configured to provide a range of 

capabilities, including signal enhancement, noise reduction, beam steering, absorption, and 

anomalous reflection. RIS has emerged as a significant physical layer security module [Bae2024]. 

By directing signals in specific directions and blocking them beyond designated boundaries and 

frequency bands, RIS can bolster the security of communication systems. In addition to 

enhancing communication security, AI techniques can be utilized to optimise the RIS 

configuration to maximise its security capabilities. 

[Zou2023] adopted the RIS deployed on an unmanned aerial vehicle (UAV) to enhance 

information transmission while defending against both jamming and eavesdropping attacks. 

Furthermore, an innovative deep reinforcement learning (DRL) approach is proposed with the 

purpose of optimizing the power allocation of the base station (BS) and the discrete phase shifts 

of the RIS. [Cao2022] developed alos the relax-and-retract based joint transmit and reflecting 

beamforming to enhance the received signal of the legitimate device and mitigate anti-jamming 

signal of the jammer. Simulation results verified that the developed scheme can enhance the 

anti-jamming performance of multiple RISs (multi-RIS) assisted aerial-ground system with lower 

complexity compared with existing methods. 

8.3.2. Multi layer DDoS detection and protection 

Recently, the frequency and intensity of DDoS attacks have increased significantly. Due to that, 

researchers have been actively developing solutions to counter such volumetric attacks 

[Zhao2024]. The protection against DDoS attack can be realized through approaches such as 

implementing cryptographic measures that prevent attackers from being able to issue the attack. 

Additionally, by studying the normal patterns of the traffic, the abnormal traffic including the 

DDoS attack can be detected and prevented. Ma et al. [Ma2022] proposed a model to protect 

against DDoS attacks in 6G by assessing the trustworthiness of devices. This proposal combines 

spatial and temporal trust values to effectively represent the usual behaviour patterns of the 

devices and, as a result, distinguish between attack traffic based on previous communication 

behaviours. A signature-based approach to detect DDoS attacks in 6G networks proposed by 

Nazar et al. [Nazar2023]. In order to detect malicious behaviour of nodes, an anomaly detection 

system has been proposed that uses attack signatures to detect and mitigate the DDoS attack. 
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Chen et al. [Chen2024] proposed a defence architecture to prevent the DDoS attack. Their 

proposal targets specific field of V2X, through 6G.    

Utilizing AI based approaches, specifically ML techniques become one of the main methods in 

detecting DDoS attacks in 6G [Ma2022]. SDN/NFV enabled networks may utilize AI techniques 

for intrusion detection and prevention [Abdulqadder2020]. Compared to traditional approaches, 

AI based approaches efficiently protect against various security attacks, including DDoS. Due to 

their accuracy and fast rate of processing, machine learning techniques have shown to be 

effective in detecting DDoS attacks in SDN systems [Santos2020]. Kianpisheh and Tarik 

[Kianpisheh2024] proposed a federated learning-based approach to prevent several security 

attacks in 6G, focusing on DDoS detection as a use-case. In their proposed model, deep 

reinforcement model has been adopted to solve the trade-off between the DDoS attack 

detection and response time. 

Machine Learning (ML)-based DDoS detection methods can be categorized into three primary 

groups [Najafimehr2023], namely supervised, unsupervised, and hybrid, each with multiple 

subcategories. A comprehensive taxonomy of ML-based DDoS detection methods is presented. 

Idhammad [Idhammad2018] et al. proposed a hybrid learning approach for DDoS detection 

consisting of three steps: entropy computation, co-clustering, and classification. First, the 

average entropy of four features, including Source packet count, Destination packet count, 

Source byte count, and Destination byte count, is computed for an online traffic time window. 

Author et al. presented a novel DoS/DDoS attack dataset collected from a simulated 5G network 

slicing test bed. Finally, they showed a deep-learning-based bidirectional LSTM (Long Short Term 

Memory) model, namely, SliceSecure can detect DoS/DDoS attacks with an accuracy of 99.99% 

on the newly created data sets for 5G network slices. They generated a new dataset for benign 

traffic and DoS/DDoS attacks traffic with the simulated 5G network slices and made it publicly 

available. They simulated a 5G network slice testbed using Free5GC [Free5GC] and UERANSIM 

[UERANSIM] and showed the impact of DoS/DDoS attacks on performances of 5G network slices. 

Author [Bousalem2022] et al. introduced a 5G prototype that utilizes Machine Learning (ML) for 

attack detection and mitigation within sliced networks. Built on OpenAirInterface, the prototype 

facilitates the on-demand creation of network slices and the dynamic allocation of physical 

resources, guided by user behaviour and inputs from a northbound Software Defined Network 

(SDN) application. The focus is on Distributed Denial of Service (DDoS) attacks targeting the 5G 

Core Network, executed by one or more malicious users. With the implementation of a specially 

developed ML module, it has been demonstrated that the prototype can detect these attacks, 

and then autonomously establish a sinkhole-type slice with limited physical resources to isolate 

the malicious users. 
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Author [Hussain2020] et al. proposed a methodology to convert the network traffic data into 

image form and trained a state-of-the-art CNN model using ResNet. The problem is addressed by 

Author [Alanazi2022] et al. through the proposal of a deep learning (DL)-based ensemble solution 

for efficient detection of DDoS attacks in SDN. Four hybrid models are presented, employing 

three ensemble techniques and various DL architectures, such as convolutional neural networks, 

long short-term memory networks, and gated recurrent units, with the aim of enhancing SDN 

traffic classification. Experimentation was carried out on the benchmark flow-based dataset 

CICIDS2017. The most common DDoS attacks are SYN, TCP, ICMP, UDP, HTTP, and DNS flood 

[Seifousadati2021]. 

Various machine learning (ML) and deep learning (DL) models have been employed for network 

attack detection [Sharafaldin2019]. Decision tree (DT), logistic regression (LoR), linear regression 

(LR), Naive Bayes (NB), support vector machine (SVM), K nearest neighbor (KNN), random forest 

(RF), XGBoost, AdaBoosting, ResNet, artificial neural networks (ANNs), and convolutional neural 

networks (CNNs) have been applied using the CICDDoS2019 dataset to detect DDoS attacks. 

Additionally, the CICIDS2017 dataset, KDD datasets, CAIDA 2007 dataset, IoT NI, BoT IoT, MQTT, 

MQTTset, IoT-23, IoT-DS2, and UNSWNB15 datasets have been utilized for DDoS attack 

detection. The CICDDoS2019 dataset is well-known for evaluating the performance of ML and DL 

models for DDoS attacks, containing real-time DDoS attacks from network traffic. It encompasses 

a wide range of DDoS attacks, including 'DNS', 'SNMP', 'NTP', 'WebDDoS', 'MSSQL', 'UDP', 'LDAP', 

'NetBIOS', 'SSDP', 'PortScan', 'UDP-Lag', and 'SYN'. Researchers often utilize this dataset to 

identify optimal features and models for DDoS attack detection, aiming to minimize execution 

time. In a recent survey, Author [Ali2023] et al. conducted a systematic review for using ML/DL 

approaches to identify DDoS attacks in SDN networks. 

In recent studies, the enhanced processing capabilities and programmability of modern network 

switches have been leveraged to develop innovative paradigms in Intrusion Detection Systems 

(IDS) and Deep Packet Inspection (DPI). 

Author [Ramzan2023] et al. investigated the Distributed Denial of Service Attack Detection in 

Network.  This study adopts deep learning models including recurrent neural network (RNN), long 

short-term memory (LSTM), and gradient recurrent unit (GRU) to detect DDoS attacks on the 

most recent dataset, CICDDoS2019, and a comparative analysis is conducted with the CICIDS2017 

dataset. 

Author [Alahmadi2023] et al. conducted a recent survey mentioning DDoS Attack Detection in 

IoT-Based Networks Using Machine Learning Models. DDoS attacks are one of the major risks to 

the security of IoT networks. In this attack, the attacker uses numerous compromised nodes to 

overwhelm the target by producing significant network traffic that consumes the target’s 

resources. This eventually destroys the infrastructure, interrupts services, and prevents 
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authorized users from accessing associated services. DDoS attacks employ two diverse types of 

techniques: reflection and amplification techniques. 

Author [Alzhrani2023] et al. applied two Deep Learning algorithms Convolutional Neural Network 

(CNN) and Feed Forward Neural Network (FNN) in a dataset specifically designed for IoT devices 

within 5G networks. They provided a detailed description of the dataset used in the study, the 

network infrastructure, and the Deep Learning algorithms used for DDoS detection. Author 

[Talpur2024] et al. introduced an innovative approach by integrating evolutionary optimization 

algorithms and machine learning techniques. This study proposes XGB-GA Optimization, RF-GA 

Optimization, and SVMGA Optimization methods, employing Evolutionary Algorithms (EAs) 

Optimization with Tree-based Pipelines Optimization Tool (TPOT)-Genetic Programming. 

Datasets pertaining to DDoS attacks were utilized to train machine learning models based on 

XGB, RF, and SVM algorithms, and 10-fold cross-validation was employed. 

Recently, Author et al. [Xavier2023] demonstrated a Machine Learning-based Early Attack 

Detection system utilizing the Open RAN Intelligent Controller. This approach leverages the 

OpenRAN framework to gather measurements from the air interface for attack detection and 

dynamically manage the operation of the Radio Access Network (RAN). A Machine Learning 

model was designed to classify various types of DoS attacks with high accuracy using the air 

interface measurements collected by the near-real-time RIC, specifically focusing on physical and 

MAC layer measurements. 

An attacker penetrates the Non Real-Time RAN Intelligent Controller (Non-RT RIC) [O-RAN2021] 

to cause a DoS or degrade the performance. Open RAN systems can employ machine learning 

algorithms that are trained to protect the network from DDoS attacks with very high accuracy. 

For example, a plethora of ML based mechanisms for DDoS detection can be found in the 

literature [Doshi2018]. Five classification methods, including K-nearest neighbors (KNN), Decision 

Tree (DT), Random Forest (RF), Support Vector Machine with linear kernel (L-SVM), and Neural 

Network (NN) have been studied for intrusion detection. The authors found that all five methods 

were able to detect DDoS attacks with a high level of accuracy. However, the authors considered 

only three types of DDoS attacks. A total of 13 different DDoS attacks were considered 

[Sharafaldin2019]. 

O-RAN security report [Quad2023] defined the 14 requirements and 6 controls for the RAN 

Intelligent Controllers and associated RAN Apps which primarily relate to authentication and 

authorization, the protection of information exchanged between these components, and the 

ability to recover from DDoS attacks. 

A promising new approach has emerged with the integration of programmable network devices 

into these efforts. In one such solution, [Yoo2024] enhance the classic SYN cookie method used 
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to mitigate SYN flooding attacks by introducing a split-proxy design. In this design, a server agent 

tracks established connections while a switch agent handles the heavy lifting of managing traffic 

and calculating SYN cookie hashes. This approach maintains the line-rate speed of programmable 

switches and overcomes the limitations and vulnerabilities associated with small memory sizes. 

In another approach, Zhang et al. [Zhang2020] developed a framework called Poseidon, which 

includes a policy language enabling system administrators to easily articulate and deploy defense 

policies across their networks in an automated and distributed manner. This solution offers both 

versatility and ease of use, as it protects against various types of volumetric attacks, including 

SYN floods, DNS amplification, and UDP floods. Importantly, users do not need to understand the 

specific details of how the generated application is allocated across available resources. 

Author [Djuitcheu2023] et al. investigated the role of policy and regulation in enhancing the 

security and resilience of 5G systems against DDoS attacks, highlighting the need for 

incorporating DDoS attack resilience into policy and regulatory frameworks, collaborating with 

regulatory bodies to define security standards and compliance requirements, and fostering 

information sharing and coordination among 5G stakeholders. 

Author et al. delve into user plane DDoS attacks leveraging the IP protocol stack to generate 

excessive traffic [Abdelrazek2024]. They introduce a novel detection method situated within the 

Radio Access Network (RAN). This method analyses the patterns of radio protocols and their 

functionalities to identify user plane DDoS attacks initiated from User Equipment (UEs). Crucially, 

the method does not depend on directly scrutinizing user plane packets such as IP packets. 

Instead, it utilizes the attributes of 3GPP radio protocols (such as MAC, RLC, PDCP) to identify IP 

DDoS attacks nearer to their source. This early detection capability aids in preventing DDoS traffic 

from spreading to the transport network. 

For DoSt/EDoS, various machine learning approaches have been proposed to detect this form of 

attacks in cloud networks (including SDN-enabled clouds). The work of [Dinh2020, Din2021] 

proposes a LSTM-based machine learning detection system that analyses historical time-series 

data of CPU, storage and bandwidth utilisation to identify abnormal workload and traffic flow 

patterns. The work of [Ta2022] adopts a ML approach analyses the features of SDN flows and 

score them to steer attention towards abnormal traffic, suspected of being part of a EDoS attack. 

8.3.3. Edge/MEC attacks detection and protection 

Compared to previous technologies, 6G depends on the intelligence on the edge. Therefore, MEC 

that aim to bring the power of cloud computing to the edge of the network is considered as a 

promising technology and a potential enabler for 6G. However, because of the distributed nature 

of 6G networks, MEC in 6G is vulnerable to various security attacks, including physical attacks 

[Ranaweera2021]. Due to that, in late 2014 ETSI has initiated MEC Standarization [ETSI2014] to 

update various issues and providing a standardized MEC architecture [HU2015]. 
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Many researchers utilized AI based technologies to secure the MEC by proposing attack detection 

models. The communication layer can be monitored by security functions in MEC, such as a 

machine learning model that analyses the traffic and detects the malicious behaviour. In this 

case, MEC functions as an intrusion detection system that detects the possible attacks. 

Additionally, MEC may detect the bogus models provided by malicious nodes [Mukherjee2020].  

Authors in [Gopalakrishnan2020] proposed a model that utilizes deep learning to predict the 

traffic and detect the cyber attacks in MEC with an accuracy of detection that reaches 97.65% of 

the attacks. Cheng et al. [Cheng2022] proposed an AI based model to detect and mitigate the 

security attacks in MEC. Their proposed model is able to detect the malicious traffic by collecting 

and analysing the traffic in 5G networks. Additionally, the model detects the bogue base station 

by exploiting the signal strength in three phases of data collection, train and detection. Authors 

in [Liu2021] proposed a GRU based neural network model to detect the malicious traffic and 

possible threats in the HTTP traffic.  

Some researchers focused on a single important attack in their proposed model. As a very 

common attack, DDoS attack detection in MEC was addressed by the researchers. Huang et al. 

[Huang2024] proposed a combined model of container-based task isolation with lightweight 

online anomaly detection that detects the DDoS attack in MEC. During the detection of an attack, 

the proposed model provides a scheduling method that optimises the edge resource allocation 

and the service quality for benign users in the network.  Kabdjou and Shinomiya [Kabdjou2024] 

proposed an architecture that utilises the cyber deception metrics to detect the HTTP DDoS 

attacks in MEC. The architecture introduces proactive measures that actively mislead and 

redirect potential attackers. Also, the deception tactics effectively mitigate advanced threats, 

diverting assailants away from critical assets and into fabricated environments. 

8.3.4. Smart orchestration by Moving Target Defence 

In the design of cybersecurity solutions, the defending party consistently encounters the 

challenge that the offensive party typically enjoys an indefinite amount of time to observe the 

behavior of the target network. Each security solution aimed at countering previously 

encountered attacks inevitably introduces patterns that may potentially be leveraged by 

adversaries for recognition, evasion, or even weaponization. 

One emerging strategy addressing this dilemma is Moving Target Defense (MTD). MTD is defined 

by NIST as: ``The concept of controlling change across multiple system dimensions in order to 

increase uncertainty and apparent complexity for attackers, reduce their window of opportunity, 

and increase the costs of their probing and attack efforts" [NIST01]. At its core, MTD operates on 

the principle of dynamically altering the network's surfaces, rather than solely focusing on 

thwarting known attack vectors. By continuously shifting these surfaces, MTD disrupts 

adversaries' efforts to map out the system effectively. Furthermore, a notable advantage of the 
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MTD approach lies in its capacity to swiftly adapt configurations, such that even if an adversary 

identifies a vulnerability within a specific setup, the system will have transitioned to a different 

configuration by the time exploitation is attempted. Deviating a bit from the base concept, MTD 

can also be used to focus on well-known attacks that lack sophistication, e.g., DDoS attacks 

[Chai2020]. 

In [Tan2023] The authors categorize MTD strategies based on temporal and spatial dimensions, 

offering a comprehensive overview of the intersection between MTD and game-theoretic 

decision-making processes in the network. In another recent paper [Żal2024], the authors 

present a new variation of the often-discussed address mutation technique. Their main 

contribution is their focus on the preservation of Quality of Service (QoS). In their suggested 

solution the programmable network devices keep track of the network flows and mutate the 

addresses without need for reinitialization. 

Jafarian et. al. [Jafarian2023] present a novel iteration of the address mutation technique, 

extending to such a degree that it warrants adoption of the authors’ terminology, referred to as 

host mutation. The authors propose a comprehensive solution that not only alters the IP 

addresses of hosts but also encompasses modifications to MAC addresses, domain name 

responses to rDNS queries, and fingerprints. Yoon et. Al. [Yoon2021] leverage SDN capabilities to 

implement IP address shuffling and use multi-agent deep-RL to train and obtain efficient MTD 

shuffling policies in in-vehicle edge networks. 

The Microsoft Defender Research Team is also promoting security research in the direction of 

MTD and automated defense optimization with their open-source research platform 

"CyberBattleSim" [Microsoft2021], using deep-RL to optimize defensive strategies based on 

network simulations of medium-sized traditional and enterprise networks. 

As previously mentioned in Section 8.1.1, MTD operations can also involve the migration of the 

6G network functions as they operate in portable workloads such as VMs, microVMs, and 

containers. For instance, Soussi et. Al. [Soussi2023] present MERLINS, a framework migrating 

stateless VNFs (running in VMs) in a 5G testbed and showcasing both proactive defense, against 

malware and backdoor infections, as well as reactive defense, mitigating binary tampering 

attacks. Notably, MERLINS considers the problem of balancing the security benefits of such 

migrations with the operational costs and impact on availability/QoS. They address this by 

formulating the problem as a multi-objective optimization task solved using deep-RL. 

8.4. Machine Learning Frameworks for CTI Analysis 

The analysis of Cyber Threat Intelligence (CTI) and Indicator of Compromise (IoC) clearly shows 

the use of legitimate services such as CDN, Cloud Services, Instant Messaging, File Sharing 

Systems for the propagation of malicious files or malicious links related to the C2C architecture 
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(Command and Control) or malware infection. Among those services, we can find AWS, Dropbox, 

Google Docs, Discord. This presents a difficulty in countering the problem with traditional 

blocking methods. In this scenario, different works have attempted to characterise the main 

problem, the quality of the SIEM dataset, the methodology for analysing and detecting URLs, 

infrastructure organization of malware, and trends. In this section, we list previous efforts to 

define methodologies and propose an active solution for all challenges related to this topic using 

Machine Learning. 

Network entities and organizations have implemented countermeasures to prevent attacks by 

blocking content that has been previously identified as malicious or suspicious by other entities 

that have suffered such attacks. However, the lack of standardization in how they should report 

their incidents limits the ability of other entities to leverage these previous experiences. To 

resolve this limitation, different organizations have standardized the sharing of Cyber Threat 

Intelligence information using the STIX (Structured Threat Information Expression) format over 

the past few years. The STIX format represents incidents as entity-relationship graphs connecting 

significant attack components for a specific threat. Initiatives like Hail to TAXII or OpenCTI make 

this type of forensic information publicly available in the STIX format. However, only some private 

initiatives, such as the Cyber Threat Alliance, use this information to improve cybersecurity 

solutions. 

STIX datasets have already been used in various ways. A notable trend among CTI is grouping 

different sources provided in textual reports or lists of indicators of compromise into a Semantic 

Entity Database. For example, [Syed2016] proposes a Unified Cybersecurity Ontology (UCO). 

Then, several works rely on similar concepts (i.e., ontologies) to recover knowledge graphs by 

feeding external CTI sources (including STIX providers) and applying semantic queries. The STIX 

knowledge graphs are often used as search engines from which assumptions can be derived that 

help and improve the work of a human expert. In [Kim2018], an external STIX dataset is used to 

derive a new database schema and extract well-defined security rules in standardized formats 

like YARA and Snort. Finally, [Ekelhart2021] builds graphs using UCO to extract entities from 

application logs. Therefore, STIX-based graphs are prominently used as databases for user-

defined queries. However, these works depend on the construction of ontologies based on a 

structured database and integrating it with an external knowledge source. This implies an 

additional phase of ontology building and entity recovery, often obtained through the analysis of 

plain text sources.  

8.4.1.1. Threat Intelligence Sharing 

[Bouwman2020] examines the value of commercial threat intelligence, finding little overlap 

between providers and open feeds. Paid services exhibit delayed and limited coverage, which 

raises concerns about their timeliness. Interviews reveal that clients prioritize workflow 
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optimization over threat detection, informally evaluating threat intelligence rather than through 

quantitative metrics. 

[Bouwman2022] focuses on the COVID-19 Cyber Threat Coalition (CTC), a voluntary security 

information sharing community with over 4,000 members. The study examines two questions: 

whether large-scale collaboration improves coverage and whether freely available threat data 

enhances defender capabilities. The findings reveal that while the CTC largely adds existing 

industry sources, its blocklist deviated from COVID-19-related domains to generic abuse due to 

strict quality control measures. However, within the COVID-19 data, the CTC demonstrated 

added value by including a significant proportion of unknown domains for existing abuse 

detection systems. The article derives three lessons for future threat intelligence sharing 

initiatives based on this unique experiment. 

[Almashor2022] focuses on analyzing a set of URL data derived from SIEM threat intelligence 

platforms, proposing to group them into attack campaigns that can be characterized and share 

similarities. One of the findings is that there are many malicious URLs that remain active and 

functional even after being marked as malicious. 

Cloud Security 

[Rakotondravony2017] focuses on classifying attacks in Infrastructure as a Service (IaaS) cloud 

environments, particularly those involving Virtual Machines (VMs), using mechanisms based on 

Virtual Machine Introspection (VMI). The classification methodology considers the source, target, 

and direction of attacks, allowing cloud actors to deploy VMI-based monitoring architectures.  

DNS Security 

[Alowaisheq2020] discovers the security risk posed by obsolete Name Server (NS) records in 

active domains, particularly those residing within the domain zone. The authors demonstrate the 

practical exploitation of this type of obsolete NS record, leading to a silent domain takeover. 

Through an exhaustive analysis of high-profile domains, DNS hosting providers, and public 

resolver operators, they identify numerous susceptible domains and vulnerable parts, including 

government entities, payment services, Amazon Route 53, and CloudFlare. The document also 

delves into mitigation techniques for affected parties, providing a comprehensive understanding 

of this new security risk. 

Network Analysis 

Regarding network analysis, [Luckie2020] presents a system that learns regular expressions to 

extract Autonomous System Numbers (ASNs) from hostnames of router interfaces, incorporating 

topological restrictions and PeeringDB data. By modifying an existing method, it improves the 

accuracy of ASN extraction, increasing agreement with inferred ASNs from 87.4% to 97.1% and 
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reducing error rates. This work expands the possibilities for router ownership inference based on 

evidence. 

Malware Analysis 

In the field of malware analysis, [Yao2023] investigates the abuse of web applications by malware 

as a substitute for attacker-controlled servers. It was found that delays in collaboration between 

incident responders and web application providers facilitated the proliferation of this malware. 

The authors developed Marsea, an automated malware analysis pipeline, which identified 893 

instances of malware involved with web applications across 97 families, highlighting a 226% 

increase since 2020.  

[Ife2019] presents a longitudinal measurement of the malware delivery ecosystem on the web. 

Through an analysis based on data, the authors examine network infrastructures and files 

downloaded at different periods of time (one day, one month, one year). They identify two 

distinct ecosystems: a larger network responsible for delivering Potentially Unwanted Programs 

(PUP) and separate networks that deliver malware. Although they are mostly disjointed, there is 

a crossover between the two ecosystems. The study reveals skewed proportions (17:2) of PUP to 

malware in the wild, observes periodic activity in the malicious network, and highlights the 

potential for improving dismantling techniques for researchers and law enforcement. 

[Ife2021] is an advancement over their previous work in [Ife2019]. Using the same type of 

dataset, it examines the response of malware delivery operations to attempts at dismantling. The 

findings indicate the prevalence of distributed delivery architectures, the importance of 

identifying key "superbinaries," and the predictable and unpredictable behaviors exhibited by 

malware operations after dismantling. The study suggests the need to improve security hygiene, 

coordination between service providers, and the development of threat monitoring techniques 

to effectively interrupt malware operations. 

[Labreche2022] focuses on the attacked side of the malware delivery ecosystem through the 

configuration of isolated virtual machines that act as infected victims of various droppers. The 

work centers on the analysis over time of the behavior of droppers and the malicious load 

downloaded, trying to find correlations between victim characteristics and the choice of 

malicious software left by each downloader. 

[Popescu2015] explores proactive identification of malicious URLs, crucial in light of the strong 

dependence of malware on the internet for its propagation. The authors discuss practical 

considerations, emphasizing automatic learning and unsupervised learning techniques for 

efficient detection in memory. They evaluate a dataset of 6 million URLs collected over 48 weeks, 

tracing the evolution of detection rates and false positives. Based on this analysis, they obtain 

insights into the current landscape of malware and attack vectors on the internet. 
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[Roy2021] proposes a detailed analysis of malicious URLs hosted on Twitter, highlighting the 

problem of blocking such resources when they point to legal file-sharing platforms, Google 

Forms, and Microsoft's corresponding form service, as well as WordPress web hosting domains, 

Google Cloud Storage API, etc. The study highlights Twitter's poor countermeasures in terms of 

timeliness and coverage. 

[Zhu2020] evaluates the use of Virus Total file labeling and the difficulty in correlating and 

aggregating files that belong to the same malware family but are labeled differently, 

incompletely, or incorrectly by AV services and files. It examines the dynamics of labeling motors 

on VirusTotal. By reviewing 115 academic articles, the authors categorize and validate common 

labeling methods used by researchers. They collect daily snapshots of VirusTotal labels for over 

14,000 files from 65 engines and demonstrate the benefits of aggregating labels based on 

thresholds to stabilize file labels. The study reveals that certain "trusted" motors may have 

inferior performance, motor groups are correlated, and some motors produce false positives. 

The article concludes with suggestions for improving data annotation practices using VirusTotal. 

[Shen2021] provides some interesting ideas for representing metrics regarding the popularity of 

the domain, geographical distribution, categorization, etc. By focusing on Potentially Harmful 

Applications (PHA) in Android, it provides a useful list of related works on the analysis of malware 

distribution and characterization of domains that could be useful for our work. 

8.5. Service accurate monitoring and traceability 

Monitoring is a key aspect for managing complex cloud-native infrastructures and enhancing 

operational efficiency. For 5G networks, end-to-end real-time monitoring is a paramount factor. 

This involves gathering infrastructure metrics (such as compute, storage, and network) as well as 

domain-specific metrics for components like gNBs or MEC services. As we transition towards 6G, 

the need for sophisticated monitoring and traceability solutions will only intensify, driven by the 

increased complexity and performance requirements of 6G networks. 

In 6G networks, monitoring will continue to support the lifecycle management of services and 

facilitate intelligent reconfiguration and alerting for stakeholders, including infrastructure 

owners, operators, slice owners, and service/application developers [Taleb2022]. It will enable 

real-time tracking of service performance and resource utilization, allowing for proactive 

management and optimization of network resources. Effective monitoring will also support 

dynamic service orchestration and automated healing processes, ensuring high availability and 

reliability of services.  With the help of AI and machine learning, 6G networks will benefit from 

intelligent monitoring systems that can detect anomalies, predict potential issues, and 

automatically trigger reconfigurations to maintain optimal performance. These systems will 

provide real-time alerts to stakeholders, enabling them to take immediate corrective actions and 
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minimize service disruptions. Multi-tenant networks, which support network slices, will require 

the monitoring of key performance indicators (KPIs) across different technological domains 

managed by various entities. For example, a network operator focuses on the KPIs of components 

running the network slice (e.g., RAN, cloud/edge, routers), while a slice owner may consider high-

level KPIs (e.g., end-to-end delay) for SLA validation. 

One advanced version of monitoring in 6G will be telemetry. Telemetry provides detailed 

statistics about a given traffic flow based on metadata extracted from a set or all the packets 

belonging to that flow. Instead of relying on cloud-based virtualized solutions, leveraging 

programmable data planes (e.g., using P4) will be crucial. Data plane programmability can be 

exploited for monitoring and telemetry in the core network segment. For instance, the work by 

Paolucci et al. [Paolucci2021] proposed a UPF offloaded implementation inside a programmable 

switch, including the telemetry of desired flows to a data analytics collector. This functionality, 

offloaded in a programmable switch, enables the operator to perform a detailed analysis of traffic 

statistics, including UPF latency performance, thus indicating possible performance degradation 

due to excessive load, congestion, or attack events. Additionally, network attacks using different 

protocols as drivers can be profiled using the programmable data plane. Musumeci et al. 

[Musumeci2020] used programmable postcard telemetry of specific metadata features (e.g., the 

rate of TCP SYN packets) to feed AI engines in near real time, showing a drastic improvement in 

AI-based attack detection in terms of processing latency compared to standard SDN controller 

detection, reducing the detection time from several seconds to a few hundred microseconds. 

Beyond network programmability solutions for monitoring and telemetry, application-level tools 

will play a vital role in 6G. Open-source tools like Prometheus and Grafana will continue to be 

pivotal for advanced monitoring solutions. Barrachina et al. [Barrachina2022] proposed a 

framework that employs over-the-air transmissions and focuses on deploying Open5GS and 

Prometheus-based monitoring as containerized network functions (CNFs) within a Kubernetes 

cluster. This setup, spanning a multi-tier network with a multi-access edge computing (MEC) host, 

demonstrated the effectiveness of an end-to-end monitoring system through Grafana 

dashboards. These dashboards provided insights into both infrastructure resources and radio 

metrics for scenarios such as user plane function (UPF) re-selection and user mobility. 

Network tomography (NT) is an emerging monitoring approach that will be increasingly relevant 

in 6G. NT estimates network performance based on measurements from a limited subset of 

network elements, presenting several benefits over traditional monitoring techniques but is 

susceptible to identifiability issues. Kakkavas et al. [Kakkavas2021] demonstrated how NT could 

address current monitoring challenges by complementing and working together with Software-

Defined Networking (SDN). NT leverages SDN capabilities such as the centralized view of the 

entire network, direct flow-level measurements, and controllable routing to yield accurate 
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estimations with low overhead. This work explored the range of applications for NT-based 

solutions in 5G networks and beyond, including virtual and vehicular networks. 

Monitoring the performance of network slices in 6G will pose challenges due to the significant 

network overhead associated with direct measurements. To address this issue, the work in 

network tomography suggests estimating slices' delays in the network by finding the minimal 

combination of end-to-end simple monitoring paths necessary to minimize estimation error. A 

new genetic algorithm is introduced to identify the optimal monitoring paths required for 

network tomography while minimizing their number. The evaluation results indicate the 

effectiveness of both fixed mutation and adaptive mutation approaches, with the adaptive 

mutation approach outperforming the fixed method by exploring new solutions and avoiding 

local minima, leading to faster convergence and better results in estimating network slice delays. 

In summary, as we move towards 6G, the integration of advanced monitoring and traceability 

techniques will be crucial for ensuring operational efficiency, security, and performance. By 

leveraging programmable data planes, advanced telemetry, application-level tools, and emerging 

techniques like network tomography, 6G networks will be better equipped to handle the complex 

demands of future communication systems. 
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9. Roadmap summary 
The NATWORK project roadmap identifies key areas that are critical to achieving success in 

building a robust, scalable, and future-proof 6G network infrastructures, targeting to meet the 

evolving demands of next-generation networks. The key areas that are critical to the success of 

NATWORK project are the following: 

• Scalability and Performance; 

• Security and Privacy; 

• Energy Efficiency and Sustainability. 

In the sub-section below, a description of these key areas as well as key actions towards the 

success of NATWORK project on these areas are illustrated. 

9.1. Priority challenges 

The following key areas have been identified as critical to the success of ΝΑΤWORK roadmap: 

 

9.1.1. Scalability and Performance 

The exponential growth in data traffic, driven by applications such as video streaming, IoT 

devices, and virtual reality, necessitates networks that can scale effectively without 

compromising performance. Achieving high bandwidth and low latency, while accommodating a 

large number of interconnected devices, remains a paramount challenge. This requires 

advancements in both hardware and software to ensure that networks can handle the increased 

load and provide consistent performance. 

Key Actions: 

• Foster software payload migrability with no-latency bootstrap for execution at the best 

location and closer to the users.  

• Develop Dynamic Architectures: Create network architectures that can automatically 

scale in response to demand fluctuations, ensuring that performance remains robust 

during peak usage times. 

• Enhance Traffic Management: Strengthen network resource allocation and traffic 

management strategies utilizing AI-enabled techniques for load balancing and elasticity 

among microservices. The target is to ensure efficient management of growing data flows, 

enabling rapid and reliable data transmission across the network infrastructure. 
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• Design of 6G Network Functions: Design and develop adaptive and resilient 6G network 

functions capable of maintaining high performance under diverse and changing network 

conditions. 

 

9.1.2. Security and Privacy 

As networks expand and integrate more devices, the threat landscape also grows, making 

security and privacy a top priority. A significant challenge is to ensure that data remains secure 

and user privacy is maintained in a pervasive network environment. This includes safeguarding 

against cyber-attacks, data breaches, and unauthorized access while balancing the need for 

transparency and data sharing. 

Key Actions: 

• Implement Advanced Security Measures: Use robust encryption and authentication to 

safeguard data and ensure only authorized access. 

• Deploy AI-Based Security Solutions: Utilize artificial intelligence for real-time detection 

and mitigation of security threats, enhancing the network's ability to respond to cyber-

attacks. 

• Establish Data Governance Policies: Develop comprehensive frameworks and policies for 

data governance and privacy compliance to protect user information and maintain 

regulatory standards. 

• Develop platform-agnostic security for higher payload migrability. 

• Develop continuous security during execution notably by accurate service and payload 

monitoring. 

• Develop Physical Layer Security modules based on novel RIS and AI-based MIMO 

technologies 

 

9.1.3. Energy Efficiency and Sustainability 

The increasing number of network devices and the growing volume of data traffic contribute 

significantly to energy consumption and environmental impact. Developing energy-efficient 

technologies and promoting sustainable practices within the networking infrastructure are 

critical challenges. This includes optimizing power usage across all network components and 

integrating renewable energy sources where feasible. 
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Key Actions: 

• Innovate in Energy-Efficient Technologies: Develop network equipment and technologies 

that consume less power while maintaining high performance, reducing the overall energy 

footprint. 

• Integrate Renewable Energy Sources: Promote the adoption of renewable energy in 

network operations to lower carbon emissions and support environmental sustainability. 

• Implement Sustainable Practices: Establish best practices for energy management in data 

centers and network maintenance to ensure sustainable and eco-friendly operations. 

• Develop on-demand security to reduce the carbon impact of security. 
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10. Conclusions 
To develop a sustainable 6G ecosystem, there is a need to develop sustainable cybersecurity 

solutions that can provide efficient protection and resiliency against 6G threats and attacks, given 

the bespoke characteristics of 6G. To be able to develop such solutions, it is first required to 

analyse the landscape of cybersecurity challenges in 6G, reviewing potential threats and attacks 

and their impact on relevant KPIs and summarizing state-of-the-art cybersecurity solutions and 

how they can be leveraged in tackling such threats. This document has reviewed state-of-the-art 

literate in 5G and 6G cybersecurity. It provided a comprehensive review of the challenges on road 

towards 6G, from the radio access to the core programable transport network and from edge to 

core clouds. The document summarised the application of AI in network security as well as the 

security of AI, the dependency on datasets and the challenges in data sharing such as privacy. 

Orthogonally, the document reviewed state-of-the-art cybersecurity solutions and enabling 

technologies, including security-by-design principles, intrusion detection and protection systems, 

payload hardening technologies and emerging AAA systems. The comprehensive review is then 

utilised to summarise the priority challenges to be tackled in the lifetime of the NATWORK 

project. Insights developed in this report will be leveraged in guiding the research and innovation 

in work packages: WP3 that focuses on composition of secure complex 6G services; WP4 

developing AI as a Security Service; and, WP5 addressing self-resilience of 6G wireless devices. 

Insights will further guide the use-cases development and evaluation in work package WP6. 
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