NIQT .

///

W-‘R*RK

Net-Zero self-adaptive

activation of distributed self-
resilient augmented services

D3.1 : Secure-by-design orchestration and management & Data plane
computation offloading.r1

Lead beneficiary UEssex Lead author Mays AL-Naday, Sumeyya
Birtane, Shankha Gupta

Reviewers Edgardo Montes de Oca (MONT), Sdndor LAKI (ELTE)

Type R Dissemination PU

Document version RN Due date 30/06/2025

ST Co-funded by
LA the European Union

Project funded by

Schweizerische Eidgenossenschaft Federal Department of Economic Affairs, U K R h

g Confédération suisse Education and Research EAER esearc
Canfederazione Svizzera State Secretariat for Education, H
Confederaziun svizra Research and Innovation SERI and I nn ovatl on

swiss Confederation

N nT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

Project information

Project title Net-Zero self-adaptive activation of distributed self-resilient
augmented services

Project acronym NATWORK

Grant Agreement No 101139285

Type of action HORIZON JU Research and Innovation Actions

Call HORIZON-JU-SNS-2023

Topic HORIZON-JU-SNS-2023-STREAM-B-01-04
Reliable Services and Smart Security

Start date 01/01/2024

Duration 36months

Document information

Associated WP WP3

Associated task(s) T3.1,T3.2

Main Author(s) Sumeyya Birtane, Shankha Gupta, Mays AL-Naday (UEssex)

Author(s) Wissem Soussi, Gokcan Cantali, Glirkan Giir (ZHAW), Péter Voros,
Mohammed Alshawki (ELTE), Konstantinos Pournaras, Kostas
Lampropoulos (PNET), Maria B. Safianowska (ISRD), Antonios Lalas,
Virgilios Passas, Sarantis Kalafatidis, Nikolaos Makris, Donatos
Stavropoulos, Stelios Mpatziakas, loanna Kapetanidou, Konstantinos
Giapantzis, Georgios Agrafiotis, Thanasis Korakis, Anastasios Drosou
(CERTH), Tom Goethals (IMEC), Francesco Paolucci (CNIT)

Reviewers Edgardo Montes de Oca (MONT), Sandor LAKI (ELTE)

Type R — Document, Report

Dissemination level PU — Public

Due date M18 (30/06/2025)

Submission date 30/06/2025

Co-funded by
the European Union

« R4 UKResearch Page 2 of 96
=4 B and Innovation

NRAT:.-
W R.RK

D3.1

Secure-by-design orchestration and management & Data plane computation

offloading.rl

Document version history

Version Date Changes Contributor (s)
v0.1 02/12/2024 Initial table of contents Mays AL-Naday,
Sumeyya Birtane
(UEssex)
v0.2 10/01/2025 Updated ToC and partner Sumeyya Birtane
assignment Mays AL-Naday (UEssex)
v0.3 21/01/2025 Further update to ToC and partner | Sumeyya Birtane
assignment (UEssex)
v0.4 04/02/2025 Further update to ToC and partner Francesco Paolucci
assignment (CNIT)
v0.5 25/02/2025 Filled content for the parts: Section | Gokcan Cantali, Wissem
4.1 - Moving Target Defense (MTD) | Soussi (ZHAW)
Framework
Section 6.4 - MTD
v0.6 20/03/2025 Contribution for Section 2.3, 3.5, 5.2, | Virgilios Passas (CERTH)
6.2,6.8
v0.7 19/06/2025 Reviewed version Sandor Laki (ELTE),
Edgardo Montes de Oca
(MONT)
v0.75 22/6/2025 Refinement based on review | All authors
comments
v0.8 24/06/2025 Near final version Mays AL-Naday (UEssex)
v0.9 27/06/2025 Quality review Joachim Schmidt,
Leonardo Padial (HES-SO)
v0.95 29/06/2025 Final review and refinements Antonios Lalas, Virgilios
Passas (CERTH) and
CERTH team
v1.0 30/06/2025 Final version for submission Antonios Lalas (CERTH)

Co-funded by

the European Union

BESNS # =

Project funded by

L9, .4 UK Research
=4 B and Innovation

Page 3 of 96

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or 6G-SNS. Neither the European Union nor the granting
authority can be held responsible for them. The European Commission is not responsible for any use that may be
made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the NATWORK consortium make no warranty of any kind with regard to this material including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the NATWORK Consortium nor any of its members, their officers, employees, or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the NATWORK Consortium nor any of its
members, their officers, employees, or agents shall be liable for any direct or indirect or consequential loss or
damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© NATWORK Consortium. This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation, or both. Reproduction is authorised provided the source is acknowledged.

Project funded by

Co-funded by © mmmrenen
the European Union Cotebmin e :

L9, .4 UK Research Page 4 of 96
=4 B and Innovation

NRT:.-. D3.1
W.-i }'R K Secure-by-design orchestration and management & Data plane comput.ation
- offloading.rl

Table of Content
Table Of CONTENT ..ottt e s b e st e e s reeeneesneesaneens 5
List of acronyms and abbreviationsuiiii i 9
I o) i 4=V YRS 11
LISt OF TaDI@S ..t s 12
L CTo U ANV IE UTq o[T Y2 13
Lo INTErOAUCTION Lottt e st e e s bt e e e bt e e sab e s sareesenneesneees 14
1.1. Purpose and structure of the doCUMENToeviiiiiiii e 14
1.2, INtended AUIENCE.ooiiiiiiiee ettt e s sane e 15
1.3, INEEITEIATIONS oo s 16
2. Software Design: Orchestrator(s)iccciceeerciiieiiiiiee e esee e e e s e e e e sareeeeees 17
2.1. Guided design and development by OSL patternscccceccveeeeriieeeecriieee e 17
2.2. Orchestration at the Extreme Edge (FEather)ccccocueieieciiie e, 19
2.2.1. FUNCLioNal COMPONENTSvviiiiiiiiee e e e e e e aaeee s 19
2.2.2. Interfaces and ProtoCoISooiiiiiiiiiiiieieee e 21
2.2.3. Data artefactS. . .eiie e 22
2.3, Orchestration at the CRANcooiiiiii e e 22
2.3.1. FUNCtional COMPONENTS c...ccoiiiiiiieeee e e e e e e e e e e anraes 23
2.3.2. Interfaces and ProtoCoISooiiiiiiiiiiiiieiee e 25
2.3.3. Data artefactS. . .ee e 25
2.4. Secure-by-Design Orchestration at the Core.......ooomiiriiiiiciiiieeee e, 25
2.4.1. FUNCtional COMPONENTSccoieiiiiieeee et e e e e e e e annaes 26
24.2. Interfaces and ProtoCOISeiiiiiiiiiiiiie e 28
2.4.3. Data artefactS. . ..eeieeieeee e 28
3. Data Plane Computation Offloading DeSigNc.c.uvieieeeieiiciiiieeee e 29
3.1. Offloading functions in the data Plan@..........ooccmeeeeiiii i 29
3.1.1. NATWORK Offloading flaVOULSceeeiiiiieeiiieieeee et e 30
3.1.2. Deployment and configuration interfaces......ccccceeeecciiiieeee e, 32
Page 5 of 96

P

roject funded by
Co-funded by O s avmon 5 po R84 UK Research
the European Union i fralrutry =4 B and Innovation

N nT * 5 D3.1

w g };R K Secure-by-design orchestration and management & Data plane E,?g:f:;igig
3.2. Wirespeed Al (WAI) and Decentralized Feature Extraction (DFE).......cccccceeeevveeeennnen.. 33
3.2.1. DFE/WALI in P4 programmable SWItChesS.........ccocuveiiiiiiciiii e 35
3.2.2. DFE/WAI in NVIDIA Bluefield-2 DPU.......cccoeeiirieniieienieseeieeee e 38
3.3, IN-netwWork ML mMOdEIScoocuiiiiiiiiiiiee e 40
3.4. RAN security-performance balanCercccceviiiiiiiiiie e 42
3.5, LLIM-DASEA IDS... .ottt e 43
4. Software Design: Orchestration SUPPOrt SYStEMSeiiiiiiiiiiiiiiieeecreee e 45
4.1. Moving Target Defense (MTD) FrameWOrKccccuuereeiiiiieeeiiieeeeecieeeeeecvee e e eeveeee e 45
4.1.1. MTD CONEOIIET <.ttt e 46
4.2. Selective Cyber Threat Intelligence (CTI) SOlUtiONccoocviiieiiiiiieeeeee e, 47
4.2.1. Functional COMPONENTS ..o e e e 48
4.2.2. Interfaces and ProtoCOISeiiiiiiiiiieieeee e e 49
4.2.3. Data ArtefactS. . .eeieeieeee e 50
4.2.4. CTI Cross-Domain selective SNharing.......cceeeivciieeeiiiiiee e 50
4.3. Al-based Behavioural ANalysis SEIVICE.......ccuiiiiieiiii i 52
4.3.1. DFE/WAL. ...ttt sttt ettt bt bbbttt e et bbb eseens 52
4.3.2. B 1= o1 = 0[N 1Y/ SR 53
4.3.3. Microservice behavioural analysiscccooveeeeieiiieiciii e 55
4.4. Security-performance balanCer SEIVICEccoiiieiiiiicciciiieee e 60
44.1. B N=Tel oo 1or] e TeTY ol o)) o ISR 60
4.4.2. Functionalities providedccuuuiieier i 61
4.4.3. DEPENUENCIES. ..o iirrreeeee e e eececrrree e e e e eeeeerreeeeeeeeeeseabrrraeeeeeeesessanrseeeeeeeseensnsnreens 61
4.4.4. LAY F{o] g1 o o 1P 62
4.45. Interfaces and ProtoCOIScoccuvieeiiee i e e 62
4.5. Blockchain Based Trust Establishmentcccoeoiiiiiiiiiiiiiiee e 63
45.1. B =Tel o] o 1Tor= 1 D TTY ol o) o [o H PP 63
45.2. DEPENUENCIES.ccievrrieeiee e e eeieetrree e e e eeeeerrrreeeeeeeeseabrrrereeeeeesessasrsereeesessensnnsnreens 64
4.5.3. Functionalities Providedceooiiiiiiiiiiieee e 64
454, Algorithms & WOIKFIOWuuvvviiiiiiiii e 65

rojctfundec by
Co-funded by O s eeen pooo RO (@ UK Research Page 6 of 96
the European Union et ety =4 N and Innovation

N nT * 5 D3.1

w g };R K Secure-by-design orchestration and management & Data plane E,?g:f:;igig
4.5.5. Interfaces and ProtoCOISeoiiiiiiiiiiieee e e 65
o 1 01 o1 =T 0 V=T o A T o 1 PR 66
5.1. Orchestration at the Extreme Edge (FEather)cccovvveeiiieciieecee e, 66
5.2. Orchestration at the CRANcocciiiiiii e e 67
5.3. Orchestration at the COreuiiiiiiiii e s 69
B4, WAI/DFE ..ottt et et b et st a e bt et s bt et e et s at e beeatenaeenes 70
5.5. Security Performance BalanCerouiieiiiiiiiiiiiee et 71
5.6, IN-NEIWOIK ML..ciiiiiiiiiiiiiiiee e s s 71
5.7, MTD CONEIOIIET ettt ettt e e e st e s eaneesneeas 71
5.8. Blockchain Based Trust Establishmentccocuieiiiiiiiiiiiii e, 73
6. Strategies and Optimisation AlgOrithms..........oooiiiiiiiii e, 75
6.1. Orchestration at the Extreme Edge (Feather)cccooouveeeiiciieiiiee e, 75
6.2. Orchestration at the CRANcooiii e s 76
6.2.1. Strategies adOPted........uuiii i e e e e 76
6.3. Orchestration at the COre.......uiiiiiiiiiiiii e 77
6.3.1. CTI Cross-Domain selective SNaring..........coeieecciieeeeiie e 77
6.3.2. Workload Prediction for SCheduling........ccooveiiiiiieeii e, 78
6.4. Moving Target Defence (IMTD)cooccciveeiee it e e e ee e e e e e e aarres 79
6.4.1. Container Restore Algorithm for Kubernetes-aware Orchestration.................... 79
6.4.2. Parallel LiMi Scheduling Using ML-based Time Prediction.........cccccceeveeeeennnnnneee. 80
6.5. DFE/WAI OffloaiNg ...ueeeeuriieeiieeeee ettt ettt e et e e e eate e e eaaeeeneeas 81
6.5.1. WALl and DFE for P4 switCh DNNcccoiiiiiiireeeeeee e 81
6.5.2. DFE and WAI in DPU-based mitigationcccceeei e, 83
6.6. DAtA PlaN@ ML.uuuveeeiiiiiiieiieeeeee et e e e e e e s e a e e e e e e e nrarraes 85
6.6.1. Feature EXtraction.......ccoeiiiiiiiii 86
6.6.2. Model Training and Online Learningcccuveeeeeeiieccciiiieeee et 86
6.6.3. MOl DiSABEIEEATION ..eeveiieiieiirrieeiee e eeeecrrere e e e eesrerrree e e e e e e sesabrraeeeeeeesensnnsnreens 88
6.7. RAN security-performance balanCer ... 89
6.7.1. Problem definition ..o 89

rojctfundec by
Co-funded by O s eeen pooo RO (@ UK Research Page 7 of 96
the European Union et ety =4 N and Innovation

NRAT:.. ion

w.,‘ . };R K Secure-by-design orchestration and management & Data plane E,?&F;L;zgiz
6.7.2. [DL=IVZT oY o=To I o] U] d o] IR PRSP 89

6.8, LLIM-DAS@A IDS.......oiiiiiiiiiiiee e 90
6.8.1. Packet-token embedding optimizationcccecuieiiiiiiiiiiniie e, 90
6.8.2. Contrastive learning and flow augmentation process.........ccccccveeeeiciieeeeecciveeennns 91
6.8.3. Security policy enforcemMENTt.....ooocviiii i 92

7. CONCIUSIONS ..ttt et e et e s ab e e s esb e e s ena e e snaeesnaeenas 94
8. REFEIENCES ...ttt et ettt e s ne e s e 95

roject funded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 8 of 96
the European Union i fralrutry =4 B and Innovation

NRAT:.-
W R.RK

D3.1
Secure-by-design orchestration and management & Data plane computation
offloading.rl

List of acronyms and abbreviations

Abbreviation Description

5GC 5G Core

AMF Access and Mobility Management Function
Al Artificial Intelligence

ATD Anomaly Traffic Detector

AUSF Authentication Server Function
CRAN Cloud Radio Access Network

CTI Cyber Threat Intelligence

DFE Decentralized Feature Extraction
DoS Denial of Service

EMA exponential moving average
FQDN Fully Qualified Domain Name
GTP GPRS Tunnelling Protocol

IDS Intrusion Detection System

KPI Key Performance Indicator

LLM Large Language Model

ML Machine Learning

MLP Multi-layer Perceptron

MTD Moving Target Defense

NFV Network Functions Virtualization
NSD Network Service Descriptor
NWDAF Network Data Analytics Function
OAl OpenAirinterface

O-RAN Open Radio Access Network
OSL OpenSlLice

PRB Physical Resource Block

RAN Radio Access Network

RC RAN Control

RIC RAN Intelligent Controller

RRC Radio Resource Control

RT-RIC Real Time RAN Intelligent Controller
SD Slice Differentiator

SDN Software-Defined Networking
SLA Service Level Agreement

SM Service Model

SMF Session Management Function
S-NSSAI Single Network Slice Selection Assistance Information
SSL Self-Supervised Learning

SST Slice Service Type

Prcject funded by
Co-funded by) s reeon o RO (4 UK Research Page 9 of 96
the European Union Pt s = =4 B and Innovation

N nT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

Abbreviation

STIX Structured Threat Information eXpression

TAXII Trusted Automated eXchange of Intelligence Information
TCP Transmission Control Protocol

TMF TeleManagement Forum

UDM Unified Data Management

UDR Unified Data Repository

UE User Equipment

UPF User Plane Function

VNF Virtualized Network Function

WAI Wirespeed Artificial Intelligence

Prcject funded by
Co-funded by gl;;, o s e RO (@ UK Research Page 10 of 96
the European Union Pt s =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

List of figures

Figure 1: OSL Reference ArChit@CIUIE.......cuuiii i e 17
Figure 2: Service Lifecycle WOrKFIOWoccuuiiiiiiiieicie et 19

Figure 3: Feather architecture, with main components in yellow (orchestration) and green
Y=Y o o (T = R 20

Figure 4: Overview of Flocky services, their main components, and interaction between nodes

Figure 5: End-to-End Deployment of the Al-Driven Network Intrusion Detection 5G Network.. 23

Figure 6: O-RAN ArChITECLUIEviieeeee e e e e e e e e e s e s raeeeeeeas 24
Figure 7: Secure-by-Design Orchestration Architecture and componentsccccccceeeevcieeeennnnee. 28
Figure 8: NATWORK Data Plane offloading solutions and flavours...........cccccoveeiiiiieeeccciiiecenee, 30
Figure 9: Offloading deployment and runtime configuration optionsccccccevvvveeecnciieee e, 32
Figure 10: Embedding Al/ML inside programmable switches...........cccoveeiiieeiiecciiecceeecee e, 34
Figure 11: DFE and WAI design sUbMOAUIEScoieiiiiiiiiiiiiie et 35
Figure 12: P4 Parser and pipeline for a 6-feature inputoccccriiieeee i, 36
Figure 13: LUT distilled DNN and its P4 PIipeliNec..euurrieeeiiiiieccireeeeee et reee e 37
FIgUre 14: DPU @rChit@CIUIE ... uuuiiieeiee ettt ettt e e e e e e e e e e s et s aeeeeeeeseennssnsraneeeeens 39
Figure 15: Data plane ML MOAEL.......cco o e e e e e e ree e e e e 41
Figure 16: Security-performance balancer architeCturecoccvvvveeeeeiieicccciieeeeee e, 42
Figure 17: LLM-Based IDS OVEIVIEWc..uuuiiiiiiiee i e cccititete e e e e eeecrteee e e e e e e s eantaeaeeeesesesnnnsanneaeaens 43
Figure 18: Architecture of the MTD frameWOrKcccvveeeeiiiiieiiiireeeeee e eeeenrreeeee e 45
Figure 19: CTI Solution Architecture and COMPONENTS.......ccceeveeiciiiiiiiee e 49
Figure 20: Simple confusion matrix for decision making strategyccccccceeveerrvrereeeeieicccirreeeeenen. 51
Figure 21: Sample Sensitivity and Necessity maps for decision making strategyccccveeeee.... 51
Figure 22: Data plane ML components and interactionsccccvvveeeieeieeieiiiiineeeeeeeeeeecinreeeeee e 54

Figure 23: Position of the microservice behavioural analysis module and interconnection to

(o1 a =T g T Yo [0 11T PP PPPRRROPPPR 56
Figure 24: UDP Flooding Attack EXECULIONeeeeiiiiiiiiirieieee ettt e e e eenrrane e 58
Figure 25: New flow control rule (left) and a graphical representation of flow rules (right)...... 59

rojctfundec by
Co-funded by O s avmon 5 coen R (@ UK Research Page 11 of 96
the European Union et ety =4 N and Innovation

N nT * 5 D3.1

w g };R K Secure-by-design orchestration and management & Data plane E,?g:f:;igig
Figure 26: ISRD Liquid Near-RT RIC iNterfaces.uuuiiriiieiiiiiiiee et esieee s 60
Figure 27: ISRD Liquid Near-RT RIC general deployment architecture.ccccovveveeiiiiccnnnnnnnn.n. 61
Figure 28: Detailed Architecture of the Al-Driven Network Intrusion Detection System............ 69
T d U B O 2| L] =1 o 3RS 72
Figure 30: ML Classifier + regressor to optimize the live migration of microservice-based
E= o o] [ToF: | To Yo F-3 PSP PPRPRRTPPR 81
Figure 31: DNN to lookup distillation method...........c..uuviiiieiiii e, 82
Figure 32: DOCA-based offloaded DDOS Mitiator.........ceivviiiiiiiiiiieeeriiee e 84
Figure 33: Offloaded DDoS mitigator algorithmcc.ooeiiiiei i 85
Figure 34: Overview of the contrastive learning and augmentation processccccccevevveeeennnee. 91

List of tables

Table 1: Interface to MTD CoNEroller.... ..o iei i 47
Table 2: OFA MELNOAS.oiiiiie ettt et st e e e s neees 53
Table 3: Interface t0 P4 RUNTIME ..c..uiiiiiiiiiie et 55
Table 4: Interface to SDN Controller to enforce flow rules..........coceveriiiniineneeeee, 59

Table 5: Interface to Microservice Orchestrator to report irregular resource usage and trigger

Y or= | g Y=o [T ol 1] o o[- USRI 59
Table 6: Interface to monitoring engine to retrieve real-time monitoring data..........ccccvveeee.... 59
Table 7: Interface t0 O-RAN Al.. ...t 62
Table 8: Interface to O-RAN E2c..oiiiiiiieeeeee et 62
Table 9: INterface tO RIC........ui i s s 63
Table 10: Interface to Distributed INSErtionccocueeieriiriieeeee e 65
Table 11: Interface to Distributed QUEIY......uueeeiii i e e 65
Table 12: Interface to Token VerifiCationccooieriiiiineieeeee e 65

P

roject funded by
Co-funded by d s coen R (@ UK Research Page 12 of 96
the European Union i fralrutry =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

Executive summary

The purpose of this deliverable is to present the design principles, architectural components, and
initial implementation steps toward achieving secure-by-design orchestration and management
of 6G network slices, as well as exploring advanced mechanisms for data plane computation
offloading. As part of the NATWORK project’s broader goal to enable secure, sustainable, and
resilient 6G services, this document focuses on developing decentralised and intelligent
management services capable of responding to emerging security threats while addressing
energy efficiency and trust in multi-domain environments.

The report introduces decentralised orchestration components, services and algorithms capable
of maintaining service continuity under evolving cybersecurity threats while optimising energy
consumption across the edge-to-cloud continuum. It also outlines advanced approaches for
offloading computation into the network data plane to reduce latency and enhance in-network
intelligence.

The deliverable further defines critical supporting frameworks such as decentralised Cyber Threat
Intelligence (CTI) exchange, Al-based behavioural analysis, Moving Target Defence (MTD)
mechanisms, and security-performance balancer services. These modules work together to
strengthen the orchestration platform and dynamically adapt to operational and threat
conditions.

Early implementation strategies are described alongside validation approaches and
methodologies to evaluate orchestration effectiveness, energy efficiency, and security
performance in the context of 6G networks. The results of this work lay the foundation for
upcoming large-scale integration and testing activities in NATWORK.

Project unded by
Co-funded by 0 e e (8@ UK Research Page 13 of 96
the European Union s ——— =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

1. Introduction

The rapid evolution of 6G networks demands innovative solutions to manage the complexity of
massive device connectivity, data-intensive applications, and escalating security threats in edge-
to-cloud ecosystems. The deliverable "Secure-by-design orchestration and management & Data
plane computation offloading” addresses these challenges by presenting a cohesive framework
for decentralised orchestration, secure management, and optimised data plane computation
offloading. The purpose of this deliverable is to provide a detailed account of the software design,
implementation strategies, and validation outcomes for orchestration and offloading in 6G
networks. The document is organised into several sections to guide the reader through
NATWORK'’s key contributions. Following the Executive Summary, this introductory chapter
(Section 1) is divided into subsections: Section 1.1 outlines the purpose and structure of the
document, Section 1.2 describes the intended audience, and Section 1.3 highlights how the work
connects to broader research and development initiatives.

The document is structured to provide a clear progression from design to implementation, as
follows: The Software Design: Orchestrator(s)the design of orchestrators deployed at different
layers of the 6G continuum, covering orchestration at the extreme edge, Cloud Radio Access
Network (CRAN), and core edge-cloud continuum enabling 6G core. The Data Plane Computation
Offloading Design section explores strategies to optimise latency and energy use, covering
offloading classification, Wirespeed Al (WAI) and Decentralised Feature Extraction (DFE), in-
network machine learning models, and a Radio Access Network (RAN) security-performance
balancer. The Software Design: Orchestration Support Systems section presents security
enhancements, including a Moving Target Defence (MTD) framework, decentralised CTl sharing,
Al-based behavioural analysis, and a security-performance balancing. The Implementation
section describes the deployment of the design components, optimisation algorithms and
testbed validations, ensuring secure and efficient 6G operations. Finally, the Conclusions section
reflects on the project’s strategic orientation and outlines expectations for future milestones in
scalable 6G deployments.

1.1. Purpose and structure of the document

The purpose of the "Secure-by-design orchestration and management & Data plane computation
offloading” deliverable is to present a comprehensive overview of the NATWORK project’s
advancements in developing secure, sustainable, and efficient 6G network solutions. It details
the design, implementation, and validation of a decentralised orchestration framework alongside

Project unded by
Co-funded by 0 e e (8@ UK Research Page 14 of 96
the European Union s ——— =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

innovative data plane computation offloading strategies to address critical challenges in energy
consumption, cybersecurity, and computational efficiency in edge-to-cloud 6G ecosystems. By
integrating real-time Cyber Threat Intelligence (CTI), Al-driven analytics, and energy-efficient
algorithms, this document demonstrates how the project enables service continuity and aligns
with Net-Zero and EU Horizon objectives.

Following the Introduction, which sets the stage for the document's purpose, audience, and its
interconnections within the project’s framework, the structure continues as follows:

e Section 2 — Software design: Orchestrators: Presents the project's orchestration service
designs, detailing how secure, decentralized, and intent-compliant orchestration is
achieved across extreme edge, CRAN, and core network domains.

e Section 3 — Data Plane Computation Offloading Design: Describes the NATWORK
strategies for computation offloading, including offloading classifications, Wirespeed Al
(WALI), Decentralized Feature Extraction (DFE), and the deployment of in-network
machine learning models.

e Section 4 — Software Design: Orchestration Support Systems: Presents the NATWORK
support services, such as the Moving Target Defense (MTD) framework, CTI selective
sharing mechanisms, Al-based behavioral analysis, and the security-performance
balancer, which enhance orchestration resilience and adaptability.

e Section 5 —Implementation: Describes the implementation progress of the orchestration
and offloading components.

e Section 6 - Strategies and Optimisation Algorithms: Details the strategies and
optimization methods used to enable adaptive orchestration, proactive threat mitigation,
and energy-efficient service management.

e Conclusions: Wraps up the document by reflecting on NATWORK’s strategic direction,
summarizing achievements, and establishing expectations for the upcoming validation
and integration milestones.

1.2. Intended Audience

The Deliverable D3.1 "Secure-by-design orchestration and management & Data plane
computation offloading” is devised for public use in the context of project management and
dissemination/ communication activities of the NATWORK consortium, comprising members,
project partners, and affiliated stakeholders. This document mainly focuses on the secure-by-
design orchestration, management frameworks, and data plane computation offloading aspects

e rojctfundec by
Co-funded by ee © smmaesen « A9, .4 UK Research Page 15 of 96
the European Union [} 18 et ety =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

of the project, thereby serving as a referential tool throughout the project's lifespan. Also, the
document highlights the strategic blueprint and collective vision of the project, ensuring that all
collaborative efforts are harmonised and directed toward the fulfilment of the project's
ambitions.

1.3. Interrelations

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and
resources from academia, industry, and research sectors, focusing on user-centric service
development, robust economic and business models, cutting-edge cybersecurity, seamless
interoperability, and comprehensive on-demand services. The project integrates a collaboration
of fifteen partners from ten EU member states and associated countries (UK and CH), ensuring a
broad representation for addressing security requirements of emerging 6G Smart Networks and
Services in Europe and beyond.

NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically
segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple
activities across various WPs, the structure ensures clarity in responsibilities and optimizes
communication amongst the consortium's partners, boards, and committees. The interrelation
framework within NATWORK offers smooth operation and collaborative innovation across the
consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e.,
Research Institutes, Universities, SMEs, and large industries) enabling scientific, technological,
and security advancements in the realm of 6G. The D3.1 "Secure-by-design orchestration and
management & Data Plane Computation Offloading" deliverable addresses all activities of the
NATWORK project related to the design, development, and validation of secure, resilient, and
energy-efficient orchestration frameworks, as well as advanced data plane offloading
mechanisms. It interrelates closely with architectural work defined in WP2, security and
orchestration advancements from WP3, Al-driven management solutions from WP4, and
integration and validation efforts within WP6, ensuring consistency and alignment across the
project's technical pillars.

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 16 of 96
the European Union et ety =4 N and Innovation

NRAT:.- o

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

2. Software Design: Orchestrator(s)

2.1. Guided design and development by OSL patterns

OpenSlice (OSL) is an open-source operations support system designed to provide support for
VNF/NSD onboarding and management. The platform supports TM FORUM OpenAPIs related to
Service Catalog Management, Ordering, Resource, and more. It enables NFV developers to
onboard and manage VNF and network service artifacts, while allowing vertical customers to
browse available service specifications.

While OSL itself is not a direct component of the NATWORK project, it remains highly relevant.
The experience and insights gained from OSL in terms of modular design, API integration, and
automation have contributed to the development of NATWORK orchestrator services.
Conversely, innovations and service orchestration strategies emerging from NATWORK can be
applied back into the OSL ecosystem to enhance its capabilities. This mutual influence fosters
stronger alignment between open-source frameworks and emerging innovations in 6G
orchestration and management.

OsL

FAREDGE RAN EDGE TRANSPORT CORE PUBLIC CLOUD

P
Canrte [Matnes

Figure 1: OSL Reference Architecture

OSL design principles pave the way for a modular architecture where each component has a
well-defined role, promoting separation of concerns and facilitating easier maintenance and
scalability (Figure 1). Key aspects include:

roject funded by
Co-funded by d gmaean smisemanmencon 18 @ UK Research Page 17 of 96
the European Union i fralrutry =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

e Service Catalogs and Specifications: Services are defined using standardized templates,
enabling consistent exposure and management within the Service Catalogs. This
approach allows for both predefined network services and the flexibility to define custom
configurations.

e Standardized APIs: Utilizing TM Forum Open APIs (e.g., TMF 638 for Service Inventory,
TMF 641 for Service Ordering) ensures seamless integration with external systems and
promotes interoperability across different domains.

e Automation and Workflow Management: The orchestration engine supports automated
workflows, managing the provisioning, configuration, and lifecycle of network services.
This automation is crucial for efficient service delivery and adherence to predefined
policies and standards.

OpenSlice focuses on aspects related to 6G slice lifecycle management by supporting the
modelling, ordering, and orchestration of services that underpin network slices. For example, it
can handle slice templates representing vertical services, manage slice instantiation requests,
and interface with lower-layer domain orchestrators responsible for RAN, core or transport
slicing. This enables coordination of network slice deployment and assures service-level
requirements in an end-to-end manner. These capabilities are complementary to NATWORK
orchestration services, which focus on distributing and peering services across clusters where the
security requirements of assigned services and hosting clusters are met; thereby, providing
secure-by-design end-to-end slice operation over multiple domains.

The orchestrator design inherently supports closer interaction and interfacing between
components:

e End-to-End Service Orchestration: The orchestrator coordinates with various domain
controllers (e.g., SDN, NFV, RAN) to provision and manage services across the entire
network stack, from user devices to core networks and cloud services.

e Lifecycle Management (Figure 2): Services undergo a comprehensive lifecycle, including
provisioning, monitoring, scaling, and decommissioning. OSL provides the framework for

e Prcject funded by
Co-funded by ee © smmaesen « A9, .4 UK Research Page 18 of 96
the European Union [} 18 P ey =4 B and Innovation

NnT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

managing these stages effectively, ensuring services operate as intended throughout
their lifespan.

Adopted by 3GPP
and mapped to TMF model
service state

Figure 2: Service Lifecycle Workflow

e Resource and Service Inventory Management: Maintaining accurate records of both
resources and services is essential. OSL defines mechanisms for tracking and managing
these inventories, enabling real-time insights and efficient resource utilization.

By integrating these OSL design principles into the orchestrator design, we establish a robust
foundation that promotes efficient service delivery, adaptability to evolving requirements, and
seamless integration within the broader network ecosystem.

2.2. Orchestration at the Extreme Edge (Feather)

Workload orchestration at the (extreme) edge is achieved through two frameworks developed
during the project: Feather, a Kubernetes-compatible agent, leverages multiple runtimes in
addition to containers, allowing the ideal execution format for any single deployment (e.g.
microVM, container). While microVM support was already present, WASM support and cross-
runtime pod networking, as well as Flocky support, have been specifically added for NATWORK.
Flocky is a newly created higher-level framework designed as a decentralized alternative to
Kubernetes, which leverages Feather as a deployment agent. Flocky is designed around the Open
Application Model (OAM), and detects node capabilities (e.g. security options, attestation) which
can be used by deployments as required.

2.2.1. Functional components

Figure 3 shows the relations of the various components in Feather (listing only the relevant
ones, excluding implementation details):

Prcject funded by
Co-funded by 6 oo oo RO (@ UK Research Page 19 of 96
the European Union Pt b ; =4 B and Innovation

D3.1
Secure-by-design orchestration and management & Data plane computation
offloading.rl

NRAT:.-
W R.RK

e Pod Manager: handles pod-level logic, splitting each deployment into individual
workloads to be handled by providers. This component provides minimal info to the
PodNetwork manager for pod-level networking.

e Providers: Each provider represents a single type of workload e.g. containers, unikernels.
The APl is standardized in an interface, and based on the Open Container Initiative Image
Specification for extensibility.

e Pod WAN/Network/Address Manager: components for a custom pod networking
framework which allows workloads from different runtimes in the same pod to
communicate as if they were all container-based.

e eBPF traffic routing: traffic routing for the pod networking framework is based on various
eBPF programs to enhance performance, handling traffic at the kernel level. Instances
and configuration are managed from the PodNetwork manager.

e Workload runtimes: while not directly a component of Feather, at least one of these is
required on each Feather node for Feather to work correctly; e.g. containerd, KVM.

General pod

Pod networking

Pod traffic

setup semup routing
I Userspace
Pod deployments Kubalat Pod Feather
csssssssssssss==SiEEEE =
* ap * Manager
Containerd /| = 05y -
provider / provider
|
Intemode pod traffic | TuT'IBng:;_ng Warrens -I-—L | ‘
PodWan
Manager L/
kh""\a_.,__ PodNetwork PodAddress
Manager " Manager

W

Worker Senices

Pod namespace

Workier senaces

Pod namespace

Containerd

Worker sennice

kvm-gemu

Worker senace

Figure 3: Feather architecture, with main components in yellow (orchestration) and green (networking).

At the orchestration level, Flocky (Figure 4Figure 4) uses three main services, each of which may

be (partially) deployed on any node in a cluster depending on its role:

Co-funded by
the European Union

Project funded by

BGSNS VEE EEE

WS
o

UK Research
and Innovation

Page 20 of 96

NnT * gtk D3.1

w / "R K Secure-by-design orchestration and management & Data plane computation
-\ A I*

2 g
£8
23
-
-
TR
23
. P
(-3
&9
s
4
h &

offloading.rl

Discovery Service: responsible for finding other Flocky nodes in the cluster, within a
preconfigured latency range. The discovery process is entirely decentralized and
resembles gossip-based networks or algorithms. It operates entirely at the network level,
gathering only the required properties for node identification and communication. Other
services may subscribe to updates from the Discovery service.

Metadata Repository/service: The Repository service gathers additional metadata from
discovered nodes based on an extension of the Open Application Model. Specifically, it
collects hardware resource status, important node properties (e.g. dedicated hardware,
attestation, security), and operational status e.g. applications and detected runtimes.
Metadata collection is highly flexible and handled through Capability providers, while the
actual metadata is stored in a local repository.

Swirly/Deployment services: workload deployment is split into two separate services as
Swirly (orchestration) and Deployment. The Swirly service receives requests for
application deployments (i.e. one or more workloads), splits them into multiple parts
based on workload requirements and discovered node capabilities, and deploys each
workload on the most suitable node. For orchestration-only nodes, the Deployment
service may be ignored, and vice versa.

Remote node x | Remote node y
Deployment Discovery Service 'Dusawecy Serace Swirly Service < S—
Service
Rep y Service Repository Service
Local node - Flocky
Swirly Service Descovery Service Deployment Service
Repo Chant Node Cache === Disco API
Node Update Depi:;;nem
Listener
Repository Sesvice
RepoAPl = Node Update
Orchestrator Listener
/ \ Application
Node Metadata Manager
SwirlyAP! QoEEvaluator Roposiory
I [Warrens Other cupabuMy providers Feather
Capability Node Update Capability Capability Capabéty ____ Kubelet
Provider Listener Provider Provider Provider API
Tunneling T 3
Routes mm

Figure 4: Overview of Flocky services, their main components, and interaction between nodes

2.2.2. Interfaces and Protocols

Feather offers two interfaces for workload deployment:

Prcject funded by
Co-funded by d oo e B8 (@ UK Research Page 21 of 96
the European Union Pt E =4 B and Innovation

N nT * 5 D3.1

w / "R K Secure-by-design orchestration and management & Data plane computation
o\ A l*

offloading.rl

Virtual Kubelet API: A REST API capable of communicating with a Kubernetes cluster;
requires authentication data to join the cluster.

Standalone API: A custom REST API which accepts Kubernetes deployment manifests to
be deployed on the local node, primarily used with Flocky.

All Flocky interfaces are REST APIls, and may be used to extract information or extend the

framework:

Disco API: offers pull- or subscribe-based methods of receiving node discovery updates.
Repo API: Offers subscribe-based methods for remote node metadata updates and newly
discovered workload types/definitions (i.e. new software pushed into the cluster). Also
provides methods for matching workloads with specific implementations based on
requirements, and for fetching remote node metadata. Finally, it supports subscription-
based methods to register Capability providers, allowing future components to provide
more orchestration functionality.

Swirly API: Hosted on each node with an orchestrator role; exposes methods exclusively
for deploying an OAM application.

Deployment API: Hosted on each worker node and contains only methods to deploy
individual workloads.

2.2.3. Data artefacts

Discovery data: In-memory node catalog used by the Discovery service, containing node
names and (public) IP addresses.

Metadata repository: In-memory OAM metadata store, containing the latest hardware
status, running workloads, available runtimes and node properties as reported by each
discovered node.

Latency/Quality of Experience: Used by the Discovery and Swirly services to determine
eligible nodes for discovery and deployment, respectively. The latter depends on the
chosen optimization parameters and implementation, and relies on information from the
Metadata repository.

2.3. Orchestration at the CRAN

This section presents the orchestration mechanisms and architectural design developed within

the scope of the NATWORK project, for managing CRAN in an O-RAN-compliant environment.

While the implementation is being validated on CERTH’s infrastructure using the

OpenAirinterface (OAl) platform, the proposed solution is infrastructure-agnostic and can be

deployed on any CRAN setup equipped with an OAl-compatible RF frontend. The framework

introduces novel, Al-driven orchestration strategies that integrate network intrusion detection,

Project unded by
Co-funded by 0 e e (8@ UK Research Page 22 of 96
the European Union s ——— =4 N and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

dynamic resource allocation, and user management. Specifically, the solution employs Al/ML
models trained on real-world datasets to classify network traffic and dynamically adjust resource
allocation and user management. It identifies malicious users and triggers a Radio Resource
Control (RRC) connection release to mitigate their impact on the network while prioritizing
legitimate users through end-to-end slicing. Below, we analyze the components of the

{ AMF J—[AUSF H SMF H UDR H UDM ’
N2

N4

framework.

~
~
~
~
~

UE1 - Attacker \'"‘((())) N3

s N6 EXTERNAL
. L DN
PR ’ 02
E2
UE2 OPEN AIR

Al
t FlexRIC 1|

=— INTERFACE

@

Anomaly Traffic
Detector

Figure 5: End-to-End Deployment of the Al-Driven Network Intrusion Detection 5G Network

2.3.1. Functional components

The CRAN orchestration framework consists of several key components as illustrated in Figure 5,
which consists of the experimental setup. The components are responsible for managing
resources, suppressing attacks and optimizing performance. These include:

e Orchestrator: The central Docker/Kubernetes-based entity that coordinates real-time
network intrusion detection and dynamic resource allocation based on Al/ML models. It
deploys the necessary network functions (gNB, UPF, AMF, SMF, etc.) and facilitates their
communication. Core network functions communicate through a service-based
architecture (SBA) using Fully Qualified Domain Name (FQDN) resolution, while
communication between the Access and Mobility Management Function (AMF) and gNB
occurs via Docker bridges.

e Anomaly Traffic Detector (ATD): This component resides near the User Plane Function
(UPF) and continuously monitors GPRS Tunnelling Protocol (GTP) traffic, currently using

roject funded by
Co-funded by d s e, L@ (@ UK Research Page 23 of 96
the European Union i fralrutry =4 B and Innovation

N nT * gtk D3.1

w / "R K Secure-by-design orchestration and management & Data plane computation
-\ A I*

offloading.rl

Scapy [1] in this first prototype. After collecting and processing packet data, it classifies it
with a Random Forest model and computes the anomaly ratio per User Equipment (UE).
This ratio is sent to the xApp via a socket-based interface, functionally representing the
Al interface.

O-RAN RIC (Radio Intelligent Controller): Based on FlexRIC, it serves as the programmable
control plane for the RAN. It supports Service Models (SM) such as Key Performance
Monitoring (KPM) and Radio Resource Control (RC), and it manages interactions with
multiple xApps.

xApp: Upon receiving anomaly ratio metrics from the ATD, the xApp performs two critical
actions: 1) reallocates PRBs (physical resource blocks) to prioritize legitimate users
(slicing), and 2) triggers an RRC Connection Release for malicious users, effectively
disconnecting them from the network. These actions are enforced through the E2
interface using the RC SM.

These components operate in a tightly integrated loop: the ATD observes traffic and sends per-

UE anomaly ratios to the xApp; the xApp computes updated slicing or release decisions and

applies them via the RIC to the RAN. This feedback loop enables both rapid intrusion response

and optimal resource allocation.

Service Management and Orchestration Framework

Legend

Non-Real Time RIC
——— 3GPP interfaces
—— O-RAN

- = = interfaces

X2-c
X2-u
——NG-u
Xn-u
Xn-
Open FH M- N8-c
Plane

{ O-Cloud }

Figure 6: O-RAN Architecture

Prcject funded by
Co-funded by 6 an e RO (@ UK Research Page 24 of 96
the European Union B : - =4 B and Innovation

N nT * 5 D3.1

w / "R K Secure-by-design orchestration and management & Data plane computation
o\ A l*

offloading.rl

2.3.2. Interfaces and Protocols

The framework consists of interfaces and protocols to ensure seamless interoperability between
components. For clarity, Figure 6 illustrates the O-RAN Architecture. The interfaces include:

E2 Interface: Facilitates communication between the near-real-time RAN Intelligent
Controller (RIC) and the E2 agent, which is gNodeB, allowing dynamic radio resource
management.

O1 Interface: Supports the exchange of management and orchestration data between the
non-real-time RIC and network components. In this context, it enables the management
of user traffic within the UPF. We propose that the ATD be deployed on the non-RT RIC,
parsing user data through the O1 interface, as core network functions may be deployed
on a Service Management and Orchestration framework.

A1l Interface: Enables policy-based control from the non-real-time RIC to the near-real-
time RIC for Al/ML-driven optimization. Since there is currently no open-source
implementation of non-real-time RIC, a socket-based interface was defined between the
ATD and the xApp for real-time anomaly classification and policy enforcement

NG Interface: Connects the 5G Core (5GC) to the gNodeB for control and user-plane traffic
handling.

2.3.3. Data artefacts

Anomaly Packet Ratio: Describes the percentage of anomaly packets per UE within a total
packet window size N.

Packet Flow Data: Traffic flows from UPFs, analyzed by the ATD to detect anomalies and
enforce security policies. The traffic flows contain the following features: Protocol Type
(e.g., TCP, SCTP, UDP), Service Type (e.g., HTTP, FTP, SSH), Connection Status Flag (e.g., SF
for normal, REJ for rejected, RST for reset) and Source and Destination Byte Counts.
Resource Block Allocation Percentage: This is the security policy/decision metric, and it
determines the resource block allocation per UE after the calculation of the anomaly ratio
per UE.

KPM Data: Real-time performance metrics, including throughput, latency, and resource

utilization, collected via Key Performance Indicator Service Model.

2.4. Secure-by-Design Orchestration at the Core

Orchestration at the core network level is pivotal for scalable, secure, and sustainable

management of 6G slices. At the core domain of the 6G architecture, orchestration must handle

high-scale, multi-tenant environments to ensure secure, efficient, and resilient management of

slices and services. The first components have been designed prior to NATWORK in [2][2], and
initial development of the FORK: A Kubernetes-Compatible Federated Orchestrator [3]. The
secure-by-design orchestrator, namely secure FORK (sFORK), is under development in NATWORK

Prcject funded by
Co-funded by L e coen R (@ UK Research Page 25 of 96
the European Union P — =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

and will be deployed at the core, serves as a decentralised coordination hub, managing
dependency graphs, optimising resource distribution, and ensuring end-to-end security across
distributed domains. sFORK will deliver novel capabilities on top of its baseline, including:
implementation of global components operated by slice providers, APl communication to enable
interaction between different clusters and their client (i.e. slice provider), new functional
components to gather information regarding the security status and requirements of slice
components as well as clusters, and accordingly make distribution as well as deployment
decisions. sFork integrates with a peer-to-peer Cyber Threat Intelligence (CTI) sharing solution —
developed within NATWORK as an Operation Support System (OSS) - to drive cluster hygiene
scores, mitigating threats like Denial of Sustainability (DoSt) attacks while aligning with Net-Zero
goals. The following subsections detail the secure-by-design orchestration and the CTI solution
components, focusing on their roles, functionalities, interfaces, and data artefacts.

The Secure-by-Design Orchestration framework ensures that deployment and management of
network slices, cloud-native functions (CNFs), and associated services are conducted in a secure,
dynamic, and sustainable manner across distributed clusters. This section will explain the
functional components, interfaces and protocols, and data artefacts of the Secure-by-Design
Orchestration framework.

2.4.1. Functional components

The secure-by-Design orchestrator architecture comprises the following key functional
components as shown in Figure 7 Figure 7: Secure-by-Design Orchestration Architecture and
components:

e Global Agent: Acts as the central decision-maker, responsible for managing global
dependency graphs, initiating and monitoring deployments, and negotiating with local
orchestration agents. It evaluates cluster offerings based on a variety of factors such as
hygiene, security, resource availability, and energy sustainability metrics.

e CNF Manager: Manages the lifecycle of Cloud-Native Functions (CNFs), including their
deployment, scaling, and monitoring. It ensures that the CNFs adhere to the defined
requirements and interacts with local orchestrators to execute deployments.

e Slice Manager: Handles the orchestration of network slices, dynamically tracks slice
status, and ensures that resources are allocated efficiently to meet slice-specific
requirements. It interfaces with the global agent and local orchestration agents to
dynamically deploy slices based on demand and available resources and monitor them.

e Local Orchestration Agents: Operate within each cluster to manage the actual
deployment and lifecycle of CNFs. These agents are responsible for exposing cluster

e rojctfundec by
Co-funded by ee © smmaesen « A9, .4 UK Research Page 26 of 96
the European Union [} 18 et ety =4 N and Innovation

NRAT:.-
W R.RK

D3.1
Secure-by-design orchestration and management & Data plane computation
offloading.rl

capabilities, such as resource availability, hygiene scores, and compliance data, to the
global agent. They execute deployment decisions and provide real-time status updates
back to the global agent.

Dependency Operator: Responsible for dynamically creating and maintaining global
dependency graphs, mapping the relationships between microservices and CNFs across
clusters. It guarantees that these dependencies are up-to-date and that the correct
subgraphs are distributed across clusters based on resource availability and security
criteria.

Al-Powered Scheduling: Utilizes machine learning models to enhance resource allocation
and scheduling decisions within clusters. By analysing patterns obtained from cluster
components and predicting future demands, it provides the local orchestration agents
with intelligent insights to optimize the use of available resources.

Cluster Requirements: Defines and communicates the specific requirements for
deploying CNFs in each cluster, ensuring that local orchestration agents are aware of the
needs for resource allocation, security, and performance metrics. This confirms that
deployment actions comply with cluster-specific constraints.

Monitoring: Continuously tracks the health, performance, and security status of CNFs and
network slices. Monitoring data is provided to both local and global orchestration agents
for insights, enabling timely adjustments to have optimal performance and compliance
with security policies. Prometheus integration into the orchestrator follows a modular
approach, either an API call wherever online interaction is required or by accessibility to
a common data point for offline interactions.

Secure FORK Orchestrator Components

CNF

NF M i
Cl lanager Requirements

Global Agent Slice Manager

CTI Global Components

CLUSTER -1
CTI Broker

Kubernetes Control Plane

cxnaron () A
O e o

-

Cluster Monitoring CTI Components

Cluster-local CTI
components

Prometheus

/

Project funded by

Co-funded by
the European Union

BESNS =

CTI Database

-

_— .

L »®
CNF CNF Service MCS API MCS API CNF CNF Service
Establish Secure
Connection Tunnel
Local Orchestrator Components : Local Orchestrator Components
Local = 4-’ =
Dependency . Cluster " ind D Local
Orchestration ; FL Algorithm = ependency o o cration Cluster i
Operator Agents Requirements SON Operator Agents Requirements FL Algorithm

N

Cluster Monitoring

Prometheus

Kubernetes Control Plane

K8s Control Plane

~

CTI Components

Cluster-local CTI
components

/

L9, .4 UK Research
=4 B and Innovation

Page 27 of 96

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

Figure 7: Secure-by-Design Orchestration Architecture and components

The components are presented in Figure 7, which demonstrates the secure-by-design
orchestration framework and CTI solution. The interaction between these components enables
secure 6G slice management. The FORK orchestrator’s Global Agent coordinates with the Slice
Manager and CNF Manager to deploy CNFs, leveraging CTl insights provided by the CTI Agent,
which collects and shares vulnerability data. Local Orchestration Agents execute deployments,
the Dependency Operator maps CNF relationships, the FL Algorithm extracts and processes both
CTI data and monitoring/telemetry metrics, and Monitoring feeds real-time telemetry to the local
orchestration agents and FL algorithm. Together, the system enables dynamic, adaptive, and
secure orchestration of 6G slices.

2.4.2. Interfaces and Protocols
The orchestration framework relies on well-defined interfaces for communication:

¢ Slice Management API: It facilitates communication between the slice manager and other
components, such as the orchestrator, CNF manager, and local cluster agents. It enables
operations like workload migration, scaling, and reconfiguration.

e Global Orchestrator API: A RESTful APl enabling the global orchestrator to query resource
availability, hygiene scores, and initiate deployments or scaling actions.

e Cluster Local agent API: Local agents expose resource metrics, energy scores, and security
statuses via a protected endpoint, enabling informed real-time decision-making.

e Monitoring and Telemetry Interface: Connects to monitoring tools to gather
performance, resource usage, and telemetry data from clusters and deployments. This
interface leverages existing monitoring solutions. It reuses existing open-source
Prometheus APIs, unlike the other NATWORK-specific interfaces.

e Machine Learning Interface: Supports integration with the Al-based learning framework
to incorporate predictive insights for slice management decisions

2.4.3. Data artefacts

The orchestration framework manages several key data artefacts critical for secure and efficient
operation:

e Global Dependency Graphs: Graphs describing the interrelations between the CNFs in a
6G slice, including dependencies, scaling policies, and preferred cluster placements.

Project unded by
Co-funded by 0 e e (8@ UK Research Page 28 of 96
the European Union s ——— =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

e Cluster Capability Descriptors: Structured documents (YAML/JSON) detailing available
resources, security posture, energy sustainability scores, and supported CNF profiles for
each cluster.

e CNF Deployment Templates: Secure YAML templates and Helm charts specifying how
CNFs should be deployed, including security settings, resource limits, affinity rules, and
upgrade strategies.

3. Data Plane Computation Offloading Design

3.1. Offloading functions in the data plane

As network security threats continue to evolve, traditional security mechanisms that rely on
centralized processing in software-defined infrastructures or in dedicated management-based
collectors and platforms are becoming insufficient. To address this challenge, the activities
carried out in Task 3.2 focus on the architectural design and implementation of security services,
microservices, and network functions as fully programmable data plane pipelines. By leveraging
the capabilities of data plane programmability for different types and variants of backends and
in different domains of the 6G architecture, the proposed approach aims to offload security
functionalities directly into network devices, enabling high-performance, low-latency threat
detection, efficient mitigation mechanisms and overall improved security.

A key aspect of this approach is the development of Decentralized Feature Extraction (DFE) for
Al-based security functions. This allows for the real-time analysis of network traffic at the device
level, enabling advanced security features such as Al-driven traffic pattern prediction, anomaly
detection, and federated learning-based threat mitigation. The goal is to reinforce security
mechanisms within 6G networks by embedding intelligence directly into programmable network
elements, preventing attacks from propagating beyond the data plane.

To achieve real-time security enforcement, the activity also focuses on the design and
implementation of Wirespeed Al (WAI) models. These Al-driven security mechanisms will be
optimized for execution on programmable hardware, such as SmartNICs and FPGA-based
accelerators, ensuring that security functions operate at full line rate without introducing latency
overhead. By embedding Al models into network processing units, the system will be capable of
dynamically identifying and mitigating security threats as they emerge.

Additionally, the implementation of security pipelines leveraging hardware acceleration
enhances the efficiency of network threat detection and response. Such pipelines are designed
to utilize high-performance computing resources within network infrastructure, enabling inline
security processing that adapts to diverse attack vectors in real time.

Project unded by
Co-funded by 0 e e (8@ UK Research Page 29 of 96
the European Union s ——— =4 N and Innovation

N nT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

To facilitate Al-driven security enforcement, the task will also involve the development of data
plane code generators for Al training and feature telemetry. This includes leveraging tools such
as P4RROT to enable automated feature extraction and telemetry collection, supporting
continuous learning and refinement of security models. By integrating Al-powered feature
collection mechanisms directly into the data plane, the system will be able to adapt security
policies dynamically based on evolving network conditions.

The main objective of this initiative is to identify and block Advanced Persistent Threats (APTs) at
the data plane level, before they reach cloud-based Al collectors or centralized security
management systems. The key challenge lies in designing a programmable security framework
that can dynamically adapt to network anomalies and heterogeneous attack events in real time.
The proposed approach will ensure that security enforcement mechanisms remain proactive and
responsive, leveraging Al and high-performance networking technologies to protect 6G networks
from emerging cyber threats. By integrating Al-driven security functionalities directly within
programmable data plane elements, this initiative will enable a highly efficient, autonomous, and
adaptive security architecture, ensuring that threats are mitigated at the earliest possible stage,
without impacting overall network performance.

Control/mgmt plane

Offloading API
RAN;;:'stmmmg LLM-based IDS Hybrid
o offload/TBD
(ISRD) (CERTH)
PackMeljc orﬂofjclggsin WAIGDRE Pure
Aut t'p Z gt DNN offloading + telemetry DataPlane
vtomaticcode generator P4+ DOCA (fully offloaded)

(CNIT)
RAN/Fronthaul Core Network/Backhaul

Figure 8: NATWORK Data Plane offloading solutions and flavours

3.1.1. NATWORK Offloading flavours

The chart shown in Figure 8 shows the different NATWORK solutions proposed in the context of
Task 3.2 for the data plane offloading of network functions focused on cybersecurity. Each
solution has been placed in the graph based on two different classifications: 1) the 6G

and Innovation

- L_:ﬁ i UK Research Page 30 of 96

Co-funded by] .
the European Union

N nT * 5 D3.1

w / "R K Secure-by-design orchestration and management & Data plane computation
o\ A l*

offloading.rl

domain/segment where the solution is deployed and applied, and 2) the type of offloading

implemented.

About the 6G segments, most of the envisioned solutions are conceived to be run in the

backhauling or within the Core Network functionalities. These solutions mainly rely on the

wirespeed analysis of packets in the proximity of the UPF — outside or inside, depending on the

considered programmability stack (i.e., whether GTP tunnelling is considered or not). One

solution, conversely, is based on the processing of the radio signal in the RAN gNB segment,

targeting anti-jamming detection.

About the offloading flavour, the classification has been performed based on the degree of

offloading, as follows:

1. Control/management plane offloading API: such solutions enable communication

between orchestrators/controllers to the involved data plane devices to discover,
configure, activate and dynamically tune the behavior of offloaded network functions.
Such APIs are designed and developed in strict collaboration with Task 3.1 dedicated to
security orchestrators

Hybrid offload: the offloaded function may reside partially in the data plane as pure
pipeline or into dedicated control plane backends. As an example, the LLM-based
intrusion detection system (IDS) is partially deployed in external GPUs, not directly
involved in the data plane pipelines. In addition, the anti-jamming detection is based on
specific XAPPs retrieved by the Near-real time RIC.

Pure data plane offloading: Full offloading refers to the embedding of security network
functions implemented as pipelines or chain of pipelines inside data plane backends. This
includes either software-based containers running accelerated pipelines (e.g., eBPF, XDP,
DPDK) or hardware-based backends such as SmartNIC, programmable switches, or FPGA.
In this case, network functions requiring the adoption of Al are designed to run Al tasks
inside the backend. If Al engines are not available (e.g., programmable switches do not
onboard GPUs), a transformation of the pipeline is implemented to embed the logic of
the selected Al algorithm. WAI and ML offloading solutions are envisioned and presented
for different backends.

Prcject funded by
Co-funded by O s tavmn e B8 (@ UK Research Page 31 0f 96
the European Union P & o =4 B and Innovation

N nT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

API
MP (Orcihestrator)

CP (Controller)

Discovery

Deployment : Placement/

: Deployment e’ '
Flow Entry at: Policies .* _
runtime : “oaer Al Engines

v o
Offloading Agent Offloading Agent

Offloaded function pipeline Offloaded function pipeline

In-line
processing

Figure 9: Offloading deployment and runtime configuration options

3.1.2. Deployment and configuration interfaces

A hybrid architecture (Figure 9) is adopted to support scalable, flexible, and dynamic deployment
of security functions in 6G networks. It combines SDN-like control plane (CP) mechanisms with
cloud-native management plane (MP) orchestration. This hybrid architecture ensures that
security services can be efficiently deployed and orchestrated based on their specific operational
requirements—whether they need to be tightly integrated within the network infrastructure or
implemented as cloud-based applications.

The CP mechanism (shown as a purple line) follows an SDN-like paradigm, where security
functions are implemented as programmable pipelines that operate at the data plane level. In
this model, a centralized P4-based controller is responsible for deploying the security pipeline
and configuring flow rules dynamically. This approach is particularly well-suited for network-
centric backends, where real-time traffic enforcement, advanced packet processing, and network
telemetry provide continuous security enforcement. Regarding its implementation, the control
plane leverages P4 backends to dynamically manage security policies, optimize traffic routing,
and enforce fine-grained access control mechanisms. A centralized SDN controller orchestrates
updates and reconfigurations, ensuring adaptive threat response.

The advantages of this mechanism are the following:

1. Low-latency packet processing directly at the network level.
2. Enhanced control over security rules via SDN programmability.
3. Real-time traffic analysis and mitigation.

Project funded by

Co-funded by 4]
the European Union pes

- L_:ﬁ i UK Research Page 32 of 96

and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

This approach is particularly relevant for network-oriented research groups and institutions, such
as CNIT and ELTE, which focus on SDN-based network programmability and secure traffic
management.

The Management Plane (MP) — Cloud-Native Approach adopts a cloud-native methodology,
where security functions and applications are deployed as containerized workloads running
within environments such as Kubernetes pods or Docker containers. This approach is well-suited
for function/app backends, where security services need to scale elastically, integrate with cloud-
based Al engines, and interact with software-driven network environments. Security services are
designed as microservices, packaged into Kubernetes or Docker containers, and orchestrated
dynamically based on demand. This allows seamless integration with cloud-native Al models,
data processing pipelines, and federated security mechanisms. The advantages are the following:

1. High scalability and elasticity for security functions.
2. Integration with cloud Al-based anomaly detection and mitigation.
3. Simplified deployment and management through Kubernetes orchestration.

This model is best suited for function-oriented security applications developed by ISRD and
CERTH, focusing on Al-enhanced security mechanisms, cloud-native microservices, and
distributed threat intelligence frameworks.

In the following sections, we provide an introduction and design details for the different
NATWORK data plane offloading solutions.

3.2. Wirespeed Al (WAI) and Decentralized Feature Extraction
(DFE)

Enabling ML-driven functions in network devices remains challenging due to the distributed and
non-linear computations required by Deep Neural Networks (DNNs). Unlike decision trees or
support vector machines, DNNs demand specialized processing capabilities. We outline four
architectural approaches to integrating DNNs within network functions, as shown in Figure 10:

e External DNN Processing: The switch/NIC matches and forwards selected packets to an
external device (e.g., FPGA) for DNN inference. While feasible, this approach introduces
delays and power inefficiencies due to inter-device communication.

e Feature Extraction at the Switch/NIC: To optimize processing, the switch/NIC extracts ML-
relevant features in real time, reducing the computational load on an external device
(e.g., GPU). However, packets still require buffering until inference is completed.

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 33 of 96
the European Union s ——— =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

e Integrated GPU within the Switch/NIC: Emerging hardware integrates a dedicated GPU
alongside programmable ASICs, enhancing processing speed and minimizing inter-device
communication overhead. However, GPUs remain energy-intensive.

e Fully Offloaded DNN Processing: The proposed approach offloads the entire ML pipeline
to a programmable switch/NIC, leveraging match-action tables for in-network inference.
This eliminates external dependencies, reduces buffering needs, and ensures low-latency
processing at wire speed. Furthermore, integrating the ML model directly into network
hardware improves energy efficiency compared to GPU-based setups.

(c)

(a) rrca (b) | % | GPU

Features 4+ [Prediction

R
- Nep

Packet Packet
Flow Flow

Packet
Flow

Packet

Flow
Parser Enforcer Parser Enforcer

Switch/NIC Switch/NIC

Figure 10: Embedding Al/ML inside programmable switches

The Decentralized Feature Extraction (DFE) and the Wirespeed Al (WAI) have been designed to
cover all these approaches. In particular, the DFE operates with all the approaches to extract the
desired features from packet trains and flows received and processed by the network element.
Depending on the selected approach, the DFE extracts the relevant features and, if needed,
provides feature telemetry to external consumers (i.e., “a” and “b” in the figure) or to internal
devices (i.e., “c”). Alternatively, it may act as the first pipeline stages of a fully data plane
embedded solution including WAI (i.e., “d”). This is the most interesting and challenging case,
described in Figure 11.

Packets are received by ingress interfaces, parsed and DFE-analyzed. The DFE pipeline stage is in
charge of extracting the selected features used internally to feed WAI. The figure also shows the
possibility of exporting such extracted features as a telemetry stream to feed external collectors
and consumers. This last design is implemented and evaluated as an additional component in
Task 4.3.

Stateful memory is exploited to store and update stateful features (i.e., features related to the
history of a session/flow/connection or aggregated information averaged in time windows).
Then, a specific pipeline stage is dedicated to onboard WAI. WAI implements the input-output
logic of a ML model without necessarily reproducing the full ML structure. Depending on the
design, the model may be hardcoded in the WAI or configured as a list of control-plane flow

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 34 of 96
the European Union i fralrutry =4 B and Innovation

N nT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

entries. In the last case, this WAI can be dynamic, i.e., it can be configured at runtime to change
the ML network function. Flow rules, policy rules, and enforcement rules are configurable.

The WAI stage returns the output of the considered ML model, while the next WAI enforcer pipe
maps the WAI output to a list of actions. As an example, if the classification output of the DDoS
mitigator WAI stage is Boolean (i.e., “attack”, “non-attack”), the enforcer may implement a
block/discard action on attack-tagged packets, or a forward port action towards a firewall
analyser.

This functional design may be applied to several backends: programmable switches, smart NICs,
white boxes, software-based switches. In the following, we report the activities involved in
implementing WAI and DFE on a programmable switch and on a NVIDIA Bluefield-2 DPU.

5G Core /Edge RAN gNodeB white box ‘I‘ H
: Flow rules
: WAI model Policy rules
DFE Telemetry |) rEL:::;rcement
i
' -

DFE
Aggregator

: DFE . W our »
noral N P'ﬁe pipeline - interfaces
interfaces stage Pipe

attacks ‘ t t

DFE/WAI stateful memory

Figure 11: DFE and WAI design submodules

3.2.1. DFE/WAI in P4 programmable switches

Deploying Deep Neural Networks (DNNs) inside programmable data planes poses a significant
challenge due to the limited arithmetic and memory capabilities of switching hardware. To
overcome these limitations, we propose a method to distill a trained, integer-quantized DNN into
a series of lookup tables (LUTs), enabling fast, predictable inference through P4 match-action
logic. This approach allows us to embed complex decision logic directly into a switch pipeline,
supporting low-latency ML-based packet processing without external acceleration.

The core idea of our method is to reduce the inference phase of an integer-quantized DNN to a
deterministic match-action operation. The procedure begins with a fully trained, quantized DNN.
Given that input features and network weights are represented as integers, every possible input
combination can be mapped to a corresponding DNN output. This exhaustive mapping enables

Co-funded by] .
the European Union

and Innovation

- L_:ﬁ i UK Research Page 35 of 96

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

the DNN to be transformed into a static LUT: each entry matches a specific combination of inputs
and stores the associated output. For an input vector composed of features encoded in n and m
bits, the LUT requires 2™™ entries. While this process is lossless in terms of model accuracy, the
exponential growth in memory with the number of input bits quickly becomes a bottleneck. To
address this, we adopt a hierarchical cascaded design.

Instead of implementing a monolithic LUT, we construct a network of 2-input DNNs, each distilled
into smaller LUTs. Input features are grouped in pairs and passed through their respective 2-input
models. The outputs are then recursively paired and processed by higher-level models, ultimately
producing a final output. This layered design drastically reduces the memory footprint: for
instance, a 4-input DNN (8-bit features, 1 output) would require a monolithic 4 GB LUT; with the
cascaded method, three 64 KB LUTSs suffice (192 KB total).

Our implementation targets a P4_16 programmable switch (e.g., Barefoot Tofino). The solution
is composed of two primary components:

e P4 Parser and Stateful Stage: Extracts ML-relevant features from incoming packets (DFE).
e P4 Pipeline: Executes the cascaded LUT inference using match-action tables (WAI).

The parser is configured to support common networking headers and extract integer-encoded
features for DNN inference. It includes stages for parsing Ethernet, IPv4, TCP/UDP, and optionally
application-specific headers (e.g., GTP for mobile core networks). Each parsed field is stored in
metadata registers accessible by the pipeline.

Figure 12 illustrates the parser design. It begins with the parse_ethernet state, followed by
parse_ipv4, and then TCP/UDP stages where transport-level features (e.g., TCP window size, UDP
length) are extracted. These become the input features for the cascaded LUTs.

p A) Parser

|Pva Proto
TGP

IPvd Proto
upP

P B) Pipeline
Parser LUT_1 LUT_ 2 LUT_3 LUT_Inter LUT_Final
O keys | actions keys actions keys = actions keys actions keys actions
b n .
1 put_1 set_meta Input_3 set_meta | Input_§ set_meta local_metdata._lut_1 local_metdata._lut_inet |set_egress
S 9 Il nput 2 Input 4 Input_8 local_metadata_luf_2| $¢tIut_meta local_metadata It 3 | drop
Ingress L4 — - B > - —> —

Figure 12: P4 Parser and pipeline for a 6-feature input

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 36 of 96
the European Union i fralrutry =4 B and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

The pipeline structure directly mirrors the cascaded LUT architecture. Consider a DNN with 6
input features and 1 output, realized as a cascade of five 2-input distilled LUTs (Figure 13A). The
P4 pipeline is accordingly composed of five tables (Figure 13B):

e LUT 1, LUT_2, LUT_3: First layer tables, each taking two input features and producing
intermediate metadata.

e LUT Inter: Second layer table, processing the outputs of the first layer.

e LUT_Final: Last-stage table, producing the final classification and applying the action (e.g.,
forward, drop).

2 Inputs
Cascaded DNNs

Input 1
LUTDNN a7
Distillation LuT
Input 3 "
‘ LuT \—‘
Input 4 LUT—

Input 5
LuT

Hidden Hidden

A) LUT-distilled deep neural network with 6 inputs

Parser LUT_1 LUT 2 LUT 3 LUT _Inter LUT_Final
Q\ keys | actions keys | actions keys | actions keys actions keys actions
= N O g mm| | [e | e | g e SIS
) Ingress \O/ —_— — — = M >
) \

o

B) P4 Pipeline
Figure 13: LUT distilled DNN and its P4 pipeline

Each table performs an exact match on either packet features or intermediate results stored in
local_metadata. The action for each match is to set metadata fields using the set_meta or
set_lut_meta actions. In the final stage, set_egress or drop actions are triggered based on the
classification output.

This modular design can easily be extended to support different ML models and additional
features. By updating the parser, new fields can be extracted without altering the pipeline logic.
Similarly, updating the LUTs enables rapid deployment of retrained models, making this approach
suitable for dynamic environments such as intrusion detection or anomaly classification in loT.

While the cascaded LUT method enables fast and deterministic DNN inference, several trade-offs
must be considered:

roject funded by
Co-funded by 6 sgpeemen e B8 (4 UK Research Page 37 of 96
the European Union i fralrutry =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

e Memory Scaling: Each additional input feature increases the LUT depth logarithmically
but not exponentially. Still, total memory usage must be budgeted carefully.

e Integer Encoding: Input features must be quantized and encoded as integers; floating-
point inputs are not supported.

e Training Overhead: Cascading introduces training complexity, as multiple small models
must be trained and distilled. However, inference latency remains constant—one table
lookup per layer.

Despite this, the system allows for real-time, inline ML inference in switching hardware, a major
milestone for in-network computing.

The algorithms of the offloaded P4 DNN in P4 switches are described in Section 6.5.1. All the
details of the design, the implementation and the results are reported in a journal publication
[4] with the NATWORK ack.

3.2.2. DFE/WAI in NVIDIA Bluefield-2 DPU

Distributed Denial-of-Service (DDoS) attacks remain a significant cybersecurity threat, disrupting
legitimate access to services. Among various attack strategies, the TCP SYN flood attack is
particularly effective, overwhelming target servers by exploiting the TCP handshake mechanism.
Traditional mitigation techniques, such as rule-based filtering and machine learning-based
approaches, often introduce high latency and fail to respond effectively to large-scale attacks. To
address these challenges, this offloading activity proposes a novel DDoS mitigation system
leveraging programmable Data Processing Units (DPUs) to offload attack detection and
mitigation processes from the host system. By utilizing hardware acceleration and intelligent
flow-based filtering, real-time attack prevention is achieved while maintaining high network

performance.

The proposed mitigation system is built on the architecture of programmable DPUs, specifically
leveraging the DOCA Flow framework to define hardware-accelerated packet processing
pipelines. The system is implemented on a SmartNIC equipped with a multi-core ARM CPU and
programmable packet processing pipelines. The architecture consists of several processing stages
that work together to detect and mitigate attacks before they impact the host system.

At the core of the system is a structured sequence of processing pipelines that efficiently classify,
filter, and handle network traffic. Packets enter the DPU through either the physical network port
or the host interface and are first processed by the root pipe, which identifies and filters non-
IPv4 traffic. Once packets pass this initial stage, they are examined by a blacklist pipe that
instantly drops traffic originating from previously identified malicious sources. The control pipe

Prcject funded by
Co-funded by O e seen e K9, 4 UK Research Page 38 of 96
the European Union P & o =4 B and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

plays a crucial role in dynamically classifying packets based on TCP flags and forwarding them for
further analysis.

The DPU architecture, shown in Figure 14, efficiently intercepts ingress traffic from both network
and host, processes it, and forwards it to the egress port. Packets enter through either PO
(network-facing Physical Port) or pfOhpf (host-facing Physical Function). These interfaces connect
to hardware-offloaded Open-Virtual-Switch (OVS) bridges using Traffic Control (TC) or Data Plane
Development Kit (DPDK) optimizations to prevent software switch bottlenecks. The bridges link
PO and pfOhpf to the DPU-internal Scalable Functions, SF1 and SF2, which are lightweight
functions deployed on a parent PCle function. They access the parent's capabilities and resources
while maintaining dedicated queues (txq, rxq), allowing multiple services to run concurrently.

! Queues Queues :
| sk €1 cru | :
| E—— |
ol HardwarePipes [
Hl ovs ovs |i
= TC/DPDK Offloaded 1
'i| BRIDGE-1 °a%€% | BRIDGE-2 ||
T, s S— —1
bmmmmmmmey N "2 ' B
PO PFOHPF
Network Host

Figure 14: DPU architecture

Packets are then processed through programmable hardware pipes defined via DOCA Flow APIs.
These pipes determine packet handling—whether to drop, modify, forward to the CPU, or steer
directly to another SF, bypassing the CPU. The DDoS mitigation application runs on the DPU CPU
and directly interfaces with SF1 and SF2. During environment initialization, hardware pipes are
created to direct packets to the SF queues when processing is needed. A Receive Side Scaling
(RSS) mechanism distributes traffic across queues, and the application retrieves packets using
DPDK APIs in polling mode, parsing and forwarding them accordingly. Assigning one ARM core
per tx-rx queue pair is recommended to avoid race conditions and performance issues.

Not only DOCA Flow APIs do establish hardware pipes at setup but also dynamically manage
them, adding or removing entries as needed. These pipes match standard packet fields, including

roject funded by
Co-funded by d b pooo RO (@ UK Research Page 39 of 96
the European Union i fralrutry =4 B and Innovation

P

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

IP source and destination, L4 protocol, and L4 ports. Additionally, they can assigh metadata to
packets, accessible by subsequent pipes and ARM cores for further processing.

For SYN flood detection, the system incorporates two specialized pipelines: the SYN pipe and the
SYN miss pipe. The SYN pipe monitors incoming SYN packets and applies metadata-based tracking
to detect suspicious patterns, leveraging hardware counters to track per-flow statistics. If an IP
address shows an abnormal SYN-to-TCP ratio, it is flagged as a potential attacker and blacklisted.
The SYN miss pipe is responsible for handling previously unseen IPs, ensuring that all new sources
are added to the monitoring system for further evaluation.

To ensure high performance and scalability, the architecture is designed to minimize CPU
intervention. This is an essential design requirement that avoids the implementation of a low-
performance offloading service. Hardware pipes manage most packet classification and filtering
tasks, while only a limited number of packets require host processing. The system dynamically
updates flow records, blacklists, and counter thresholds to adapt to evolving attack patterns in
real time. By leveraging the DPU’s built-in hardware acceleration, the mitigation system is
capable of handling high-speed network traffic at line rate while maintaining low latency and high
efficiency. The details of the offloaded DDoS mitigator in DPU are described in Section 6.5.2. All
the details of the design, the implementation and the results are reported in [5].

3.3. In-network ML models

Machine learning (ML) in the programmable data plane, particularly with Intel Tofino, presents
unique challenges due to the architectural constraints of programmable network switches.
Tofino, which can be programmed in the P4 (Programming Protocol-independent Packet
Processors) language, is designed for high-speed packet processing with stage-based pipelines
but lacks the general-purpose computational capabilities required for complex ML tasks. Unlike
CPUs and GPUs featuring dedicated tensor cores and floating-point processing units, Tofino’s
architecture prioritizes efficiency in packet forwarding over extensive computation. As a result,
executing ML directly on the switch is highly constrained by the available processing power.
Another major challenge is the limited memory available within Tofino. ML models typically
require significant storage for parameters, feature representations, and intermediate
computations. However, Tofino primarily provides SRAM and TCAM memory, which are designed
for fast packet classification rather than storing large ML models. Additionally, the switch lacks
native support for floating-point arithmetic, making it difficult to implement models that rely on
high-precision numerical operations.

Feature extraction, which is a critical step in many ML applications, is also difficult to implement
efficiently in the data plane. Traditional ML models process features derived from entire packet
flows, whereas Tofino operates at the per-packet level, making it challenging to aggregate

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 40 of 96
the European Union i fralrutry =4 B and Innovation

NRAT:.-

W R.RK

D3.1

Secure-by-design orchestration and management & Data plane computation

offloading.rl

information across multiple packets. Moreover, P4 lacks support for iterative computations, such

as loops or complex mathematical operations, which are commonly used in preprocessing and

normalization steps.

Consequently,

implementing ML-based anomaly detection, traffic

classification, or congestion control within the switch requires significant workarounds to extract

meaningful features from packets in real time.

To overcome these challenges, we propose a ML model as illustrated in Figure 15Figure 15. The

model uses a federated learning-based approach for deploying machine learning (ML) in the data

plane across multiple network slices. Slices A and B are two distinct network slices, each with its

own ML oracle, controller, and switches. The key components of this approach are:

1. Oracles: These serve as ground truth sources for training the ML models and monitoring

their accuracy.

Controllers: Each network slice has a controller that receives a small percentage of flows

from the switches. The controller updates the ML model if accuracy drops and offloads

Federated Learning via a Coordinator: Instead of training ML models individually on each

switch, the Coordinator aggregates models from both network slices through secure data

aggregation, producing an improved global ML model. This updated model is then sent

2.

computational work from the switches.
3.

back to the controllers for deployment.
4.

Switches: Each switch is responsible for processing packets using a lightweight ML model

piece. Only a small fraction of flows is sent to the controller to improve the model without

overloading switch resources.

1

Lof

Network Slice A
R W

Oracle A
(used for model training

N —

» and accuracy monitoring)

— P

Traine
free s

1% of | Accurate
flows [flow labels

[Controller A UD

0.5% of flows and
inference data

Improve model
if accuracy drops

0.5% of flows and
inference data

Slice A
|_of Switch #2 |

Slice A
Switch #1 |

Federated learning with
secure data aggregation:
merge ML models and
create new model

[A—
Coordinator k)

d ML model and
witch resources

Project funded by

Co-funded by
the European Union

BGSNS °-

Figure 15: Data plane ML model

UK Research
and Innovation

WS
o

1

» and accuracy monitoring)

Network Slice B
R P

Oracle B
(used for model training

Aggregated
ML model
[Controller B U
ML model ML model
slice slice
slice B sSlice B
|_of Switch #1 | |_of Switch #2 |
Page 41 of 96

N nT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

While the architectural limitations pose significant challenges for direct ML deployment in the
data plane, a federated learning approach with coordinated control-plane support offers a
practical and scalable solution for enabling intelligent network functions. For implementation
details and access to the codebase, refer to Section 5.6.

3.4, RAN security-performance balancer

The service aims to balance the performance of radio elements, and the security applied to the
radio to ensure the constant availability of radio resources (Figure 16Figure 16). The balancer will
consider, on the one hand, the risks of DDoS attacks that occur in the radio interface and, on the
other hand, the performance requirements posed to the radio software/hardware due to
increased traffic. The risk of the attack considered by the balancer comes from the anti-DDoS
xApp which performs attack detection. The main task of the balancer is to understand when the
increased performance required is due to an attack in progress or regular peak traffic. The
balancer will inform the agents when they should apply deeper packet inspection or when the
security controls can be reduced. The service is implemented as a near-Real-Time RAN Intelligent
Controller (near-RT-RIC) xApp that is compliant with the O-RAN architecture. It communicates
with the near-RT RIC via standard xApp API.

performance

IRl Optimization | Security-performance
XApp balancer xApp
t
PM: Signalling Message Inter-Arrival Time PM: CPU usage

it ‘1;\‘ RIC API
! RAN { RIC 2 near-RT i

PM: Signalling Message Inter-Arrival Time, CPU usage

SGI/N5
Internet

0 — ((')) — am — BE=H &
| zerrr o | [2a2er o |
UE RU DU cu Core/MANO Internet

PM: Performance Measurement

Figure 16: Security-performance balancer architecture

and Innovation

: L_:ﬁ i UK Research Page 42 of 96

Co-funded by
the European Union

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

In conclusion, the service acts as a crucial decision-making component within the O-RAN
architecture, dynamically adjusting security measures and performance parameters based on
real-time threat assessments and traffic demands. By integrating seamlessly with the near-RT RIC
through standardized xApp APIs, it provides a robust and adaptive solution to maintain both
operational efficiency and resilience against DDoS threats in modern radio networks.

3.5. LLM-based IDS

To extract useful features for intrusion detection from raw packet sequences, CERTH has
developed an LLM-based IDS based on the BERT transformer encoder architecture. Our model
has been pretrained on unlabeled data traffic using self-supervised training methods including
contrastive learning. Through our pretraining procedure our model learns to recognize similar
and dissimilar flows enabling generalizable intrusion detection across diverse traffic domains.

[}
i i
i I
| [}
i I
! | S
I
SS— i
: I < ~a
I
| = o o I ! &
I
: - — E— POSJ(| Lzl -~
| | o o
i — I a
| - L | 3
| = | o5 ¥ T o
L | ~ o
! | a & ol
—) = I
: — i | g)
| ! ~ ° N
! Ll BN N e : g o
: i t T Packet I wi
L — |
: _ Token I &
i — I
' : - :
| o =) — =
- : 2 =
[} = v
I Headers Concatenate :
: I
! |
! I

Figure 17: LLM-Based IDS Overview

In Figure 17, we show an overview of the architecture and pipeline for the traffic data processing.
In this pipeline we capture traffic that is separated into sequences of packets that are part of a
flow identifiable by the 5-tuple of IP protocol, IP addresses, and ports. The features selected for
the packet are various packet fields such as the packet length, TCP flags etc. We also extract
additional metadata from each packet including a timestamp (relative to the beginning of the
flow) as well as direction which is a custom binary flag which replaces the IP address and port

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 43 of 96
the European Union i fralrutry =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

headers in the packet to hide information that irrelevant (and potentially leak label information)
during training.

To generate tokens from this sequence, we use a custom embedding layer that translates all raw
packet header values into float vectors which are then concatenated together through a linear
layer to form a packet token. In these tokens we also add information about the order of each
token in the sequence using a positional embedding layer. The encoder stack of our LLM-based
IDS takes a sequence of packet tokens as input. The encoder stack of our model is a 4-layer
transformer encoder stack with 4 attention heads, and the embedding dimension is 256. In
addition to the packet tokens, we also append a special CLS’ token at the beginning of the
sequence, which serves as the output of the model used for classification. Through our
pretraining procedure the transformer encoder stack has been trained to output a
representation of the flow packet sequence in the CLS’ token.

To classify each flow, we use a classifier module (such as a simple MLP) which can either be
trained along with rest of the model during a supervised fine-tuning step or can be trained on its
own only to identify malicious flows from the output of our LLM (using a simple MLP or linear
classifiers such as Logistic Regression, Random Forest etc.). Unsupervised anomaly detection is
also possible using the output of the LLM to detect flows that significantly differ from regular
traffic.

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 44 of 96
the European Union s ——— =4 N and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

4. Software Design: Orchestration Support Systems

4.1. Moving Target Defense (MTD) Framework

The proposed MTD Framework is responsible for enhancing the security level of network
functions across the edge-to-cloud spectrum. It enforces both pro-active and reactive actions,
mainly entailing the re-instantiation and live migration of VNFs and CNFs, which could be either
a live (i.e., stateful) migration or stateless migration depending on the current state of the
environment and the target resources. These operations can also be performed in an inter-slice
manner, allowing a VNF/CNF to be moved not only to different domains, e.g. from the core node
to an edge node, but also to a different network slice whenever necessary. During such
operations, advanced forensic analysis can be performed by duplicating the transferred
checkpoint image for a static image security scan or for running an isolated deployment in a
sandboxed environment for analysis. In addition, IP shuffling and port shuffling are also provided
as MTD actions to further strengthen the security of NFV-based Telco Cloud networks.

e ™
""""""""""""" -tETEETTTY
L i Monnoring . MTD Controller
~+ Os-Ma-Nfvo 1
! RDBMS Soft MTD
NFV archi . — - .
FV architecture NFVMANOF & - Sy I, Hard MTD
NEVO | | : Threat alerts :
1 1 ! A
P I s i) I T 1
! ! 1 L
! : ! MTD strategy Optimizer,
[VNFM —+Or-Vi . 1
1 -~
- | @
I N ! MTD <€ deep-RL agent
- . . —— Vi-Vnfm 1 - .
| ‘1?:1;1'1;“10“ Layer Top()]:uzzer <! 1 Explamel S -'/;
- a* Hardware resources | Nf-V1 : ~
Computing Storage Network I VIM — I
Hardware Hardware Hardware | -->
net probes 1 /
' :
admin/user
mm Sending data Enforcing i 7i
b g commands - - New interfaces — NFV interfaces

Figure 18: Architecture of the MTD framework

The proposed framework consists of three main components, as shown in Figure 18: Architecture
of the MTD framework:

Prcject funded by
Co-funded by 6 b pooo RO (@ UK Research Page 45 of 96
the European Union Pt E 3 =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

e MTD Controller is the enforcer component that executes the MTD actions proposed by
the MTD Strategy Optimizer, via direct interaction with the NFV MANO and the Network
Slice Manager, supporting the orchestration of the resources on the infrastructure.

e MTD Strategy Optimizer is mainly responsible for determining the details of the MTD
actions such as the optimal frequency (for pro-active cases) or the necessary trigger (for
reactive cases), along with the internal mechanisms to utilize (e.g. live migration).

e MTD Explainer helps the service owners to gain insight on performed MTD actions, by
generating a human-interpretable explanation of why such action was necessary to be
conducted.

This deliverable focuses on the first component, the MTD Controller, described in the following
section, while its algorithms are further described in Section 6.4.

4.1.1. MTD Controller

The MTD Controller is responsible for applying the MTD actions determined by the MTD Strategy
Optimizer.

4.1.1.1. Technical description

The MTD Controller, as part of its responsibilities, mainly interacts with other internal
components such as the MTD Strategy Optimizer, and external B5G/6G components such as NFV
MANO and the Network Slicing Manager. MTD Controller provides an APl endpoint to be called
by the MTD Strategy Optimizer whenever an action is determined to be necessary by the latter
component. The MTD Controller handles the migration actions by communicating with external
components via their APls.

4.1.1.2. Functionalities provided

The following functionalities are provided by the MTD Controller:

e Executing a live migration for a CNF

e Executing a stateless migration for a VNF

e Executing a stateless migration for a CNF

e Performing IP shuffling operations for both VNF and CNF

e Performing port shuffling operations for both VNF and CNF

4.1.1.3. Dependencies

The MTD Controller depends on the following components:

e The MTD Strategy Optimizer, another component of the proposed MTD Framework.

Prcject funded by
Co-funded by O o pooo RO (@ UK Research Page 46 of 96
the European Union P — =4 B and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

e The NFV MANO: in our 5G testbed we use the open source implementation maintained
by the makers of the NFV standard, the European Telecommunications Standards
Institute (ETSI), namely ETSI OSM (Open Source MANO).

e Kubernetes as NFVO: to orchestrate MTD actions on CNFs, Kubernetes is required as the
MTD controller is interfaced to its API for operations such as CNF live migration.

4.1.1.4. Algorithms

By offloading the algorithmically complex and heavy parts to the MTD Strategy Optimizer
component, the proposed framework allows MTD Controller to be a simpler component which
is responsible for executing the policies decided by the former component.

4.1.1.5. Technologies

For the MTD Controller component, the following technologies are used:

e Python as the programming language for the application logic.
e Kubernetes API for CNF orchestration.
e OSM API for VNF orchestration.

4.1.1.6. Interfaces and Protocols

The following interfaces are provided by the MTD Controller:

Table 1: Interface to MITD Controller

EnforceMTDAction

Description Enforce the MTD action determined by the MTD Strategy Optimizer

Input Details of the determined MTD action (possibly in JSON format).

Output Acknowledgement (positive or negative) of the performed MTD action.
4.2. Selective Cyber Threat Intelligence (CTI) solution

The CTI solution is a middleware component developed to assess and advertise the security
posture and operational health of clusters in multi-domain environments. Its primary purpose is
to enable trust-informed orchestration by serving as a mechanism for gauging the
trustworthiness of a cluster, based on real-time security telemetry and vulnerability insights.
Rather than acting solely as a data exchange platform, the CTI solution functions as a dynamic
trust assessment tool, continuously evaluating the hygiene of clusters and using that assessment
to influence orchestration decisions—such as whether to place or migrate services to a given
domain.

Prcject funded by
Co-funded by 6 o o RO (4 UK Research Page 47 of 96
the European Union Pt s = =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

Designed as a decentralized and adaptive framework, the CTl system collects vulnerability
reports from local scanners or integrated K8s resources, monitors changes in the threat
landscape, and shares filtered and policy-compliant threat intelligence across domains. This
information enables clusters to make informed, risk-aware decisions about resource placement,
thereby reinforcing secure-by-design principles across the orchestration pipeline. The system
operates via a publish-subscribe architecture, allowing for selective and policy-driven CTI
dissemination between trusted peers. The CTI solution enhances the overall resilience and
sustainability of the 6G network by aligning placement decisions with hygiene scores—derived
from local vulnerability telemetry. The following sections outline the functional components,
interfaces, and data artifacts that enable this capability.

4.2.1. Functional components

The CTI component in each cluster/domain assesses cluster hygiene scores and shares the CTI
data. Reconfiguration actions are triggered by signals generated from the CTlI component's
analysis of real-time hygiene scores. These insights guide reconfiguration processes, enabling the
continuity of dynamic policy enforcement. The CTl component communicates findings to the Kxs
control plane, which can prevent deployments that fail hygiene score requirements or security
checks. It alerts the orchestrator when cluster hygiene scores fall below acceptable thresholds.
This interaction allows the CTlI component to integrate with the Kxs control plane, supporting
dynamic security assessments and policy enforcement. It facilitates real-time monitoring,
workload adjustments, and security compliance while optimizing the overall performance and
reliability of the network.

The CTl service at the core includes the following key functional components as shown in Figure
19: CTI Solution Architecture and components:

e Vulnerability Operator: Interfaces with local vulnerability scanners and telemetry
collectors (e.g., Prometheus, custom security tools) to translate raw data into structured
CTI formats.

e CTIAgent: Deployed in each cluster to collect, process, and publish local vulnerability data
and threat information. Manages the subscription and dissemination of CTl data between
clusters and orchestrators. Ensures that only authorized and policy-compliant data is
exchanged.

e CTI Policy Module: Defines and enforces sharing rules based on cluster-specific
confidentiality, privacy, and trust policies. Controls adaptive filtering of CTl data.

e CTI Analytics Module: Processes received threat intelligence and computes metrics to
compute Cluster Hygiene Scores and feed orchestration logic.

roject funded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 48 of 96
the European Union it fralrutry =4 B and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

Secure FORK Orchestrator Components

CNF

CNF Manager Global Agent Slice Manager N
9 9 9 Requirements

CTI Global Components
CLUSTER -1 (0

/ Kubernetes Control Plane \

CTI Broker

Kubern: ntrol Plan
CTI Database / /':lbe etes Control Pla ‘E \

%
K8s Control Plane K8s Control Plane
p . ~
CNF CNF Service MCS API MCS API CNF CNF Service
L _, Establish Secure - <
Connection Tunnel
Local Orchestrator Components Local Orchestrator Components
P ~, .
—p
L2 - L2
Local < >
Dependenc ' Cluster] -> Local
(;]Peratcr Y Orchestralion Requirements | -90rim = Dependency orchestration Oluster FL Algorithm
Agents SDN Operator Agents Requirements
N
lelzlsler Monitoring __CTI Components Cluster Monitoring ~ CTI Components
Prometheus Cluster-local CTI [Prometheus Cluster-local CTI

\ L | companents / \ components /
. _ N J . J L ;

Figure 19: CTI Solution Architecture and components

The components are presented in Figure 19, which illustrates the key elements of the CTI
solution. The interaction between these components enables CTl creation and sharing
mechanisms effectively. The CTI agent is responsible for creating CTI data in STIX format and
sharing it using TAXII (Trusted Automated Exchange of Intelligence Information) protocol. The CTI
Agent uses the CTI Policy module to dynamically filter shared data based on the sensitivity of the
threat intelligence, the trustworthiness of the requesting cluster, and pre-defined compliance
rules. It enforces sensitivity and necessity algorithms to analyse, examine and prepare each
vulnerability metadata before sharing it with the other party. This component also calculates the
CNF and overall cluster hygiene scores. Cluster hygiene scores directly influence CNF placement
and migration decisions, enabling proactive risk mitigation and maintaining slice continuity. It
also ensures that the data are structured for sharing with Local orchestration agents previously
introduced in Section 2.4.1.

4.2.2. Interfaces and Protocols

The CTI system communicates using standardised and interoperable protocols and APIs,
including:

Prcject funded by
Co-funded by 6] o RO (4 UK Research Page 49 of 96
the European Union Pt e =4 B and Innovation

N nT * 5 D3.1

w / "R K Secure-by-design orchestration and management & Data plane computation
o\ A l*

offloading.rl

TAXII: Protocol for sharing STIX-based intelligence between CTI Agents, Brokers, and
Orchestrators.

CTl Hygiene Score Reporting interface: Receives cluster/domain hygiene scores and
supports integration with dynamic security assessment tools.

RESTful APIs: Lightweight interfaces for control, subscription management, and metadata
exchange between CTl components and orchestration modules.

STIX data model: for CTl vulnerability representation and sharing across clusters.

4.2.3. Data artefacts

The CTl solution manages and exchanges the following key data artefacts:

CTl datasets: Final CTl datasets to share with receiving parties. These will be contributed
as open-source

Vulnerability Reports: Data collected from scanners summarizing the vulnerabilities
present in active services.

Cluster Hygiene Scores: Quantitative representation of a cluster’s security posture, based
on the number and severity of known vulnerabilities.

Policy Metadata: Definitions of what type of CTl metadata can be shared, filtered, or withheld

based on security and privacy considerations.

4.2.4. CTI Cross-Domain selective Sharing

In a multi-domain 6G environment, sharing CTl information across clusters must be carefully

managed to ensure that only relevant information is exchanged without exposing sensitive or

confidential data. To address this, each domain defines a local data model of both the necessity

and sensitivity of the information contained in CTI artefacts. To guide selective sharing, we

introduce a confusion matrix that classifies CTl data based on its necessity and sensitivity. This

matrix, shown in Figure 20: Simple confusion matrix for decision making strategy, provides the

basis for determining what should be fully shared, anonymized, or withheld, depending on the

specific trust policies and compliance requirements of each domain.

the European Union

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 50 of 96
P ——— =4 N and Innovation

NRAT:.-
W R.RK

Sensitivity Map Value

D3.1
Secure-by-design orchestration and management & Data plane computation
offloading.rl

Decision Matrix

Exclude

Figure 20:

Exclude Include

I Exclude

Anonymize

2 3
Necessity Map Value

Simple confusion matrix for decision making strategy

Building upon this classification, we have developed a scoring mechanism that quantifies the

decision process for each CTI data element. This mechanism evaluates the risk and utility of

sharing certain fields and is being refined as part of a broader strategy currently under

development for publication. It utilises two maps named as Sensitivity Map and Necessity Map

strategies as shown in Figure 21: Sample Sensitivity and Necessity maps for decision making

strategy. In addition, a policy model is implemented to formalize these decisions. It allows each

domain to express sharing preferences in a structured format, which is enforced at runtime by

the CTI Policy Manager. This ensures consistent and policy-compliant sharing behaviour across

clusters. These efforts support a context-aware, privacy-preserving CTl exchange model, enabling

NATWORK to achieve secure, adaptive orchestration and management of 6G slices across

federated domains.

necessity_map:

sensitivity_map:

fixedVersion: 1 fixedVersion: 1
installedVersion: 2 installedVersion: 3
lastModifiedDate: 3 lastModifiedDate: 2
links: 2 links: 2

Figure 21: Sample Sensitivity and Necessity maps for decision making strategy

Co-funded by
the European Union

BESNS v~ -

and Innovation

- L_:ﬁ i UK Research Page 51 of 96

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

4.3. Al-based Behavioural Analysis service
4.3.1. DFE/WAI
4.3.1.1. Technical Description

DFE (Distributed Feature Extraction) and WAI (Wirespeed Al) are software components designed
to enable high-performance, intelligent, and adaptive security functions within distributed
environments in the data plane with different backends. They leverage real-time telemetry and
Al-driven threat analytics to detect and mitigate network-based attacks efficiently. DFE and WAI
communicate with the Offloaded Function Agent (OFA) API to exchange function discovery,
backend state information, requests for activation or deactivation of functions, and change
mitigation rules. This interaction enables efficient flow policy configuration adaptive Al model
updates based on threat intelligence, and dynamic enforcement of mitigation policies in response
to changing attack patterns. Additionally, DFE and WAI expose a REST API that allows external
systems to interact with and manage their functionalities through well-defined endpoints.

4.3.1.2. Functionalities provided

The current functionalities exposed by the OFA are the following:

1. Discovery of active DPU instances and their capabilities
2. Activation of accelerated VNF running in the data plane
3. Deactivation of accelerated VNF in the data plane

4.3.1.3. Dependencies
DPU are configured and run with NVIDIA DOCA Flow SDK. However, at the OFA level, the only
dependency needed for communication is a REST API Client able to send get, post and delete
methods to the OFA.

4.3.1.4. Algorithms

In the current implementation, no algorithms are employed in the OFA.

4.3.1.5. Interfaces and Protocols
DFE and WAI communicate with the Offloaded Function Agent (OFA) API to exchange real-time
telemetry data, attack detection alerts, and mitigation rules. The REST API provides an interface
for external systems to interact with and manage DFE and WAI functionalities. The following
endpoints facilitate seamless integration (see Table 2).

P

roject funded by
Co-funded by d g coen R (@ UK Research Page 52 of 96
the European Union i fralrutry =4 B and Innovation

NRAT:.-

D3.1

W'W‘,.R K Secure-by-design orchestration and management & Data plane comput.ation
- offloading.rl
Table 2: OFA methods
Endpoint Method \ Description
/discovery GET Discovers active DPU instances and their capabilities.
/startddosfunction | POST Activates SYN flood mitigation detection.
/stopddosfunction | DELETE | DELETE, Stops the running mitigation function.
JSON message {
format "running_containers": [
"DPU_DFE3",
"DPU_DFE2",
"DPU_DFE1"
]
}
{
"message": "Container 'DPU_DFE1' started
successfully!"
}
{
"message": "Container 'DPU_DFE1' stopped
successfully!"
}

4.3.2. Data plane ML

The proposed data-plane offloaded machine learning (ML) model is a hybrid architecture

combining in-network processing with control-plane intelligence to achieve scalable and

efficient traffic classification.

4.3.2.1.

Technical Description

The following components are used to construct our proposed data-plane offloaded ML model.

An overview of the architecture and the interactions between the components can be seen in

Figure 22:

e Programmable switches, responsible for extracting features from packets, executing in-

network random forest inference, and forwarding a small fraction of the traffic to the

control plane.

e An IDS (Intrusion Detection System) running in the control plane. The IDS does not suffer

from the memory and computational limitations of in-network solutions and can provide

Project funded by

Co-funded by) i e
the European Union e [

and Innovation

L_:ﬁ i UK Research Page 53 of 96

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

more accurate classification results for a great number of traffic patterns, at the cost of
increased latency and reduced throughput.

e A controller, which supervises the in-network inference. By using the IDS to classify the
traffic samples sent by the switches, the controller can detect when the accuracy of the
in-network inference declines and can train and deploy an improved classification model
as a response.

Hosts Switches Controller External IDS

distributed inference,
and classification

..........

I

1

| .

. Feature extraction,
|

|

|

Features and labels
of a few sampled flows,

Flow features

>

Accurate flow labels

Save recent flow
features and labels

if it's inaccurate

Updated model

1
1
1
I
I
‘ :
" Improve ML model !
I
1
1
[}
1
1
|

Hosts Switches Controller External IDS

Figure 22: Data plane ML components and interactions

4.3.2.2. Functionalities Provided
e Feature Extraction: Switches parse incoming packets and extract predefined features
useful for traffic classification.
e In-Network Inference: Lightweight random forest inference is performed on the switch to
classify packets in real time.
e Traffic Sampling: A small subset of traffic flows is forwarded to the control plane to enable
model validation and updates.

4.3.2.3. Dependencies

e Programmable Data Plane: Requires switches supporting the P4 language (e.g., Intel
Tofino) for feature extraction and inference logic.

Project funded by

Co-funded by © mmmrenen
the European Union Cotebmin e :

L_:ﬁ i UK Research Page 54 of 96

and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

e Control Plane Infrastructure: Includes a controller capable of model training, monitoring,
and deployment.

e DS Software: Must be capable of receiving mirrored traffic and classifying it using
complex ML models.

4.3.2.4. Algorithms
¢ In-Network Random Forest Inference: A decision-tree-based classifier tailored for P4
and switch constraints (e.g., integer arithmetic, limited memory).
e Accuracy Monitoring: Periodic evaluation of in-switch inference accuracy using IDS-
classified samples.
e Model Retraining Algorithm: Triggers when inference accuracy falls below a threshold;
uses collected data to update the ML model.

4.3.2.5. Interfaces and Protocols

Table 3: Interface to P4 Runtime

P4 Runtime API

Description | Provides a control interface for programming and managing P4-based switch
behavior, including feature extraction and ML inference logic.

Input Protobuf or JSON-based configuration describing tables, actions, and match
fields.
Output Confirmation of configuration changes or error messages from the switch.

4.3.3. Microservice behavioural analysis

The NATWORK B5G architecture follows a microservice-based approach. Microservices
architecture is a fundamental enabler of flexible and scalable 6G network services. Unlike
monolithic applications, in microservice-based applications, network functions are decomposed
into smaller, independent components that operate autonomously, allowing for scalable
deployment, real-time adaptability, and efficient resource management, making them well-
suited for dynamic network environments. In the following section a module that monitors the
performance of microservices in a continual manner to ensure the efficient operation of system
is presented.

4.3.3.1. Technical Description

The Microservice behavioural analysis module performs continuous microservice performance
monitoring to ensure efficient operation of the system. In NATWORK, this involves leveraging
runtime metric collectors and packet sniffers to continuously track key performance indicators,
such as CPU and memory usage, ingress/egress traffic, etc. The module analyses real-time

Prcject funded by
Co-funded by 6 b s g B8 (4@ UK Research Page 55 of 96
the European Union Pt b - =4 B and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

monitoring data, to determine whether microservices meet predefined performance
requirements and if abnormal traffic flows occur in the network. If deviations are detected by an
Al-based Intrusion Detection System (IDS), automated scaling decisions and elasticity actions are
triggered to maintain optimal resource utilization and prevent service degradation. Figure 23
shows the position of the microservice behavioural analysis module and its interconnection to
other modules. In particular, this module comprises microservice profiling techniques and Al-
driven anomaly detection mechanisms for enhanced microservice profiling and threat detection.
It interacts with the monitoring engine to collect real-time data on microservices resource usage
and traffic metrics, the microservice orchestrator to trigger scaling decisions dynamically based
on detected anomalies and the SDN controller to enforce mitigation actions.

Flow-related anomaly alerts ~

Scaling decisions:

Flow Related
decisions : ;
Central SDN Controller Microservice
Orchestrator
~ 5G Core
4
- Irregular resource
usage alerts
————Resource usage statistics to trigger scaling

Microservice behavioral analysis
Monitoring Engine
Resource & traffic : . L Classification Al-driven
Network & Flow metrics [Mlcroserwce proﬁllngJ results Detect‘lon
Resource Monitoring mechanisms
Monitoring

Figure 23: Position of the microservice behavioural analysis module and interconnection to other modules

4.3.3.2. Functionalities Provided

By microservice profiling and behavioural analysis techniques, the following functionalities are
supported:

e Capture network traffic at runtime, utilizing packet-captured (Pcap) files
e Tracking and observation of active flows

e Real-time monitoring of computational and network resource usage

e Flow traffic profiling

e Real-time detection of outliers and identification of anomalies

e Alarm triggering for irregular flows or resource usage

e Automated, near-real time enforcement of flow control rules

Prcject funded by
Co-funded by d b e K9, 4 UK Research Page 56 of 96
the European Union Pt E —— =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

4.3.3.3. Dependencies

NATWORK'’s microservice behavioral analysis modules are tightly integrated with and dependent
on the real-time monitoring tools being developed in the context of Task 4.2 and documented in
deliverable D4.1. Indicatively:

e NATWORK relies upon Software-Defined Networking (SDN) for microservices
programming and considers Kubernetes for microservice scheduling and orchestration.

e NATWORK builds upon open-source solutions like free5GC [6] for the deployment of 5G
networks in compliance with 5G standards.

e For collecting traffic data to perform microservice profiling, packets sniffers, such as
tcpdump are being utilized.

4.3.3.4. Algorithms

While microservices offer significant advantages, their distributed nature makes them inherently
more vulnerable to threats such as denial-of-service (DoS) attacks, privilege escalation, and
unauthorized access. Given these risks, security is another critical aspect, making behavioural
analysis essential in microservice-based architectures to detect anomalies and provide protection
against potential breaches.

To effectively analyse microservice behaviour, it is necessary to monitor their performance both
on a temporal and a periodic basis, aiming to identify any deviations from normal operation. On
the one hand, tracking how network traffic patterns change over time allows for capturing
anomalies that may evolve gradually or threats that are identifiable only by analysing a certain
period of time. On the other hand, sudden changes in microservice behaviour, such as
unexpected spikes in ingress traffic or unusual increases in resource consumption, may indicate
malicious activity and have to be contained immediately.

To address these challenges, microservice profiling techniques and Al-based intrusion detection
mechanisms are employed to analyse system behaviour in real-time and identify anomalous
behaviours. More specifically, two attack mitigation mechanisms are supported: online attack
detection based on an exponential moving average (EMA) function and an Al-based intrusion
system. The former allows for dynamic and responsive monitoring of data streams, quickly
identifying outliers that could indicate abnormal conditions. The Al-powered system
continuously analyses telemetry monitoring data to establish behavioural models of normal
microservice operations and b) traffic and flow related data. A 1D Convolutional Neural Network
(CNN) is utilized for handling the computational resource monitoring data: By profiling CPU,
memory, and network usage under typical conditions, the system can classify traffic as normal or
irregular, identify deviations that indicate potential ongoing attacks or unexpected system
behaviour that aims at exhausting the network resources.

rojctfundec by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 57 of 96
the European Union et ety =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

Concerning traffic related data, the Al-powered system processes data input in the form of PCAP
files. The Al training follows two distinct modalities: (i) by extracting network flows from each
PCAP file and encoding them as integers, and (ii) by leveraging statistical and temporal features
derived from each flow, such as packets per second, average packet count, and the time gaps
between consecutive packets. For each modality, a dedicated Al model is employed: for the first,
a Fully Connected Multilayer Perceptron (MLP) and a CNN for the second. These models are
independently trained to learn patterns within the respective data types, aiming to identify
network behavior indicative of different attack types. During inference, the system processes live
PCAP-based network data and feeds them to the Al-based IDS analyzing it to detect and alert on
any signs of malicious activity. The two employed mechanisms are particularly adept at
recognizing abnormal resource consumption patterns, allowing early threat detection and
prompt intervention.

Upon detecting suspicious activity, NATWORK applies adaptive flow control and other automated
mitigation measures to prevent potential threats and ensure network stability. An example of
online UDP Flooding attack detection and mitigation is shown in Figure 24: UDP Flooding Attack
Execution and Figure 25: New flow control rule (left) and a graphical representation of flow rules
(right).

:~$ docker exec -it att python udpFlooding.py -1 192.187.3.6 -p 88085 -c y -th 580
- Attack start ---#
Op F]_EI|2I|11ng --#

Figure 24: UDP Flooding Attack Execution

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 58 of 96
the European Union s ——— =4 N and Innovation

N nT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

nwW_ S 192.187.3.208/32"

W src prefis: - 1061485624
------- AN ATTACK HAS BEEN DETECTED
Details: The attacker's IP is: 192.187.3.200 [mas ki B
------- ADDING NEW FLOW CONTROL RULE FOR ATTACK MITIGATION P o
Restricting f1 from IP: ''192.187.3.200'" ek s N
{"src-ip":"19: 0/32","action”: "deny"} nw dst maskbits a
{"status" : "Si New rule added."} R

N

ACtior DENY

Figure 25: New flow control rule (left) and a graphical representation of flow rules (right)

4.3.3.1. Interfaces and Protocols

The following interfaces are provided by the Microservice behavioural Analysis:

Table 4: Interface to SDN Controller to enforce flow rules

Interface to SDN Controller

Description Interface to SDN Controller to enforce flow rules
Input Json containing a new flow rule (src-ip and port, action enforced)
Output Json containing the status of the enforcement (success/fail)

Table 5: Interface to Microservice Orchestrator to report irregular resource usage and trigger scaling decisions

Interface to Microservice Orchestrator

Description Interface to Microservice Orchestrator to report irregular resource usage and
trigger scaling decisions

Input Json containing the resource alert (microservice name, resource usage fields,
scaling action)

Output Json containing the status of the enforcement (success/fail)

Table 6: Interface to monitoring engine to retrieve real-time monitoring data

Interface to monitoring engine

Description Interface to monitoring engine to retrieve real-time monitoring data
Input Network and resource utilization data
Output -

and Innovation

L_:ﬁ i UK Research Page 59 of 96

i
Co-funded by 4]
the European Union

N nT * 5 D3.1

w / "R K Secure-by-design orchestration and management & Data plane computation
o\ A I*

4.4,

offloading.rl

Security-performance balancer service

4.4.1. Technical description

The Security-performance balancer service is implemented as a near-Real-Time RAN Intelligent

Controller (near-RT RIC) xApp that is compliant with the O-RAN architecture. It communicates

with the near-RT RIC via the standard xApp API. ISRD provides a proprietary implementation of
the near-RT RIC called Liquid Near-RT RIC which can operate with ISRD proprietary Liquid RAN or

other O-RAN compliant RANs. The architecture and interfaces of a Liquid Near-RT RIC are shown
in Figure 26. The Near-RT RIC connects to the E2 nodes (O-DUs and O-CUs), xApps and the Non-
RT RIC over O-RAN compliant E2, xApp APl and Al interfaces, respectively. The SMO/non-RT RIC
is not included in the ISRD solution but can be provided by 3™ party.

,,,,,,,,,,,,,,,,,,,,,,,, . —

A1 { XApp AP|_— XApp
/// - R

Near-RT RIC \\\ XApp
B \\\ —

E2/ _— ™~ XApp

(E2 Node ‘ E2 Node J E2 Node
=

Figure 26: ISRD Liquid Near-RT RIC interfaces.

The Liquid Near-RT RIC general deployment architecture is depicted in Figure 27. Docker

Compose is the default deployment method, but Docker Swarm or Kubernetes deployment is

also possible. It includes the following Docker containers:

Management API: Oversees the deployment, configuration, and lifecycle management of
xApps within the RIC

Enablement API: Provides APIs for xApps to interact with essential RIC services

Al API: Manages Al node connections and maintains the state of Al interfaces.

SDL API: Provides an API for shared data access among RIC components and xApps

E2 Service APl: Manages E2 node connections and maintains the state of E2 interfaces.
Grafana: Includes Grafana for Key Performance Measurement presentation.

Valkey Database: key-value data store

KPM xApp: It is a proprietary ISRD xApp providing standardized O-RAN KPMs.

P

roject funded by
Co-funded by d b o pooo RO (@ UK Research Page 60 of 96
the European Union i fralrutry =4 B and Innovation

N nT * gtk D3.1

w.{ "'R K Secure-by-design orchestration and management & Data plane comput'atlon
- offloading.rl

Enabl. Al Val
AP API Grafana Il

Container | | Container | | Container Container | | Container Cotainer Cotainer

Operating System

Infrastructure (Hardware) ‘

Figure 27: ISRD Liquid Near-RT RIC general deployment architecture.

4.4.2. Functionalities provided

The service provides the following main functionalities:

e Performance monitoring: receives infrastructure performance parameters such as CPU
load from RAN L2/L3 nodes (i.e., 0-DU/O-CU).

e Security and performance optimization: optimizes the security xApp parameters, e.g.,
inter-arrival time Performance Measurement (PM) reporting frequency, based on the
target performance.

¢ Node control: sends a control message to xApp to modify its operation parameters.

4.4.3. Dependencies

Security-performance balancer service relies on the following components:

e ISRD anti-DDoS xApp is a Python-based xApp that detects a UE attack on 5G RAN based
on the RRC Signaling Message Inter-arrival Time PM and disconnects the attacking UEs.
The Security-performance balancer controls this component to limit its load on the CPU
while maintaining a high DDoS attack detection rate.

e ISRD Liquid RAN: ISRD Liquid RAN consists of the following. O-RAN Central Unit (O-CU) is
a logical node hosting RRC [7], SDAP [8] and PDCP [9] protocols. O-RAN Distributed Unit
(O-DU) is a logical node hosting RLC [10]/MAC [11]/High-PHY [12] layers based on a lower-
layer functional split [12]. O-DU and O-CU provide performance measurements, e.g., CPU
usage, to the Security-performance balancer xApp via the standard O-RAN E2 interface
[13].

e ISRD Liquid near-RT-RIC: O-RAN near-real-time RAN Intelligent Controller (near-RT-RIC)
is a logical function that enables near-real-time control and optimization of O-RAN
elements and resources via fine-grained data collection and actions over E2 interface [13].
The Al interface, connecting the SMO layer [14] with the near-RT-RIC, enables the SMO

- L_:ﬁ i UK Research Page 61 of 96

and Innovation

Co-funded by
the European Union

NRAT:.-

W R.RK

D3.1
Secure-by-design orchestration and management & Data plane computation
offloading.rl

to provide Policy Guidance, known as Al Policies, to control non-real time functions of
the near-RT-RIC. The Security-performance balancer service resides in the near RT-RIC as
an xApp and communicates with the RIC platform via the standard API.

e ISRD KPM xApp: a proprietary ISRD xApp providing standardized O-RAN KPMs.

4.4.4. Algorithms

The main task of the balancer is to understand when the increased performance required is due

to an attack in progress or due to regular peak traffic. The system processes a dataset of n

samples, each with m feature measurements, and classifies them into k predefined categories

using a balancing mechanism. When a radio’s resource usage spikes, the system uses inference

methods like Naive Bayes to classify new, unseen samples. Unlike standard Bayesian classification
that assumes all classes are equally represented, this approach adjusts classification thresholds
to improve decision accuracy. The balancer also dynamically instructs agents to either intensify

inspection (e.g.,

outcomes.

deep packet inspection) or relax security controls based on classification

4.4.5. Interfaces and protocols

Table 7: Interface to O-RAN A1

Standard O-RAN Interface Al

Description Al enables policy-driven guidance of near-RT-RIC applications/functions. Its
Policy functions are Orchestration and Automation functions for non-real-time
intelligent management of RAN functions. It supports JSON [15]. Al Policy
enables the automation of Security-performance balancer parameters
configuration from the SMO layer.

Input Configure service parameters using the O-RAN A1 policy in the JSON format.
Create, update, query, and delete policy. Subscribe to policy status and
feedback notifications.

Output Policy status and feedback notifications.

Table 8: Interface to O-RAN E2

Standard O-RAN Interface E2

Description The E2 interface is an open interface between two end points, i.e., the near-
RT RIC and the so-called E2 nodes, i.e., DUs and CUs in 5G. E2 allows the
near-RT RIC to control procedures and functionalities of the E2 nodes [13].

Input Performance Measurement: CPU usage.

Output Subscribe to Performance Measurement: CPU usage.

Co-funded by
the European Union

BGSNS ;m”‘m s s L:4 ki UK Research Page 62 of 96
e ety =4 N and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

Table 9: Interface to RIC

RIC APIs (Standard O-RAN Interface)

Description The Near-RT RIC APIs are a collection of interfaces providing Near-RT RIC
platform services to xApps [16].
Input Reporting parameters from anti-DDoS xApp.
Output Change parameters of anti-DDoS xApp.
4.5, Blockchain Based Trust Establishment

Current 5G authentication mechanisms involve main core network functions such as AMF and
AUSF for trust establishment, which, while secure, are not designed for repeated or federated
end-to-end validation. This becomes problematic in scenarios where devices interact with
multiple external service providers, as the centralized approach introduces delays and potential
bottlenecks. These challenges are particularly evident in trust-sensitive loT applications such as
smart manufacturing and smart cities. To address this, the NATWORK system integrates
blockchain technology with the 5G authentication process, enabling a decentralized and
transparent trust establishment. This service allows devices to authenticate directly with service
providers after initial authentication and registration in the core, reducing reliance on the 5G
core and supporting scalable, trustless access control in distributed loT environments.

4.5.1. Technical Description

The NATWORK system combines standard 5G components with blockchain elements to support
blockchain-based trust establishment. It operates on the existing 5G core architecture,
preserving its functions while introducing blockchain for enhanced trust. Key components include
the User Equipment (UE), which registers with the 5G network and records a pseudonym on the
blockchain, and the gNodeB node, which handles the connections. The AMF manages device
registration and triggers the blockchain-based process, while the AUSF and UDM perform identity
checks. External services in the Data Network (DN) interact with blockchain mechanisms for
further authentication, ensuring secure and efficient service access. The service involves five key
components and their based technologies working together to establish the trust between the
UE and the service provider.

e 5G Core: Utilizing Open5GS, it provides central network control, including
functions such as AMF, AUSF, and UDM, which are responsible for authentication
and mobility management for loT devices.

e UPF and DN: The User Plane Function (UPF) also uses Open5GS and connects to
the Data Network (DN), facilitating data routing between loT devices and service
providers.

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 63 of 96
the European Union i fralrutry =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

e UE: Emulating the User Equipment (UE) functionality, a Raspberry Pi with
UERANSIM is used in the physical testbed to simulate an loT node.

e gNB: The gNB acts as the RAN node, utilizing UERANSIM to establish radio access
and communication between the UE and 5G Core.

e Blockchain: Implemented by Foundry, the blockchain serves as the distributed
ledger that integrates smart contracts to handle various parts of the end-to-end
trust establishment process.

4.5.2. Dependencies

This module represents the main component in S3-S-C2: End-to-End Security Management in
NATWORK. It requires the following:

e Blockchain: Part of the authorization database is replaced with an Ethereum-
compatible permissioned blockchain. This provides a decentralized, transparent,
and integrity-safeguarded mechanism for device authentication management. It
consists of a permissioned Ethereum Blockchain and a smart contract.

e Bridge: It is a vital component which acts as a communication bridge between the
5G core network and the blockchain. The main function of this bridge is to listen
to the log of the AMF function inside the 5G core, derive the pseudonym
associated with the registration, and to write authentication and access control
status to the blockchain via Web3 interfaces.

4.5.3. Functionalities Provided

As a combination of T3.1 and T4.3 in NATWORK, this module provides the following
functionalities:

e Decentralized Authentication: It securely verifies both users and devices across
loT environments using end-to-end authentication. This reduces the chances of
unauthorized access by ensuring each identity is trusted and verified.

e Access Control Management: It applies strict security policies to manage the UEs
that can access specific services in the system that are provided by various service
providers. Only authenticated UEs are granted the right level of access to services.

e Privacy-preserving Identity Management: It generates secure, privacy-preserving
tokens that represent UE anonymized identities and their access policies. These
tokens help maintain anonymity while enabling trusted interactions, minimizing
the exposure of sensitive identity data.

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 64 of 96
the European Union s ——— =4 N and Innovation

N nT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

4.5.4. Algorithms & Workflow

The Service Provider which simulates external applications, leverages the blockchain for
offloading identity verification. It handles authentication requests, verifies pseudonyms via a
smart contract, and uses cryptographic signatures for challenge-response interactions. This
module issues short-term tokens for low-latency access without the need for repeated
authentication. By utilizing a permissioned blockchain to manage device credentials and access
control policies, NATWORK ensures verifiable, immutable identity assertions with reduced
reliance on centralized systems. Additionally, the Bridge facilitates seamless interaction between
the core and the blockchain, ensuring compatibility while maintaining privacy through
pseudonym-based identification. This approach aligns with zero-trust principles, improving
security, decentralization, and latency in loT services.

4.5.5. Interfaces and Protocols
The following interfaces are provided by this service.

Table 10: Interface to Distributed Insertion

Distributedinsertion
Description | Registers the UE by storing its pseudonym and associated access policy in the

blockchain.
Input Identifier, request payload (possibly in JSON format).
Output Acknowledgement of success/fail regarding the performed insertion

(registration).

Table 11: Interface to Distributed Query

DistributedQuery

Description | Authenticates a UE against a service provider using token-based verification.

Input Identifier, request payload contains the token issued for the UE and service
provider details. (possibly in JSON format).
Output Acknowledgement of success/ unauthorized access attempt regarding the

performed query (authentication).

Table 12: Interface to Token Verification

Description Verifies a service token issued to the UE and validates access using
blockchain.

Input Identifier, request payload contains the token to be verified and the
associated UE details (possibly in JSON format).

Output Acknowledgement of success/ Invalid token or UE pseudonym regarding the
performed action (verification).

Prcject funded by
Co-funded by d st i o RO (4 UK Research Page 65 of 96
the European Union Pt s = =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

5. Implementation

5.1. Orchestration at the Extreme Edge (Feather)

In Feather, Providers are implemented for both Containerd (Containers) and OSv (unikernels on
KVM). This distinction is made based on metadata fields compliant with the OCI specfication,
which are ignored by non-Feather agents, specifically feather.backend (container, OSv) and
feather.runtime (containerd, KVM). This allows runtimes to support multiple image formats, and
for image formats to run on different runtimes if possible.

Non-container images are created by including the workload VMdisk/image as a container layer,
and setting the required metadata. This mechanism is not like the Docker approach of multi-
platform images, and requires different image names per runtime, which is solved at a higher
level by Flocky. Some features may be limited depending on the chosen runtime, for example
due to limitations with OSv/KVM, only local read-only mounts are supported for unikernels at
this point. Kubernetes secrets and mounts are handled by boot scripts added to an OCI
(unikernel) image through a custom tool “Flint”.

Multi-runtime networking in Feather is supported in both Kubernetes clusters and in standalone
mode, although in Kubernetes Feather defaults to “legacy” network operation, which assigns
unique addresses to each container (instead of per pod) and assumes only a single container per
pod. Additionally, both IPv4 and IPv6 addressing schemes are developed.

For Flocky, Capability providers are implemented by Feather (hardware resources, running
applications, runtime features) and Warrens or a suitable VPN (network security features).
Remote attestation may also be registered as a separate Capability provider if present. Various
intents (Traits) are defined to allow workloads to request deployment with (among others) Green
energy, QoE limits, specific (secure) runtimes, attestation-capable nodes and specific resource
limits.

QoE calculation is open to implementation; currently implemented methods involve static
calculation based on node metadata properties and soft node-to-workload matching. Planned
ML-based calculation allows online learning of QoE properties from user preferences based on
gathered metadata.

Feather repository:

- Main repository: https://github.com/togoetha/feather-multiruntimenetwork

- Documentation: README.md in repository
- License: Apache 2.0 (open source)

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 66 of 96
the European Union i fralrutry =4 B and Innovation

https://github.com/togoetha/feather-multiruntimenetwork

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

- Important setup scripts: in repository
- Publication: in review, preprint 10.13140/RG.2.2.13816.35847
Flocky repository:

- Main repository: https://github.com/togoetha/flocky

- Documentation: README.md in repository
- License: Apache 2.0 (open source)

- Important setup scripts: in repository

- Publication: in review

5.2. Orchestration at the CRAN

The core network functions are based on OAIl and deployed as microservices within Docker
containers. These functions include fundamental 5G core components such as the AMF,
Authentication Server Function (AUSF), Session Management Function (SMF), Unified Data
Repository (UDR), Unified Data Management (UDM), and multiple User Plane Functions (UPFs),
each configured with distinct Single Network Slice Selection Assistance Information (S-NSSAI)
values. An S-NSSAI configuration consists of a Slice Service Type (SST) and a Slice Differentiator
(SD), enabling an end-to-end slicing mechanism where a User Equipment (UE) can access multiple
slices through the same gNB. Each slice binds to a specific service type, adhering to predefined
Service Level Agreements (SLAs).

Since UE traffic passes through GTP tunnels within the UPFs, these functions play a crucial role in
detecting abnormal behaviours and analysing user demands. Recognizing the significance of
traffic data, 3GPP has introduced the Network Data Analytics Function (NWDAF) to collect and
analyze core network statistics. However, the O-RAN architecture does not yet integrate NWDAF.
To address this gap, we propose positioning NWDAF within the non-RT RIC, allowing it to process
core network data via the O1 interface when deployed within a Service Management and
Orchestration framework. NWDAF could subsequently apply traffic policies and send analytical
summaries to the RT RIC via the Al interface, enabling real-time control through xApps that
manage RAN resources dynamically.

As an open-source implementation of NWDAF is currently unavailable, we developed a custom
solution named the Anomaly Traffic Detector (ATD). This network function monitors UPF traffic
and analyzes packets using Scapy [1], effectively serving as an NWDAF substitute. The ATD is
integrated with the FlexRIC-based RT RIC, chosen for its minimal computational overhead and
compliance with O-RAN specifications [17]. FlexRIC provides an E2 agent, near-RT RIC, and an
xApp development framework. In our setup, OAl’'s gNB acts as the E2-Agent, while the xApp we
developed utilizes FlexRIC’s SDK to infer RAN functionalities from the E2-Agent, with a primary

Prcject funded by
Co-funded by O o pooo RO (@ UK Research Page 67 of 96
the European Union P — =4 B and Innovation

http://dx.doi.org/10.13140/RG.2.2.13816.35847
https://github.com/togoetha/flocky

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

focus on the RAN Control (RC) SM. The ATD continuously monitors traffic at the UPF, classifying
UEs based on their IP addresses and associated S-NSSAI values. It intercepts packets in real time,
extracting the necessary features for classification. After collecting an initial set of N packets, the
ATD preprocesses the data and feeds it into the trained Random Forest model. The model
employs a sliding window mechanism, analyzing batches of 30 packets at a time to ensure near
real-time classification while mitigating false positives.

Beyond traffic analysis, the ATD incorporates a machine learning (ML) module to differentiate
between benign and malicious traffic. The ML model was trained using the KDDCUP'99 dataset,
a widely recognized benchmark for network intrusion detection systems [18]. This dataset
comprises over 4 million training instances and approximately 311,029 test samples, containing
a diverse range of features related to network connections, including packet header details and
content-based attributes.

For our classification model, we selected five critical features:

e Protocol Type (e.g., TCP, SCTP, UDP)

e Service Type (e.g., HTTP, FTP, SSH)

e Connection Status Flag (e.g., SF for normal, REJ for rejected, RST for reset)
e Source and Destination Byte Counts

These features were chosen for their significance in distinguishing between normal and malicious
traffic and their compatibility with real-time packet analysis via Scapy. Additionally, the dataset
includes four types of attack labels: Probing Attack, Remote-to-Local Attack, Denial of Service
(DoS) Attack, and User-to-Root Attack. The preprocessing pipeline included:

e Label Conversion: Transforming multi-class labels into a binary classification—1 for
attacks, O for normal traffic.

e Flag Standardization: Converting dataset-specific flag values to formats recognized by
Scapy.

e Feature Selection: Extracting packet-level features relevant to real-time classification.

e Encoding and Scaling: Applying OneHotEncoder for categorical variables and
MinMaxScaler for numerical values to normalize data.

Following preprocessing, we trained multiple ML models using TensorFlow, including Random
Forest, One-Class SVM, Local Outlier Factor, K-Nearest Neighbors (KNN), and Autoencoders.
Performance evaluations led us to select Random Forest due to its superior accuracy and efficient
training/inference times. Upon detecting anomalies, the ATD reports the per-UE anomaly
percentage to the xApp, which then executes RAN control countermeasures. It processes

e rojctfundec by
Co-funded by ee € spenen e « A9, .4 UK Research Page 68 of 96
the European Union [} 18 et ety =4 N and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

incoming messages from ATD clients, extracting UE identifiers, S-NSSAl values, and the associated
anomaly ratios.

The detailed operation of our framework is illustrated in Figure 28. The ATD unit utilizing Scapy,
continuously monitors UPF traffic and classifies clients based on their IP and S-NSSAI values. It
manipulates each packet in real-time, extracting the necessary features that our ML model was
trained on. After collecting the first N packets, the ATD preprocesses these features and feeds
them into the Random Forest classifier. Then the Random Forest by applying a sliding window
mechanism processes N=30 packets at a time, classifying the traffic as benign or malicious. The
reason we selected 30 packets-window is to reduce infer/prediction times as close to real-time
and avoid false outliers in the classification with a larger input range. Finally, the ATD sends the
anomaly percentage per UE to the xApp for the RAN Control and countermeasures.

Anomaly Detection Server Malicious Traffic
r 444
Extract Fagtures (44 2
Traffic on UPF Random Forest Model >

bob bbby By Packet z;:f::'-we ln"‘-‘- " Classified To-‘ Send Anomaly %

} sl <" Manipulation fag _>F8'r per UE g
src_byres bl |1 5 X App
dst_byres >obb

" obbbd
Normal Traffic

Figure 28: Detailed Architecture of the Al-Driven Network Intrusion Detection System

Code repository:

— Main repository: https://github.com/teo-tsou/oai-anomaly-detection/

— Documentation: README.md in repository
— License: Apache 2.0 (open source)
— Publication: https://doi.org/10.1145/3636534.3697311

5.3. Orchestration at the Core

The SCOUT system is implemented as a container-based architecture composed of 4 main
components: Vulnerability operator, CTI agent, CTI broker and a MongoDB database. It has a
backend API and frontend Ul. The backend is developed in Python using the Flask framework,
and it handles the ingestion, processing, and transformation of vulnerability reports into STIX 2.1
format, which are then published to a TAXII 2.1 server. The frontend is built with React and
TypeScript, styled using the Mantine Ul framework, and served using Vite.

Prcject funded by
Co-funded by 6 b o o RO (4 UK Research Page 69 of 96
the European Union Pt = £ =4 B and Innovation

https://github.com/teo-tsou/oai-anomaly-detection/
https://github.com/teo-tsou/oai-anomaly-detection/blob/main/README.md
https://doi.org/10.1145/3636534.3697311

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

FORK system is also implemented as a container-based architecture. It deploys its dependency
operator and orchestration and connection components to ensure cluster connectivity and
application dependency. Both components are containerized and deployed in Kubernetes for
ease of deployment and scalability. Communication between the Ul and APl is handled via
RESTful HTTP endpoints. The system can be deployed either manually using Github repo
implementation steps in Kubernetes with kubectl or using automated scripts.

SCOUT Code repository (CTI framework):

— Main repository: https://github.com/NetworkConvergencelab/scout

— Documentation: README.md in repository
— License: Apache 2.0
— Publication: in submission

sFORK Code repository:

— Main repository: https://github.com/NetworkConvergencelLab/fork

— Documentation: README.md in repository
— License: Apache 2.0 (open source)
— Publication: https://doi.org/10.1109/ICIN60470.2024.10494435

5.4. WAI/DFE

The software implementing WAI and DFE at the DPU and P4 switches is based on the backend
features of the hardware platform. In the case of the DPU, a DOCA Flow VNF has been
implemented in C++ to realize the DDoS mitigator offloading program, based on DOCA libraries
version 2.9. In the case of P4, a baseline P4 program featuring a cascade of flow tables has been
employed to test the P4 capabilities in terms of stateful memory and SRAM/TCAM requirements,
utilizing the P4 Insight and the P4 Studio SDE 9.7 tools provided along with the APS Tofino switch
available at the CNIT laboratories.

Currently, the only available open-source software repository is the P4 DNN Distillation method
implementation and assessment software: The software repositories (DOCA programs, P4
programs) have not been released as open source. The plan is to release them on the next
deliverables.

Code repository:

— Main repository: https://github.com/emiliopaolini/P4NN journal

— License: Apache 2.0 (open source)
— Publication: https://doi.org/10.1109/0JCOMS.2024.3411071

roject funded by
Co-funded by d b o RO (4 UK Research Page 70 of 96
the European Union i fralrutry =4 B and Innovation

P

https://github.com/NetworkConvergenceLab/scout
https://github.com/NetworkConvergenceLab/scout/blob/main/README.md
https://github.com/NetworkConvergenceLab/fork
https://github.com/NetworkConvergenceLab/fork/blob/main/INSTALLATION.md
https://doi.org/10.1109/ICIN60470.2024.10494435
https://github.com/emiliopaolini/P4NN_journal
https://doi.org/10.1109/OJCOMS.2024.3411071

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

5.5. Security Performance Balancer

The Security Performance Balancer is implemented as an O-RAN compliant xApp and shipped
with ISRD Liquid RAN and Liquid Near-RT RIC as a commercial product package. The product is
provided to our customers on a per-license basis and as such there is no public repository
available.

5.6. In-network ML

Our In-network ML repository is structured around a flexible development and simulation
environment. It includes tools for compiling and deploying P4 programs for both eBPF and Intel
Tofino targets. It supports launching a Mininet-based testbed, simulating traffic using PCAP files,
and orchestrating various components such as controllers, oracles, and coordinators. Key
components include a Docker setup for managing dependencies, Python scripts for model
coordination and evaluation, and a shared library for synchronizing constants between P4 and
Python. The design emphasizes modularity and experimentation, making it easy for prototyping
secure and scalable in-network ML systems.

— Main repository: https://github.com/P4ELTE/Natwork-DataPlaneML
— Documentation: README.md in repository

— License: Apache 2.0 (open source)
— Publication: submitted to IEEE Globecom 2025, under review

5.7. MTD Controller

The MTD controller operates the parallel live migration (LiMi) of containers and microservices as
an MTD operation to enhance the security of an NFV orchestration platform, specifically
Kubernetes orchestration for CNFs, dynamically changing the attack surface of the cloud native
systems both in the edge and core domains. Within MTD, container migration can serve as one
of the approaches to achieving this dynamic shift by relocating workloads and disrupting
potential attack vectors. Additionally, such migration can be useful for isolating an infected
container by moving it to a secure cluster, allowing deeper analysis when an unknown attack
occurs. This isolation helps contain the breach, preventing the infection of other applications,
unauthorized access, and exfiltration of data.

The proposed migration approach leverages Kubernetes orchestration, the CRIU library, a
network file system (NFS), and a local container image registry. CRIU (Checkpoint/Restore In
Userspace) is a Linux-based software tool capable of freezing a running process, container, or
application and creating a checkpoint of its current state, saving it to the disk. This checkpoint

rojctfundec by
Co-funded by O s avmon 5 coen R (@ UK Research Page 71 of 96
the European Union et ety =4 N and Innovation

https://github.com/P4ELTE/Natwork-DataPlaneML

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

can then be transferred to and restored on any host, allowing the application to resume its work
as when it was frozen on the source host. The Kubelet checkpoint APl of the Kubernetes
orchestrator provides the mechanism for creating these checkpoints. This APl allows its users to
initiate a checkpoint, which captures the complete state of a container, including its memory,
process information, and file system data. The resulting checkpoint can later be used to restore
the container to its exact previous state. Triggering the kubelet API initiates checkpoint creation
through the container runtime in use. The runtime forwards this request to its lower-level
components, which, upon receipt, utilize CRIU to carry out the checkpointing process [19]. During
this process, CRIU performs various steps as shown in Figure 29.

. . Remove
Collect and Collect task Inject parasite parasite code, CRIU
freeze process rESOUrCes code, dump restore original detachment
tree task resources co deg from task

(a) CRIU checkpointing steps

Resolve Switch 1o Restore timers,
v Fork process Restore task wi credentials, and
shared tree resour restorer threads, and
resources urces context €das, a
continue

(b) CRIU restore steps

Figure 29: CRIU steps

During the checkpoint process CRIU injects a “parasite code” into the container to collect process
IDs (PID), task resources, file descriptors, including open files and sockets, registers, and other
essential task parameters. The checkpoint can then be found as an archive file on the source
node. CRIU then removes the parasite code and detaches itself from the container’s process.

In contrast to checkpointing, restoring a container is currently not possible via the Kubelet API.
Thus, the MTD controller uses the algorithm and phases defined in Section 6.4. to restore the
container on the destination cluster while keeping the high-level Kubernetes orchestration aware
of the changes.

Benchmarking CNFs have been developed to test the MTD controller’s performance using various
containers, each specialized to handle resource-intensive tasks. They are designed to evaluate
migration performance under different service requirements, as detailed below:

1. CPU: The CPU benchmarking application is a program that simulates state transitions via
a series of states. In each of its four states, a CPU-intensive computation is performed,
beginning in State 1 (S1). By calculating 2 to the power of 256 10 million times in a loop,
a sustained high CPU load is created for an extended period. Once the task is completed
in a given state, the program transitions to the next state, repeating the process. When

roject funded by
Co-funded by 0 e e (8@ UK Research Page 72 of 96
the European Union it fralrutry =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

the task in the last state is finished, it transitions to S1 again, thus continuously repeating
the workload while tracking the number of completed cycles and current state.

2. Memory: To perform migrations of applications that are running memory-intensive tasks,
a local redis in-memory cache is deployed. For comparison, three instances with three
different amounts of entries are migrated. 10'000, 100'000 and 1'000'000 key-value pairs
are written into the database.

3. Disk: To explore the impact of disk usage on the proposed migration, a MongoDB instance
is used, storing its data in BSON documents, a binary representation of JSON files.

Code Repository

— Main repository: https://github.com/RinchenKolo/ContMigration

— Documentation: README.md in repository
— License: Apache 2.0 (open source)
— Publication: in review

5.8. Blockchain Based Trust Establishment

The implementation provides a general guide in setting up and validating a 5G testbed
environment designed to demonstrate blockchain based trust establishment between loT
devices and service providers. The setup leverages components such as Open5GS (5G
core), HTTPS Server (service provider network), UERANSIM (radio simulation), Raspberry
Pi (IoT UE), and Foundry (blockchain):
Testbed Initialization
Install and configure Open5GS, UERANSIM, and blockchain tools.
Set up UE, and gNB and 5G Core interaction.
Software Stack Setup
Deploy core NFs: AMF, AUSF, UDM, SMF, UPF.
Configure blockchain (via Foundry) and smart contract for trust attestation.
UE Registration Flow
UE initiates first-time network registration through gNB.
AMF/AUSF authenticate and record pseudonym/trust info to blockchain.
Blockchain Verification
loT service provider queries blockchain using pseudonym.
On successful attestation, mutual authentication is completed.
Validation Criteria
Establishment of trust without further core network involvement.
Successful cryptographic verification and secure channel setup.
Code Repository

rojctfundec by
Co-funded by O s eeen pooo RO (@ UK Research Page 73 of 96
the European Union et ety =4 N and Innovation

https://github.com/RinchenKolo/ContMigration

N nT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

— Main repository: https://github.com/elte-cybersec/E2E-5G-Trust

— Documentation: README.md in repository
— License: Apache 2.0 (open source)
— Publication: under review

Prcject funded by
Co-funded by “‘ I— s B8 (@ UK Research Page 74 of 96
the European Union Pt E =4 B and Innovation

https://github.com/elte-cybersec/E2E-5G-Trust
https://github.com/elte-cybersec/E2E-5G-Trust

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

6. Strategies and Optimisation Algorithms

6.1. Orchestration at the Extreme Edge (Feather)

6.1.1.1. Strategies adopted
Orchestration in the edge is divided into two main aspects: flexibility, to support non-container
workloads and highly heterogeneous device topologies, and decentralization, which requires a
level of node and workload modeling not supported by common APIs such as Kubernetes. The
solution is presented in terms of Feather, which uses eBPF and backend detection to support
multi-runtime pods (networking) and to advertise its capabilities, and Flocky, which uses Open
Application Model (OAM) to enable decentralized metadata discovery and orchestration.

6.1.1.2. Problem Definition

Two critical aspects must be solved to enable effective orchestration in the edge:

— Device specifications and user/service requirements are far more varied than in the cloud.
This presents an opportunity to support various types of workloads other than containers
depending on device capabilities but also requires suitable capability modelling for
optimal orchestration.

— A decentralized solution is more suitable for edge orchestration; therefore, a suitable
framework should be constructed that supersedes existing solutions such as the
Kubernetes API, allowing devices and workloads to be modeled at a high level for
decentralized metadata discovery and exchange.

6.1.1.3. Developed Solution

Feather leverages Virtual Kubelets, combined with eBPF traffic routing and extensible backend
(i.e. containerd, OSv) implementations to support various types of workloads in a single
orchestrator agent for Kubernetes/OAM deployments.

Flocky extends OAM and the Swirly [20] discovery mechanism to enable decentralized node
metadata discovery, including supported runtimes and available applications. With a pluggable
orchestration system allowing for different preferences and algorithms per node. The
deployment algorithm for an application is summarized as follows:

e Splitinto components (individual workloads)

e For each component
o Find suitable implementations in Metadata repository based on Traits (intents)
o (Optionally) rank implementations by preference
o For each implementation

roject funded by
Co-funded by d b o pooo RO (@ UK Research Page 75 of 96
the European Union i fralrutry =4 B and Innovation

P

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

= Check if a suitable one (same or higher Traits) is already deployed on a

remote node
e Useif found

= Find acceptable nodes using Metadata repository

= Rank acceptable nodes by Quality of Experience (QoE) according to
chosen definition/implementation (QoE evaluator)

= |n order of ascending QoE, attempt deployment of the component
implementation on each node until successful

The “Find acceptable nodes” and “Rank by QoE” stages can be extended by implementing a “QoE
evaluator” interface and configuring a specific Flocky instance to use that implementation.

6.2. Orchestration at the CRAN

6.2.1. Strategies adopted

To effectively manage the CRAN, we leverage containerized network functions and intelligent
control mechanisms, ensuring optimal resource allocation and user management. The strategies
involve utilizing OAI core and RAN network components, deploying them as microservices using
Docker. Also, by using FlexRIC for the Real-Time RIC and integrating Al-based anomaly detection
xApp to enhance network security and performance.

6.2.1.1. Problem Definition

Sophisticated attacks compromise data integrity, user privacy, and overall network functionality.
In our experimental setup we demonstrate that a DoS attack can disrupt key 5G core components
such as the UPF, leading to failures within the RAN causing permanent bufferfloats. Beyond
network disruptions, these security threats result in inefficient resource utilization, higher
operational costs, and increased recovery efforts.

6.2.1.2. Developed Solution

To counter these challenges, we propose a solution that integrates real-time anomaly detection,
adaptive resource management, and user traffic monitoring. The xApp leverages Al/ML models
trained on real-world datasets to classify network traffic and dynamically allocate resources and
suppress malicious users. It detects malicious behaviour, triggering RRC connection terminations
to protect the network while prioritizing legitimate users via end-to-end slicing. This
implementation, built within the OAl platform, utilizes standardized O-RAN interfaces and Service
Models from FlexRIC. The functionality of the xApp is described below:

Algorithm: xApp Functionality

1. Initialization:

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 76 of 96
the European Union s ——— =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

o Establish a connection with RT-RIC and subscribe to the RC SM.
0 Accept incoming ATD client connections.
o Initialize data structures for tracking UE activity.
2. Monitoring and Data Processing:
o0 Receive and parse ATD messages.
o Extract UE ID, S-NSSAI values, and anomaly ratios.
o Continuously update UE-related records.
3. Dynamic Resource Allocation:
o Calculate PRB assignments based on anomaly scores.
o Apply scaling mechanisms to maintain fair resource distribution.
4. Threat Mitigation and Countermeasures:
o Identify and classify UEs exhibiting malicious behavior.
o0 Reduce PRB allocation for flagged users and redistribute resources.
o If a UE reaches 100% anomaly ratio, trigger RRC connection release.

6.3. Orchestration at the Core

6.3.1. CTl Cross-Domain selective Sharing

Sharing CTI data requires caution, as it must include relevant threat details without exposing
sensitive or confidential information. If not properly filtered, such data could reveal system-
sensitive information and lead to security risks. The Selective CTl sharing mechanism applies CTI
policy to examine each vulnerability data obtained through the security scanner. These policies
determine which metadata can be included in the CTI package. It filters the vulnerability
metadata using data anonymisation and exclusion. After this process, the CTl agent generates
the CTI data with the selected vulnerability metadata and complies with the STIX data
serialisation standard. The CTlI component in each cluster/domain assesses cluster hygiene
scores and shares the CTl data. Reconfiguration actions are triggered by signals generated from
the CTlI component's analysis of real-time hygiene score. These insights guide reconfiguration
processes, enabling the continuity of dynamic policy enforcement. The CTlI component
communicates findings to the orchestration components in local clusters and control planes,
which can prevent deployments that fail hygiene score requirements or security checks. It alerts
the orchestrator when cluster hygiene scores fall below acceptable thresholds. It facilitates real-
time monitoring, workload adjustments, and security compliance while optimising the overall
performance and reliability of the network.

6.3.1.1. Problem Definition: Sensitivity vs. Necessity

In CTI sharing, organisations face a trade-off between protecting sensitive information and
ensuring the utility of shared data. CTl data often includes sensitive information that makes
organisations hesitate to share and collaborate. If exposed, highly sensitive indicators may pose

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 77 of 96
the European Union s ——— =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

privacy, reputational, or security risks. However, omitting such details can significantly reduce
the usefulness and actionability of the threat intelligence. The challenge lies in determining which
information is essential (necessary) for the receiving party, while minimising the exposure of
sensitive data. This tension between sensitivity and necessity forms a core problem in secure and
effective CTl exchange.

6.3.1.2. Developed Solution

To address this challenge, we designed a dynamic and adaptive mapping framework that assigns
a sensitivity score and a necessity score to each data field within the shared intelligence. Each
vulnerability is assessed individually; vulnerability metadata is utilised to assign relative scores.
This dual-scoring system enables granular control over what is shared, allowing CTI Agents to
prioritise data that is critical for defence while withholding or anonymising overly sensitive fields.
These scores are used in the decision-making algorithm to determine the appropriate sharing
policy for each piece of information. This ensures a balanced, policy-driven exchange of CTI that
supports collaboration without compromising security or privacy.

6.3.2. Workload Prediction for Scheduling

6.3.2.1. Problem Definition: workload prediction including anomalous

In large-scale distributed networks, efficient workload scheduling becomes increasingly complex.
Traditional schedulers might often react to immediate resource usage without anticipating
upcoming demands. This can lead to poor performance, especially when there are sudden spikes
in traffic or abnormal activity. Without the ability to predict workloads, the system may either
over-allocate resources (wasting energy) or under-allocate (SLA loss). The key challenge is to
forecast future load and adjust scheduling decisions in advance while also handling unpredictable
behaviour like Denial of Sustainability (DoST) attacks or traffic bursts.

6.3.2.2. Developed Solution: Al prediction

To address this challenge, we designed a lightweight, Al-driven workload prediction component
as a microservice that can be integrated into the orchestration and scheduling layer. This
component exposes a standardized API, allowing the orchestrator to query predictions on key
workload indicators—such as node-level usage trends or traffic surges—based on historical
telemetry or CTI events. It receives telemetry data inputs (e.g., CPU and memory metrics) and
returns short-term forecasts for resource demand across nodes. These forecasts assist the
orchestrator in taking preemptive actions— scaling workloads or adjusting placements to energy-
efficient zones—before overload or performance degradation occurs. The prediction service also
supports scenarios involving anomalous patterns, helping distinguish between typical usage
fluctuations and potential DoSt-like anomalies. This ensures better performance, lower energy
usage, and improved resilience in dynamic network environments.

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 78 of 96
the European Union s ——— =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

6.4. Moving Target Defence (MTD)

The proposed Moving Target Defence (MTD) framework introduces two algorithms designed to
optimize stateful live migration (LiMi) performance for CNFs:

I. Container Restore Algorithm for Kubernetes-aware Orchestration: This ensures seamless
state restoration during migration while maintaining Kubernetes cluster constraints.

II. Parallel LiMi Scheduling Using ML-based Time Prediction: this leverages ML to predict and
optimize migration timing across multiple concurrent instances.

Each of the following subsections outlines the problem being addressed and the corresponding
algorithm developed to solve it.

6.4.1. Container Restore Algorithm for Kubernetes-aware Orchestration

As previously described in Section 5.7, the CRIU library is partially integrated to Kubernetes, with
kubelet API allowing the creation of a checkpoint of a running container but missing an API
request to equivalently restore the container from the checkpoint on the destination cluster.

To solve this issue, the MTD controller defines a process/algorithm for the restore phase of a
stateful container live migration (LiMi) performed as an MTD operation. A live migration in this
context refers to the process of transferring a stateful containerized application running in a
Kubernetes pod from one cluster to another with the goal of minimal downtime (i.e., the time an
application is unavailable), while preserving the application's state. Thus, the restore process
starts with having a container checkpoint and is summarized as follows:

1. Create a checkpoint using the kubelet API.
Change the permissions of checkpoint files to enable non-root users to restore the
container.

3. Convert the checkpoint into a container image.
Push the new image to a local or remote registry (e.g., Dockerhub).

5. Apply a prepared YAML file that pulls the new image.

This above-described algorithm is implemented as a shell script. The first part of the script
searches for a pod name, which must be given as an argument when running the program. Once
the existence of the pod is confirmed, a checkpoint is created by using the kubelet API's POST
command. The checkpoint file is then saved to the NFS. As the file is saved with permissions
allowing modifications only by root users, the next part of the algorithm changes the permissions
of the above-mentioned file. Once non-root users can change the file, buildah is used to convert
the checkpoint file into an image and push it to the local registry. Once the image is successfully

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 79 of 96
the European Union s ——— =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

pushed, the new image is pulled by Kubernetes via a YAML file, which contains the necessary
information using the pod's original name.

At the end of the migration script, the remote migration controller applies a predefined YAML
file to launch the previously checkpointed container. Kubernetes is then instructed to wait for
the pod to be ready, and once it is, let it run for five seconds. After that, the StatefulSet and its
corresponding pod are deleted, and the execution cycle starts over again.

6.4.2. Parallel LiMi Scheduling Using ML-based Time Prediction

Due to the interdependency of components (e.g. the back-end part may need to have a persistent
connection with the DB instance), it is crucial to determine the order of migration for each
component, so that the migration time would be minimized. Furthermore, the workload of each
component also affects the migration process, requiring a careful estimation of how long it will
take for each container to be migrated and functional in the destination location. The problem in
this case is to develop an accurate estimation method for the migration time of each component
and consequently, a proper scheduler to prioritize the migration of certain components for the
least service disruption.

As depicted in Figure 30, the first part of the solution, the Container Migration Optimizer,
develops an ML-based classifier selecting the best migration method per container to minimize
the migration time and service downtime of the container, based on its workload type. To this
end, a tool for collecting metrics of a running container is required to be connected to the MTD
framework, providing the resource utilization of the corresponding container and feeding it to
the ML classifier or heuristic model (formed from statistical analysis of the dataset used for
training the classifier). Once the migration method is selected, the second part of the solution,
the Migration Scheduler, considers the estimated migration time for each container, based on a
developed regressor estimating the total migration time. The solution, then, provides a schedule

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 80 of 96
the European Union s ——— =4 N and Innovation

NRAT:.-

D3.1

w / "R K Secure-by-design orchestration and management & Data plane computation
-\ A I*

offloading.rl

plan for the microservice-based application, presenting the time to start the migration for each

component, aiming to minimize the total migration time.

/ ~N

f \
| Container Method Migration Time =~ mt |
| gt
| 2 |
| I
Downti dt |

| Regressor
I
L |
N 7

N i igration | mt mst
—>/, Contalne_r Mlgratlon a5 ¢l
i Optimizer)

Application A " Container Migration | mt
2 | Optimizer) Scheduler

2y Migration &)

4 Container Migration) mtc, N mstc, ;
Optimizer) @

Figure 30: ML Classifier + regressor to optimize the live migration of microservice-based applications

6.5. DFE/WAI offloading

This subsection provides the technical details, from the algorithmic point of view, of the DFE

and WAI offloading solutions presented in Section 3.2.

6.5.1. WAI and DFE for P4 switch DNN

6.5.1.1. Problem definition

Current programmable switches face two key limitations: (1) restricted parallelization and (2)

hardware backends that lack full P4 language

support, leading to suboptimal latency

performance. For example, software-based P4 DNN implementations achieve intra-switch

latencies nearly an order of magnitude higher than standard pipelines like forwarding and

steering. This stems from hardware vendors prioritizing fast memory access for lookup tables

over computational resources like ALUs. While fully in-network ML processing is conceptually

Prject funded by
Co-funded by © mmmesen e |86
the European Union e frsepieraiutarey ~d

UK Research Page 81 of 96

and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

possible, conventional methods struggle to deploy DNNs within the data plane. DNNs rely on
multiply-accumulate operations and nonlinear functions, but programmable ASICs in commercial
P4 switches lack both floating-point and integer arithmetic support. Although DNNs can tolerate
low-precision inputs when trained appropriately, the inability to perform even integer-based
multiply-accumulate operations prevents their direct deployment. While feature extraction can
be efficiently implemented on a programmable ASIC backend, adapting the DNN function
requires a complete remapping to bypass ALU-dependent operations.

6.5.1.2. Developed solution

To enable DNN deployment in hardware pipelines lacking arithmetic capabilities, we propose
distilling a trained, integer-quantized DNN into a lookup table (LUT). This approach transforms
inference into a match-action operation by encoding integer inputs as LUT addresses and storing
precomputed outputs for all possible input combinations. As illustrated in Figure 31, a network
with two inputs of n and m bits forms a compound address of n+m bits, generating 2™*" LUT
entries. This method extends to multi-input networks by concatenating all inputs into a single
key. The process is lossless and preserves model accuracy. Compared to existing table-based
guantization strategies available in the literature, our approach embeds the entire DNN within a
LUT rather than merely accelerating operations. However, it presents challenges: (i) memory
usage grows exponentially with input bit-width, (ii) inputs must be integer-encoded (with
floating-point representation restricted to hidden layers), and (iii) the LUT scales linearly with the
number of output variables. Memory constraints affect key size and the number of entries that
can be defined, impacting scalability.

O—@ N
A RA N LUT DN
VI.‘%\‘\Y"»"‘V;.\\V/ Distillation T .
\.:’.A:::?A’%}‘:L }(n + m) bit
RO
VAW - —— | Wt
TOX address
W N\ m DNN

o/
@, @* Output
_ Hidden Hidden / Input 2

2\
Figure 31: DNN to lookup distillation method

V%

Despite these limitations, this method enables DNN deployment in P4 switches without
restrictions on model complexity or type. It generalizes to other ML algorithms if inputs and
outputs are quantized accordingly. In networking scenarios, where data types are less complex
than images, quantization constraints are more manageable. Additionally, larger DNNs can be
trained to enhance accuracy without affecting inference speed, as lookup time remains constant.
Retraining is also feasible—updated models can be distilled and deployed by simply refreshing
the LUT entries.

Project unded by
Co-funded by 0 e e (8@ UK Research Page 82 of 96
the European Union s ——— =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

Transforming neural networks into lookup tables (LUTs) presents a significant challenge due to
the precision and wide range of 32-bit floating point numbers. This large input-output space
makes it impractical to create LUTs directly, as the memory and computational requirements
become infeasible. Quantization addresses this issue by reducing the precision of inputs and
outputs, mapping continuous values to a smaller, discrete set. This significantly reduces the LUT
size and makes LUT-based computation more viable, especially in resource-constrained
environments such as embedded systems or programmable network devices.

To maintain accuracy under limited precision, we adopt Quantization -Aware Training (QAT),
where the impact of quantization is accounted for during training. In this approach, inputs are
guantized using a dedicated quantizer q_input, while weights remain in full precision. The
quantized layer computes the activation y as follows: y = a(f(w, q_input(x)) + b)

where w represents the weights, x is the input, fis the layer operation, o is the activation function,
and b is the bias. We employ DoReFa quantizers for their flexibility in specifying bit-widths,
making them well-suited for hardware-efficient implementations of neural networks.

6.5.2. DFE and WAI in DPU-based mitigation

6.5.2.1. Problem definition

A prevalent method used in Distributed Denial-of-Service (DDoS) attacks is the TCP SYN flood
attack. In this type of attack, the target server is overwhelmed with many TCP SYN (synchronize)
packets. The server, following the standard TCP handshake process, allocates resources and
responds with SYN-ACK (synchronize-acknowledgment) packets. However, the attackers
deliberately do not send the final ACK packet, preventing the connection from being completed.
As a result, the server’s TCP session table becomes exhausted, rendering it unable to process
legitimate connection requests and effectively denying service to authorized users.

To address DDoS attacks, various detection and mitigation techniques have been proposed,
including rule-based, signature-based, commercial solutions, Machine Learning (ML), anomaly-
based, and flow-based approaches. Despite their effectiveness, these methods often introduce
non-negligible latency in detecting and responding to attacks. This delay can be particularly
problematic when attack rates are high, as a substantial portion of the attack traffic may remain
unmitigated for a critical period, worsening the impact on the target system.

A first DFE/WAI design and implementation fully offloaded in a DPU using DOCA libraries faces
the complexity of minimizing the number of ARM core processing calls (which are relatively slow),
while maximizing the number of operations that can be done using hardware accelerators (high
speed).

rojctfundec by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 83 of 96
the European Union et ety =4 N and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

6.5.2.2. Developed solution

To manage the stateless nature of hardware pipes, a stateful control logic is deployed on the
ARM cores. Written in C, it dynamically orchestrates and updates hardware pipes by inserting,
modifying, and removing entries as needed. This approach ensures that attack detection remains
adaptive while leveraging hardware acceleration to minimize latency. Metadata tagging is used
to track packet flow, enabling real-time decision-making regarding traffic handling.

The DDoS mitigator logic is deployed on the ARM cores and written in C programming language,
including all the available C libraries to properly fill, update, query, and finally remove entries in
the pipes. This distribution of tasks between the main two components of the fully offloaded
system, namely the ARM cores and the offloading hardware, is explicitly described in Figure 32.

; - legitimate packet 1
=3 : Data Plane Traffic 7
— : Control Plane Traffic 1 set metadata=pointer set metadata=0
@ : Hardware Counter * I
1
X : Meter I'_I I_I add_entry(src_ip, pointer) ¢
malicious packet = cPu [add_entry(src_ip) 1 TCP && SYN_flag=1 miss
.4# I_ _I 1 » SYN PIPE » SYN_MISS PIPE
add_entry(src_ip)
1T _entry(src_ip)]

y

packet IPv4 miss TCP miss
——» ROOTPIPE »BLACKLIST PIPE »| CONTROL FPIPE p| TCP_COUNT > Q
FIPE @

-
1
|
1
|
1
1 non 1Py blacklisted match
1 src_address
L4
: others .
] < Hardware offloaded
L

v :

@—

Figure 32: DOCA-based offloaded DDoS mitigator

Packets entering the DPU through port PO are first processed by SF1 and the root pipe, which
filters out non-IPv4 traffic. The blacklist pipe immediately drops packets from known malicious
sources. The control pipe evaluates remaining traffic, directing TCP packets to the appropriate
processing path. Non-TCP packets are forwarded to SF2 to reach the host.

If a packet has the SYN flag set and remains under the rate limiter threshold, it is processed in
the SYN pipe. Otherwise, it is sent to the SYN_MISS pipe for further analysis. The TCP_COUNT
pipe updates per-source statistics, tracking the number of legitimate TCP packets. If no matching
entry is found, the packet is dropped to prevent unauthorized access. The system employs a rate
limiter to regulate the number of SYN packets sent to the host, preventing CPU overload.

Additionally, all outgoing traffic from the host is forwarded through a dedicated hardware pipe
from SF2 to SF1, reducing processing overhead and ensuring efficient data flow.

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 84 of 96
the European Union i fralrutry =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

A multi-threaded application on the ARM cores handles real-time SYN flood detection and
mitigation. The pseudo-code of the application is detailed in Figure 33. Each thread polls assigned
RX queues via DPDK libraries, processing only packets requiring in-depth inspection. If a packet
comes from a previously unmonitored source, an IP record is created to track SYN counts and
register the entry ID in the TCP_COUNT and SYN pipes. Metadata values are updated to facilitate
efficient lookup and tracking.

For already monitored sources, the system retrieves statistics and recalculates the SYN-to-TCP
ratio. If the ratio exceeds a predefined threshold, the source is blacklisted, ensuring subsequent
packets are dropped at the hardware level without involving the CPU. The system continuously
updates and removes outdated entries to free resources for new traffic.

By efficiently distributing tasks between hardware pipes and ARM cores, this architecture
maintains high throughput and low latency, effectively mitigating large-scale SYN flood attacks in
real time.

Algorithm 1 Application Logic pseudo-code

1: while true do

2 poll RX queue for RX packets

3 if #RX_packets # 0 then

4: for packet in RX_packets do

5 parse the packet

6 if meta = O then

7: start IP monitoring

add packet to TX packets

: else

10: retrieve IP record from meta
1: increase IP sent #SYN

12: query #PKTs HW counter
13: if #SYN/#PKTs > TH then
14: blacklist the TP

15: drop the packet

16: else

17: add packet to TX_ packets
18: end if

19: end if

20: end for

21: send TX_ packets to TX_qgueue
22: end if

23: manage entry aging

24: end while

Figure 33: Offloaded DDoS mitigator algorithm

6.6. Data plane ML

Our proposed model employs as-soon-as-possible in-network inference and online learning to
enable accurate, low-latency network attack detection. Additionally, data plane program

Prcject funded by
Co-funded by d b e K9, 4 UK Research Page 85 of 96
the European Union Pt E ey =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

disaggregation is used to ensure that switches retain sufficient resources for other essential tasks,
such as packet routing.

6.6.1. Feature Extraction

6.6.1.1. Problem definition

The classification of network flows—determining whether they represent an attack or benign
traffic—is based on various features derived from individual packets within the flows. These
features include parameters such as current and maximum packet length, the number of times
different TCP flags were set, and the source and destination ports.

To compute some of these features, the system requires persistent storage of flow-specific data.
6.6.1.2. Developed solution

This persistence is implemented using registers indexed by the hash of the flow’s identifier (5-
tuple). However, this approach introduces the risk of hash collisions, so that different flows can
inadvertently share the same register locations, resulting in data corruption.

To mitigate this risk, we implemented flow timeouts: flows that have been inactive for at least
30 seconds are considered terminated, allowing their register slots to be reset when a new flow
is assigned.

6.6.2. Model Training and Online Learning

6.6.2.1. Problem definition

Pre-trained models and pre-initialized datasets often present significant challenges in the context
of programmable network hardware. Large models require significant memory and
computational resources, which exceed the capabilities of network hardware. Conversely,
smaller or more compact models may lack the necessary accuracy to provide reliable results,
making them ineffective for critical tasks such as security applications or traffic optimization.

This creates a trade-off between resource efficiency and classification precision, with neither
extreme providing a fully viable solution for real-time, high-performance network operations.

Project funded by

Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 86 of 96
the European Union i fralrutry =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

6.6.2.2. Developed solution

Our proposed model operates entirely through online learning, eliminating the need for pre-
trained models or pre-initialized datasets. The control plane is responsible for training models
using sampled features received from programmable switches.

These switches randomly select a fraction of their flows for monitoring and forwarding the
extracted features—and classification results, if available—to the control plane. Flow selection is
based on a combination of the flow identifier and a random number initialized at switch startup.

To support real-time inference, flow features must be collected after each received packet. This
ensures that separate classifier models can be trained for different flow lengths.

The controller caches flow features and classification results received from the switches for a few
minutes. These features are then forwarded in batches to an external Intrusion Detection System
(IDS), which provides highly accurate flow labels. The external IDS performs network attack
detection with high accuracy, though at the cost of reduced throughput and increased latency
compared to in-network approaches. The labels provided by the IDS serve as the ground truth,
while the in-network classification results act as predicted labels. These true and predicted labels
are used to assess the accuracy or F1-score of the in-network classifier.

The controller regularly trains new random forest models using the sampled features and true
labels. The training approach follows a methodology, where a separate random forest is trained
for each subflow (i.e., the first N packets of a flow). A decision from a random forest is only
accepted if its certainty exceeds a predefined threshold, and only sufficiently accurate random
forests are incorporated into the final model. This approach enables early classification for some
flows after just a few packets, while others may require more packets to achieve the necessary
confidence level. Once a new model is trained, it undergoes an evaluation phase, where it
classifies the collected features and its predictions are compared to the true labels. If the new
model surpasses the performance of the currently deployed in-network model by a predefined
threshold (e.g., a 1% improvement in accuracy), it is deployed to the switches, replacing the
previous model. Model Encoding for Match-Action Tables

6.6.2.3. Problem definition

The P4 data plane programming language supports multiple types of programmable switches.
We tested our model on two different P4 targets: CPU-based eBPF switches and Intel Tofino
hardware switches. These targets have distinct limitations, requiring different approaches to
embedding machine learning models.

rojctfundec by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 87 of 96
the European Union et ety =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

The match-action tables of eBPF-based switches do not currently support range matching (i.e.,
mapping actions to numerical value intervals).

6.6.2.4. Developed solution

Therefore, we used a model encoding method, where each depth level of each decision tree
corresponds to a separate match-action table. The table entries represent decision tree nodes,
while the table actions compare feature values to thresholds, determine verdicts, or forward
processing to the next match-action table.

In contrast, Tofino switches support range match keys but do not allow long sequences of match-
action tables where earlier results are required before executing subsequent tables.
Consequently, we applied the encoding method from prior research, where each decision tree is
embedded into a single match-action table. Each feature is assigned a range match key, and each
decision tree leaf corresponds to a table entry that specifies the required feature ranges for
classification. However, this approach limits the number of features that can be used, as Tofino
switches only support a limited number of range match keys per table.

Since our approach relies on as-soon-as-possible inference, separate random forests must be
trained and encoded for different flow lengths. To facilitate this, each match-action table includes
an additional key that identifies which random forest to use. This identifier is determined using
a separate table that maps the flow’s packet count to the corresponding random forest identifier.

6.6.3. Model Disaggregation

6.6.3.1. Problem definition

The accuracy of network attack detection can be improved by increasing the number of decision
trees within each random forest or by extending the depth of decision trees. However, both
approaches increase the model’s resource requirements, such as memory. Since switches must
also allocate resources for other tasks like packet forwarding, it is crucial to limit the resource
consumption of in-network attack detection.

6.6.3.2. Developed solution

If flows traverse multiple switches within the internal network, the per-switch resource
requirements can be reduced by partitioning the P4 program and distributing its components
across multiple switches. In our random forest-based approach, this means embedding different
decision trees of the forest in different switches. However, certain components must be present

roject funded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 88 of 96
the European Union it fralrutry =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

in all switches—particularly those at the network edge—so that flow features can be computed
or received from upstream switches.

Determining which decision trees should be deployed on which switches is beyond the scope of
this work. While decision trees within a random forest can operate independently, edge switches
need access to the verdicts of all decision trees to compute the final classification result. To
facilitate this, an extra header is added to packets upon entering the internal network and
removed when exiting. This header stores information about pending decision trees and already
computed verdicts.

6.7. RAN security-performance balancer

The core idea of our approach to security is to balance the performance of radio and edge
elements and the security added to the radio for the constant availability of the radio resources.
The balancer will consider, on the one hand, the risks that appeared in the radio interface and,
on the other hand, the performance requirements posed to the radio software/hardware due to
increased traffic. The main task of the balancer is to understand when the increased performance
required is due to an attack in progress or due to regular peak traffic.

6.7.1. Problem definition

Modern radio access networks (RANs) face the dual challenge of maintaining high performance
under dynamic traffic conditions while also ensuring robust security against evolving threats such
as DDoS attacks. Traditional static security configurations can either underperform during
legitimate traffic peaks or overburden the system when reacting to benign conditions. This
creates a critical need for a dynamic mechanism that can intelligently distinguish between
increased traffic caused by legitimate usage and that triggered by malicious activities.

The core problem addressed in this work is the need to balance the performance of radio and
edge elements with the security mechanisms applied to the radio interface, in order to ensure
the constant availability of radio resources.

6.7.2. Developed Solution

We will consider an observed data set with n data samples, where each sample contains the
measurements of m features observed during a given time interval. Then, the balancer will
classify each sample in known classes of interest. In the moment that the radio increases the
consumption of resources, the balancer will apply inference (e.g., Naive Bayesian) for deciding
when an unobserved sample Xn+1 may be instantiated to one of the classes. Normally, Bayesian
classifier design tries to make the classification process “balanced” as if all classes were
represented by a non-zero number of samples in training set X. Our approach will consist of

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 89 of 96
the European Union s ——— =4 N and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

adjusting the threshold for the Bayesian classifier to classify the sample in one of the classes. The
balancer will inform the agents when they should apply deeper packet inspection or when the
security controls can be reduced.

6.8. LLM-based IDS

In recent developments within deep learning, self-supervised learning (SSL) has gained
prominence as a powerful alternative to traditional supervised approaches, particularly through
the adoption of Transformer-based architectures and large language models (LLMs). These
models demonstrate strong capabilities in extracting rich and generalizable representations from
unlabeled data, thereby reducing reliance on extensive manually annotated datasets. In this
context, we introduce an IDS built upon the BERT architecture, a bidirectional Transformer model
originally tailored for natural language understanding tasks. The BERT model’s encoder-centric
design, coupled with its bidirectional self-attention mechanism, enables it to capture complex
contextual relationships within structured, sequential inputs, making it especially well-suited for
traffic classification tasks in network security. Unlike generative LLMs such as GPT, which are
optimized for text generation, BERT’s architecture inherently supports discriminative learning
objectives, offering a more suitable foundation for accurate and efficient real-time threat
detection.

6.8.1. Packet-token embedding optimization
6.8.1.1. Problem Definition

LLMs and Transformer-based models in general are powerful tools for processing sequential
data. However, as the number of tokens in a sequence increases, so does the training and
inference time, as transformer attention computation time scales quadratically with the number
of tokens. Treating each packet header or the raw bytes of the packet as individual tokens can
quickly increase the number of tokens that need to be processed.

6.8.1.2. Developed Solution

To optimise the processing time of our model we employed the packet-token based embedding
procedure described in Section 3.5 which significantly reduces the number of tokens that our
LLM-based IDS has to process. In addition to this, we implement a time limit as well as a limit to
the number of packets to 32 for each flow to keep the packet sequences short. This does not
impact the performance of our model.

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 90 of 96
the European Union s ——— =4 N and Innovation

NRAT:.. ion

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

6.8.2. Contrastive learning and flow augmentation process

6.8.2.1. Problem Definition

As the digital landscape becomes more interconnected, the frequency and severity of zero-day
attacks have significantly increased, leading to an urgent need for innovative IDS. Machine
Learning-based IDS that learn from the network traffic characteristics and can discern attack
patterns from benign traffic offer an advanced solution to traditional signature-based IDS.
However, they heavily rely on labeled datasets, and their ability to generalize when encountering
unseen traffic patterns remains a challenge. To provide a generalizable baseline model for
intrusion detection we devised a self-supervised contrastive learning process on unlabelled raw
packet sequences, as a pretraining task for the encoder stack of the LLM.

LLM-IDS

Projection
Head

Embedding
Layer
Encoder
Stack

Contrastive
Loss

I
Augmented View :

I

I

PI

I

|

I

I

Encoder
Stack

Embedding
Layer

[=
S 5
53R
v
23
o
o

IR +

Figure 34: Overview of the contrastive learning and augmentation process

6.8.2.2. Developed Solution
The objective of the contrastive learning task is to learn meaningful representations by bringing
the representations of similar flows closer to each other in the embedding space while at the
same time pushing apart flow representations that are dissimilar. To achieve this, we have to
generate flow samples that are relatively similar to each other for the contrastive learning
process. We call these artificially generated samples augmented views of an original flow. To
create these augmented views, we devised a simple procedure which is illustrated in Figure 34.
To create similar pairs of flow packet sequences we create a new packet sequence by mixing up
the packets of an original flow sequence with those of a randomly chosen flow that has the same

roject funded by
Co-funded by d s e, L@ (@ UK Research Page 91 of 96
the European Union i fralrutry =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

length as the original one. From the original flow sample, we select a random patch of continuous
packets and replace them with the packets that are in the same positions from the randomly
chosen flow. The original sample and the augmented view are then forwarded to our LLM-IDS to
generate the representation for each sequence in the output of the CLS’ token. Finally, the CLS’
token is forwarded to a projection head which in our case is a simple 2-layer MLP, which is used
to train our model on the contrastive loss objective function, by attracting the views of the
original sample and the augmented view, while repelling the representation of the original flow
with all other flows in a mini-batch. After the pretraining procedure, the projection head is
discarded and replaced with the classification module as noted in Section 3.5.

6.8.3. Security policy enforcement

6.8.3.1. Problem Definition

In order to enforce appropriate security policies on potentially malicious traffic, it is essential to
accurately track and identify packet flows. This requires maintaining stateful information related
to the origin and characteristics of each flow. Specifically, flow identifiers such as the 5-tuple
(source IP, destination IP, source port, destination port, and protocol) must be extracted and
monitored in real time. Without such contextual information, it becomes challenging to reliably
associate traffic with specific entities or apply precise mitigation strategies, especially in
environments where threats may be dynamic, stealthy, or distributed.

6.8.3.2. Developed Solution
To mitigate security threats, the proposed solution introduces a modular, ML-assisted traffic
analysis pipeline integrated with an IDS. This pipeline leverages a traffic classifier, trained using
publicly available datasets such as CIC-IDS 2017 [21] and UNSW-NB15 [22], to identify and flag
malicious or anomalous flows in real time. The IDS acts as the enforcement component, which
cross-references the provided metadata with ongoing traffic patterns and applies predefined
security policies.

These policies may include:

I. Blocking incoming or outgoing traffic from the identified malicious IPs.
II. Rate limiting traffic to prevent potential DoS attacks.
lll. Generating alerts or logs for further forensic analysis.

The classifier is designed to be lightweight and extensible, enabling real-time inference. To
handle possible attacks when the classifier identifies a flow as malicious it proceeds to inform the
IDS that monitors network traffic, with the 5-tuple that is associated with the flow, so that the
IDS can act against the malicious IPs by implementing a security policy. This solution provides a
coordinated and context-aware approach to detecting and mitigating threats, offering better

Project unded by
Co-funded by 0 e e (8@ UK Research Page 92 of 96
the European Union s ——— =4 N and Innovation

N nT * gtk D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
A offloading.rl

performance, reduced false positives, and greater adaptability to emerging network attack
patterns.

Prcject funded by
Co-funded by d s pooo RO (@ UK Research Page 93 of 96
the European Union Pt E =4 B and Innovation

N nT * 5 D3.1

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

7.Conclusions

The deliverable D3.1 “Secure-by-design orchestration and management & Data plane
computation offloading” presented the first integrated view of NATWORK’s secure orchestration
and programmable data plane capabilities, outlining both software architecture and initial
implementation results. As 6G architectures grow increasingly complex, dynamic, and
performance-critical, NATWORK proposes a cohesive solution that bridges orchestration,
security, and intelligent automation across all layers of the network—from extreme edge to core.

Collectively, these technologies form a holistic, modular, and interoperable foundation for
secure, sustainable, and scalable 6G network orchestration and management. This work not only
addresses today’s limitations in network security, efficiency, and responsiveness but also sets the
stage for future extensions through federated intelligence and continuous optimization. The
services and solutions described above will continue to develop in the upcoming months of the
project, according to the provisional workplan, to reach their projected technology readiness
level. This will enable them to be validated through real-world use cases and testbeds in the next
phases of the NATWORK project, meeting their expected KPls, providing technical maturity,
integration feasibility and impact across diverse 6G verticals.

Project unded by
Co-funded by 0 pgeeeen oz 18 (@ UK Research Page 94 of 96
the European Union s ——— =4 N and Innovation

NRAT:.. ion

w / "R K Secure-by-design orchestration and management & Data plane computation
o\ A I*

offloading.rl

8. References

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Rohith Raj S, Rohith R, Minal Moharir, and Shobha G., “SCAPY - A powerful interactive
packet manipulation program.” In 2018 International Conference on Networking,
Embedded and Wireless Systems (ICNEWS), pages 1-5, 2018.

M. AL-Naday, V. Karagiannis, T. De Block and B. Volckaert, "Federated Scheduling of Fog-
Native Applications Over Multi-Domain Edge-to-Cloud Ecosystem," 2023 19th International
Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada, 2023,
pp. 1-7, doi: 10.23919/CNSM59352.2023.10327839.

S. Ejaz and M. Al-Naday, "FORK: A Kubernetes-Compatible Federated Orchestrator of Fog-
Native Applications Over Multi-Domain Edge-to-Cloud Ecosystems," 2024 27th Conference
on Innovation in Clouds, Internet and Networks (ICIN), Paris, France, 2024, pp. 57-64, doi:
10.1109/1CIN60470.2024.10494435.

E. Paolini, L. de Marinis, D. Scano and F. Paolucci, "In-Line Any-Depth Deep Neural Networks
Using P4 Switches," in IEEE Open Journal of the Communications Society, vol. 5, pp. 3556-
3567, 2024

S. Hinic, R. A. Bakar, A. Marotta and F. Paolucci, "Wire-speed DDoS Attack Mitigation using
Hardware Acceleration of Programmable DPUs," GLOBECOM 2024 - 2024 IEEE Global
Communications Conference, Cape Town, South Africa, 2024, pp. 1197-1202, doi:
10.1109/GLOBECOM52923.2024.10901169.

Free5GC, Open Source Core Network Implementation. Online: https://free5gc.org
(Accessed 2025/06/25)

5G; NR; Radio Resource Control (RRC); Protocol specification (3GPP TS 38.331 version
18.3.0 Release 18) Online:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specific
ationld=3197 (Accessed 2024/12/27).

LTE; 5G; Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Service Data
Adaptation Protocol (SDAP) specification (3GPP TS 37.324 version 18.0.0 Release 18)
Online:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specific
ationld=3282 (Accessed 2024/12/27).

5G; NR; Packet Data Convergence Protocol (PDCP) specification (3GPP TS 38.323 version
18.3.0 Release 18) Online:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specific
ationld=3196 (Accessed 2024/12/27).

5G; NR; Radio Link Control (RLC) protocol specification (3GPP TS 38.322 version 18.1.0
Release 18)Online:

roject funded by
Co-funded by d b o RO (4 UK Research Page 95 of 96
the European Union i fralrutry =4 B and Innovation

P

https://free5gc.org/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3282
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3282
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3196
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3196

N nT * 5 D3.1

[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

w D, R K Secure-by-design orchestration and management & Data plane computation
L offloading.rl

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specific
ationld=3195 (Accessed: 2024/12/27).5G; NR; Radio Link Control (RLC) protocol
specification (3GPP TS 38.322 version 18.1.0 Release 18)Online:
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specific
ationld=3195 (Accessed: 2024/12/27).

5G; NR; Medium Access Control (MAC) protocol specification 3GPP TS 38.321 V18.4.0
(2024, December).

O-RAN WG4: O-RAN Control, User and Synchronization Plane Specification. (2024,
October). Online: https://specifications.o-ran.org/download?id=738 (Accessed
2024/12/24).

O-RAN E2 General Aspects and Principles (E2GAP) 6.0, O-RAN.WG3.E2GAP-R004-v06.00
(2024, October).

O-RAN WG1: O-RAN Decoupled SMO Architecture 3.0. (2024, October). Online:
https://specifications.o-ran.org/download?id=716 (Accessed: 2024/12/23).

O-RAN A1 Interface: Application Protocol 4.03, O-RAN.WG2.A1AP-R004-v04.03 (Accessed:
2025/05/20).

O-RAN WG3: O-RAN Near-RT RIC APIs specification 2.0. (2024, June). Online:
https://specifications.o-ran.org/download?id=659. (Accessed: 2025/05/20).

Robert Schmidt, Mikel Irazabal, and Navid Nikaein (2021). FlexRIC: an SDK for next-
generation SD-RANSs. In Proceedings of the 17th International Conference on emerging

Networking EXperiments and Technologies (CONEXT '21). Association for Computing
Machinery, New York, NY, USA, pp. 411-425.

Ibrahim Obeidat, Nabhan Hamadneh, Mouhammd Al-kasassbeh, and Mohammad
Almseidin. Intensive Preprocessing of KDD Cup 99 for Network Intrusion Classification Using
Machine Learning Techniques, 2018.

H. Schmidt, Z. Rejiba, R. Eidenbenz, and K.-T. Forster, “Transparent fault tolerance or
stateful applications in Kubernetes with checkpoint/restore,” in 2023 42" international
Symposium on Reliable Distributed Systems (SRDS), pp. 129-139, 2023.

Goethals, T., De Turck, F. & Volckaert, B. Near real-time optimization of fog service
placement for responsive edge computing. J Cloud Comp 9, 34 (2020).
https://doi.org/10.1186/s13677-020-00180-z

I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani et al., “Toward generating a new intrusion

detection dataset and intrusion traffic characterization.” ICISSp, vol. 1, pp. 108-116, 2018.
N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set),” in 2015 military communications and
information systems conference (MilCIS). IEEE, 2015, pp. 1-6.

P

roject funded by
Co-funded by d b o pooo RO (@ UK Research Page 96 of 96
the European Union i fralrutry =4 B and Innovation

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3195
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3195
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3195
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3195
https://specifications.o-ran.org/download?id=738
https://doi.org/10.1186/s13677-020-00180-z

