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Executive summary 

The purpose of this deliverable is to present the design principles, architectural components, and 

initial implementation steps toward achieving secure-by-design orchestration and management 

of 6G network slices, as well as exploring advanced mechanisms for data plane computation 

offloading. As part of the NATWORK project’s broader goal to enable secure, sustainable, and 

resilient 6G services, this document focuses on developing decentralised and intelligent 

management services capable of responding to emerging security threats while addressing 

energy efficiency and trust in multi-domain environments. 

The report introduces decentralised orchestration components, services and algorithms capable 

of maintaining service continuity under evolving cybersecurity threats while optimising energy 

consumption across the edge-to-cloud continuum. It also outlines advanced approaches for 

offloading computation into the network data plane to reduce latency and enhance in-network 

intelligence. 

The deliverable further defines critical supporting frameworks such as decentralised Cyber Threat 

Intelligence (CTI) exchange, AI-based behavioural analysis, Moving Target Defence (MTD) 

mechanisms, and security-performance balancer services. These modules work together to 

strengthen the orchestration platform and dynamically adapt to operational and threat 

conditions. 

Early implementation strategies are described alongside validation approaches and 

methodologies to evaluate orchestration effectiveness, energy efficiency, and security 

performance in the context of 6G networks. The results of this work lay the foundation for 

upcoming large-scale integration and testing activities in NATWORK. 
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1. Introduction 

The rapid evolution of 6G networks demands innovative solutions to manage the complexity of 

massive device connectivity, data-intensive applications, and escalating security threats in edge-

to-cloud ecosystems. The deliverable "Secure-by-design orchestration and management & Data 

plane computation offloading" addresses these challenges by presenting a cohesive framework 

for decentralised orchestration, secure management, and optimised data plane computation 

offloading. The purpose of this deliverable is to provide a detailed account of the software design, 

implementation strategies, and validation outcomes for orchestration and offloading in 6G 

networks. The document is organised into several sections to guide the reader through 

NATWORK’s key contributions. Following the Executive Summary, this introductory chapter 

(Section 1) is divided into subsections: Section 1.1 outlines the purpose and structure of the 

document, Section 1.2 describes the intended audience, and Section 1.3 highlights how the work 

connects to broader research and development initiatives. 

The document is structured to provide a clear progression from design to implementation, as 

follows: The Software Design: Orchestrator(s)the design of orchestrators deployed at different 

layers of the 6G continuum, covering orchestration at the extreme edge, Cloud Radio Access 

Network (CRAN), and core edge-cloud continuum enabling 6G core. The Data Plane Computation 

Offloading Design section explores strategies to optimise latency and energy use, covering 

offloading classification, Wirespeed AI (WAI) and Decentralised Feature Extraction (DFE), in-

network machine learning models, and a Radio Access Network (RAN) security-performance 

balancer. The Software Design: Orchestration Support Systems section presents security 

enhancements, including a Moving Target Defence (MTD) framework, decentralised CTI sharing, 

AI-based behavioural analysis, and a security-performance balancing. The Implementation 

section describes the deployment of the design components, optimisation algorithms and 

testbed validations, ensuring secure and efficient 6G operations. Finally, the Conclusions section 

reflects on the project’s strategic orientation and outlines expectations for future milestones in 

scalable 6G deployments. 

 

1.1. Purpose and structure of the document 

The purpose of the "Secure-by-design orchestration and management & Data plane computation 

offloading" deliverable is to present a comprehensive overview of the NATWORK project’s 

advancements in developing secure, sustainable, and efficient 6G network solutions. It details 

the design, implementation, and validation of a decentralised orchestration framework alongside 



D3.1 
Secure-by-design orchestration and management & Data plane computation 

offloading.r1 
 

Page 15 of 96 
 

innovative data plane computation offloading strategies to address critical challenges in energy 

consumption, cybersecurity, and computational efficiency in edge-to-cloud 6G ecosystems. By 

integrating real-time Cyber Threat Intelligence (CTI), AI-driven analytics, and energy-efficient 

algorithms, this document demonstrates how the project enables service continuity and aligns 

with Net-Zero and EU Horizon objectives. 

Following the Introduction, which sets the stage for the document's purpose, audience, and its 

interconnections within the project’s framework, the structure continues as follows: 

• Section 2 – Software design: Orchestrators: Presents the project's orchestration service 

designs, detailing how secure, decentralized, and intent-compliant orchestration is 

achieved across extreme edge, CRAN, and core network domains. 

• Section 3 – Data Plane Computation Offloading Design: Describes the NATWORK 

strategies for computation offloading, including offloading classifications, Wirespeed AI 

(WAI), Decentralized Feature Extraction (DFE), and the deployment of in-network 

machine learning models. 

• Section 4 – Software Design: Orchestration Support Systems: Presents the NATWORK 

support services, such as the Moving Target Defense (MTD) framework, CTI selective 

sharing mechanisms, AI-based behavioral analysis, and the security-performance 

balancer, which enhance orchestration resilience and adaptability.  

• Section 5 – Implementation: Describes the implementation progress of the orchestration 

and offloading components. 

• Section 6 – Strategies and Optimisation Algorithms: Details the strategies and 

optimization methods used to enable adaptive orchestration, proactive threat mitigation, 

and energy-efficient service management. 

• Conclusions: Wraps up the document by reflecting on NATWORK’s strategic direction, 

summarizing achievements, and establishing expectations for the upcoming validation 

and integration milestones. 

 

1.2. Intended Audience 

The Deliverable D3.1 "Secure-by-design orchestration and management & Data plane 

computation offloading" is devised for public use in the context of project management and 

dissemination/ communication activities of the NATWORK consortium, comprising members, 

project partners, and affiliated stakeholders. This document mainly focuses on the secure-by-

design orchestration, management frameworks, and data plane computation offloading aspects 
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of the project, thereby serving as a referential tool throughout the project's lifespan. Also, the 

document highlights the strategic blueprint and collective vision of the project, ensuring that all 

collaborative efforts are harmonised and directed toward the fulfilment of the project's 

ambitions.  

 

1.3. Interrelations 

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and 

resources from academia, industry, and research sectors, focusing on user-centric service 

development, robust economic and business models, cutting-edge cybersecurity, seamless 

interoperability, and comprehensive on-demand services. The project integrates a collaboration 

of fifteen partners from ten EU member states and associated countries (UK and CH), ensuring a 

broad representation for addressing security requirements of emerging 6G Smart Networks and 

Services in Europe and beyond. 

NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically 

segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple 

activities across various WPs, the structure ensures clarity in responsibilities and optimizes 

communication amongst the consortium's partners, boards, and committees. The interrelation 

framework within NATWORK offers smooth operation and collaborative innovation across the 

consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e., 

Research Institutes, Universities, SMEs, and large industries) enabling scientific, technological, 

and security advancements in the realm of 6G. The D3.1 "Secure-by-design orchestration and 

management & Data Plane Computation Offloading" deliverable addresses all activities of the 

NATWORK project related to the design, development, and validation of secure, resilient, and 

energy-efficient orchestration frameworks, as well as advanced data plane offloading 

mechanisms. It interrelates closely with architectural work defined in WP2, security and 

orchestration advancements from WP3, AI-driven management solutions from WP4, and 

integration and validation efforts within WP6, ensuring consistency and alignment across the 

project's technical pillars. 
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2. Software Design: Orchestrator(s)    

2.1. Guided design and development by OSL patterns 

OpenSlice (OSL) is an open-source operations support system designed to provide support for 

VNF/NSD onboarding and management. The platform supports TM FORUM OpenAPIs related to 

Service Catalog Management, Ordering, Resource, and more. It enables NFV developers to 

onboard and manage VNF and network service artifacts, while allowing vertical customers to 

browse available service specifications.   

While OSL itself is not a direct component of the NATWORK project, it remains highly relevant. 

The experience and insights gained from OSL in terms of modular design, API integration, and 

automation have contributed to the development of NATWORK orchestrator services. 

Conversely, innovations and service orchestration strategies emerging from NATWORK can be 

applied back into the OSL ecosystem to enhance its capabilities. This mutual influence fosters 

stronger alignment between open-source frameworks and emerging innovations in 6G 

orchestration and management. 

 

 

Figure 1: OSL Reference Architecture 

OSL design principles pave the way for a modular architecture where each component has a 

well-defined role, promoting separation of concerns and facilitating easier maintenance and 

scalability (Figure 1). Key aspects include: 
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• Service Catalogs and Specifications: Services are defined using standardized templates, 

enabling consistent exposure and management within the Service Catalogs. This 

approach allows for both predefined network services and the flexibility to define custom 

configurations. 

• Standardized APIs: Utilizing TM Forum Open APIs (e.g., TMF 638 for Service Inventory, 

TMF 641 for Service Ordering) ensures seamless integration with external systems and 

promotes interoperability across different domains. 

• Automation and Workflow Management: The orchestration engine supports automated 

workflows, managing the provisioning, configuration, and lifecycle of network services. 

This automation is crucial for efficient service delivery and adherence to predefined 

policies and standards. 

OpenSlice focuses on aspects related to 6G slice lifecycle management by supporting the 

modelling, ordering, and orchestration of services that underpin network slices. For example, it 

can handle slice templates representing vertical services, manage slice instantiation requests, 

and interface with lower-layer domain orchestrators responsible for RAN, core or transport 

slicing. This enables coordination of network slice deployment and assures service-level 

requirements in an end-to-end manner. These capabilities are complementary to NATWORK 

orchestration services, which focus on distributing and peering services across clusters where the 

security requirements of assigned services and hosting clusters are met; thereby, providing 

secure-by-design end-to-end slice operation over multiple domains.  

The orchestrator design inherently supports closer interaction and interfacing between 

components: 

• End-to-End Service Orchestration: The orchestrator coordinates with various domain 

controllers (e.g., SDN, NFV, RAN) to provision and manage services across the entire 

network stack, from user devices to core networks and cloud services. 

• Lifecycle Management (Figure 2): Services undergo a comprehensive lifecycle, including 

provisioning, monitoring, scaling, and decommissioning. OSL provides the framework for 
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managing these stages effectively, ensuring services operate as intended throughout 

their lifespan. 

  

Figure 2: Service Lifecycle Workflow 

• Resource and Service Inventory Management: Maintaining accurate records of both 

resources and services is essential. OSL defines mechanisms for tracking and managing 

these inventories, enabling real-time insights and efficient resource utilization. 

By integrating these OSL design principles into the orchestrator design, we establish a robust 

foundation that promotes efficient service delivery, adaptability to evolving requirements, and 

seamless integration within the broader network ecosystem. 

2.2. Orchestration at the Extreme Edge (Feather) 

Workload orchestration at the (extreme) edge is achieved through two frameworks developed 

during the project: Feather, a Kubernetes-compatible agent, leverages multiple runtimes in 

addition to containers, allowing the ideal execution format for any single deployment (e.g. 

microVM, container). While microVM support was already present, WASM support and cross-

runtime pod networking, as well as Flocky support, have been specifically added for NATWORK. 

Flocky is a newly created higher-level framework designed as a decentralized alternative to 

Kubernetes, which leverages Feather as a deployment agent. Flocky is designed around the Open 

Application Model (OAM), and detects node capabilities (e.g. security options, attestation) which 

can be used by deployments as required.  

2.2.1. Functional components 

Figure 3 shows the relations of the various components in Feather (listing only the relevant 

ones, excluding implementation details): 
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• Pod Manager: handles pod-level logic, splitting each deployment into individual 

workloads to be handled by providers. This component provides minimal info to the 

PodNetwork manager for pod-level networking. 

• Providers: Each provider represents a single type of workload e.g. containers, unikernels. 

The API is standardized in an interface, and based on the Open Container Initiative Image 

Specification for extensibility. 

• Pod WAN/Network/Address Manager: components for a custom pod networking 

framework which allows workloads from different runtimes in the same pod to 

communicate as if they were all container-based. 

• eBPF traffic routing: traffic routing for the pod networking framework is based on various 

eBPF programs to enhance performance, handling traffic at the kernel level. Instances 

and configuration are managed from the PodNetwork manager. 

• Workload runtimes: while not directly a component of Feather, at least one of these is 

required on each Feather node for Feather to work correctly; e.g. containerd, KVM. 

 

Figure 3: Feather architecture, with main components in yellow (orchestration) and green (networking). 

At the orchestration level, Flocky (Figure 4Figure 4) uses three main services, each of which may 

be (partially) deployed on any node in a cluster depending on its role: 



D3.1 
Secure-by-design orchestration and management & Data plane computation 

offloading.r1 
 

Page 21 of 96 
 

• Discovery Service: responsible for finding other Flocky nodes in the cluster, within a 

preconfigured latency range. The discovery process is entirely decentralized and 

resembles gossip-based networks or algorithms. It operates entirely at the network level, 

gathering only the required properties for node identification and communication. Other 

services may subscribe to updates from the Discovery service. 

• Metadata Repository/service: The Repository service gathers additional metadata from 

discovered nodes based on an extension of the Open Application Model. Specifically, it 

collects hardware resource status, important node properties (e.g. dedicated hardware, 

attestation, security), and operational status e.g. applications and detected runtimes. 

Metadata collection is highly flexible and handled through Capability providers, while the 

actual metadata is stored in a local repository. 

• Swirly/Deployment services: workload deployment is split into two separate services as 

Swirly (orchestration) and Deployment. The Swirly service receives requests for 

application deployments (i.e. one or more workloads), splits them into multiple parts 

based on workload requirements and discovered node capabilities, and deploys each 

workload on the most suitable node. For orchestration-only nodes, the Deployment 

service may be ignored, and vice versa. 

 

Figure 4: Overview of Flocky services, their main components, and interaction between nodes 

2.2.2. Interfaces and Protocols 

Feather offers two interfaces for workload deployment: 
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• Virtual Kubelet API: A REST API capable of communicating with a Kubernetes cluster; 

requires authentication data to join the cluster. 

• Standalone API: A custom REST API which accepts Kubernetes deployment manifests to 

be deployed on the local node, primarily used with Flocky. 

All Flocky interfaces are REST APIs, and may be used to extract information or extend the 

framework: 

• Disco API: offers pull- or subscribe-based methods of receiving node discovery updates.  

• Repo API: Offers subscribe-based methods for remote node metadata updates and newly 

discovered workload types/definitions (i.e. new software pushed into the cluster). Also 

provides methods for matching workloads with specific implementations based on 

requirements, and for fetching remote node metadata. Finally, it supports subscription-

based methods to register Capability providers, allowing future components to provide 

more orchestration functionality. 

• Swirly API: Hosted on each node with an orchestrator role; exposes methods exclusively 

for deploying an OAM application. 

• Deployment API: Hosted on each worker node and contains only methods to deploy 

individual workloads. 

2.2.3. Data artefacts 

• Discovery data: In-memory node catalog used by the Discovery service, containing node 

names and (public) IP addresses. 

• Metadata repository: In-memory OAM metadata store, containing the latest hardware 

status, running workloads, available runtimes and node properties as reported by each 

discovered node. 

• Latency/Quality of Experience: Used by the Discovery and Swirly services to determine 

eligible nodes for discovery and deployment, respectively. The latter depends on the 

chosen optimization parameters and implementation, and relies on information from the 

Metadata repository. 

2.3. Orchestration at the CRAN 

This section presents the orchestration mechanisms and architectural design developed within 

the scope of the NATWORK project, for managing CRAN in an O-RAN-compliant environment. 

While the implementation is being validated on CERTH’s infrastructure using the 

OpenAirInterface (OAI) platform, the proposed solution is infrastructure-agnostic and can be 

deployed on any CRAN setup equipped with an OAI-compatible RF frontend. The framework 

introduces novel, AI-driven orchestration strategies that integrate network intrusion detection, 
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dynamic resource allocation, and user management. Specifically, the solution employs AI/ML 

models trained on real-world datasets to classify network traffic and dynamically adjust resource 

allocation and user management. It identifies malicious users and triggers a Radio Resource 

Control (RRC) connection release to mitigate their impact on the network while prioritizing 

legitimate users through end-to-end slicing. Below, we analyze the components of the 

framework. 

 

Figure 5: End-to-End Deployment of the AI-Driven Network Intrusion Detection 5G Network 

2.3.1. Functional components 

The CRAN orchestration framework consists of several key components as illustrated in Figure 5, 

which consists of the experimental setup. The components are responsible for managing 

resources, suppressing attacks and optimizing performance. These include: 

• Orchestrator: The central Docker/Kubernetes-based entity that coordinates real-time 

network intrusion detection and dynamic resource allocation based on AI/ML models. It 

deploys the necessary network functions (gNB, UPF, AMF, SMF, etc.) and facilitates their 

communication. Core network functions communicate through a service-based 

architecture (SBA) using Fully Qualified Domain Name (FQDN) resolution, while 

communication between the Access and Mobility Management Function (AMF) and gNB 

occurs via Docker bridges. 

• Anomaly Traffic Detector (ATD): This component resides near the User Plane Function 

(UPF) and continuously monitors GPRS Tunnelling Protocol (GTP) traffic, currently using 



D3.1 
Secure-by-design orchestration and management & Data plane computation 

offloading.r1 
 

Page 24 of 96 
 

Scapy [1] in this first prototype. After collecting and processing packet data, it classifies it 

with a Random Forest model and computes the anomaly ratio per User Equipment (UE). 

This ratio is sent to the xApp via a socket-based interface, functionally representing the 

A1 interface. 

• O-RAN RIC (Radio Intelligent Controller): Based on FlexRIC, it serves as the programmable 

control plane for the RAN. It supports Service Models (SM) such as Key Performance 

Monitoring (KPM) and Radio Resource Control (RC), and it manages interactions with 

multiple xApps. 

• xApp: Upon receiving anomaly ratio metrics from the ATD, the xApp performs two critical 

actions: 1) reallocates PRBs (physical resource blocks) to prioritize legitimate users 

(slicing), and 2) triggers an RRC Connection Release for malicious users, effectively 

disconnecting them from the network. These actions are enforced through the E2 

interface using the RC SM. 

These components operate in a tightly integrated loop: the ATD observes traffic and sends per-

UE anomaly ratios to the xApp; the xApp computes updated slicing or release decisions and 

applies them via the RIC to the RAN. This feedback loop enables both rapid intrusion response 

and optimal resource allocation. 

 

Figure 6: O-RAN Architecture 
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2.3.2. Interfaces and Protocols 

The framework consists of interfaces and protocols to ensure seamless interoperability between 

components. For clarity, Figure 6 illustrates the O-RAN Architecture. The interfaces include: 

• E2 Interface: Facilitates communication between the near-real-time RAN Intelligent 
Controller (RIC) and the E2 agent, which is gNodeB, allowing dynamic radio resource 
management. 

• O1 Interface: Supports the exchange of management and orchestration data between the 
non-real-time RIC and network components. In this context, it enables the management 
of user traffic within the UPF. We propose that the ATD be deployed on the non-RT RIC, 
parsing user data through the O1 interface, as core network functions may be deployed 
on a Service Management and Orchestration framework. 

• A1 Interface: Enables policy-based control from the non-real-time RIC to the near-real-
time RIC for AI/ML-driven optimization. Since there is currently no open-source 
implementation of non-real-time RIC, a socket-based interface was defined between the 
ATD and the xApp for real-time anomaly classification and policy enforcement 

• NG Interface: Connects the 5G Core (5GC) to the gNodeB for control and user-plane traffic 
handling. 

2.3.3. Data artefacts 

• Anomaly Packet Ratio: Describes the percentage of anomaly packets per UE within a total 
packet window size N. 

• Packet Flow Data: Traffic flows from UPFs, analyzed by the ATD to detect anomalies and 
enforce security policies. The traffic flows contain the following features: Protocol Type 
(e.g., TCP, SCTP, UDP), Service Type (e.g., HTTP, FTP, SSH), Connection Status Flag (e.g., SF 
for normal, REJ for rejected, RST for reset) and Source and Destination Byte Counts. 

• Resource Block Allocation Percentage: This is the security policy/decision metric, and it 
determines the resource block allocation per UE after the calculation of the anomaly ratio 
per UE. 

• KPM Data: Real-time performance metrics, including throughput, latency, and resource 

utilization, collected via Key Performance Indicator Service Model. 

2.4. Secure-by-Design Orchestration at the Core 

Orchestration at the core network level is pivotal for scalable, secure, and sustainable 

management of 6G slices. At the core domain of the 6G architecture, orchestration must handle 

high-scale, multi-tenant environments to ensure secure, efficient, and resilient management of 

slices and services. The first components have been designed prior to NATWORK in [2][2], and 

initial development of the FORK: A Kubernetes-Compatible Federated Orchestrator [3].  The 

secure-by-design orchestrator, namely secure FORK (sFORK), is under development in NATWORK 
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and will be deployed at the core, serves as a decentralised coordination hub, managing 

dependency graphs, optimising resource distribution, and ensuring end-to-end security across 

distributed domains. sFORK will deliver novel capabilities on top of its baseline, including: 

implementation of global components operated by slice providers, API communication to enable 

interaction between different clusters and their client (i.e. slice provider), new functional 

components to gather information regarding the security status and requirements of slice 

components as well as clusters, and accordingly make distribution as well as deployment 

decisions. sFork integrates with a peer-to-peer Cyber Threat Intelligence (CTI) sharing solution – 

developed within NATWORK as an Operation Support System (OSS) - to drive cluster hygiene 

scores, mitigating threats like Denial of Sustainability (DoSt) attacks while aligning with Net-Zero 

goals. The following subsections detail the secure-by-design orchestration and the CTI solution 

components, focusing on their roles, functionalities, interfaces, and data artefacts. 

The Secure-by-Design Orchestration framework ensures that deployment and management of 

network slices, cloud-native functions (CNFs), and associated services are conducted in a secure, 

dynamic, and sustainable manner across distributed clusters. This section will explain the 

functional components, interfaces and protocols, and data artefacts of the Secure-by-Design 

Orchestration framework. 

2.4.1. Functional components 

The secure-by-Design orchestrator architecture comprises the following key functional 

components as shown in Figure 7 Figure 7: Secure-by-Design Orchestration Architecture and 

components: 

• Global Agent: Acts as the central decision-maker, responsible for managing global 

dependency graphs, initiating and monitoring deployments, and negotiating with local 

orchestration agents. It evaluates cluster offerings based on a variety of factors such as 

hygiene, security, resource availability, and energy sustainability metrics. 

• CNF Manager: Manages the lifecycle of Cloud-Native Functions (CNFs), including their 

deployment, scaling, and monitoring. It ensures that the CNFs adhere to the defined 

requirements and interacts with local orchestrators to execute deployments. 

• Slice Manager: Handles the orchestration of network slices, dynamically tracks slice 

status, and ensures that resources are allocated efficiently to meet slice-specific 

requirements. It interfaces with the global agent and local orchestration agents to 

dynamically deploy slices based on demand and available resources and monitor them. 

• Local Orchestration Agents: Operate within each cluster to manage the actual 

deployment and lifecycle of CNFs. These agents are responsible for exposing cluster 



D3.1 
Secure-by-design orchestration and management & Data plane computation 

offloading.r1 
 

Page 27 of 96 
 

capabilities, such as resource availability, hygiene scores, and compliance data, to the 

global agent. They execute deployment decisions and provide real-time status updates 

back to the global agent. 

• Dependency Operator: Responsible for dynamically creating and maintaining global 

dependency graphs, mapping the relationships between microservices and CNFs across 

clusters. It guarantees that these dependencies are up-to-date and that the correct 

subgraphs are distributed across clusters based on resource availability and security 

criteria. 

• AI-Powered Scheduling: Utilizes machine learning models to enhance resource allocation 

and scheduling decisions within clusters. By analysing patterns obtained from cluster 

components and predicting future demands, it provides the local orchestration agents 

with intelligent insights to optimize the use of available resources. 

• Cluster Requirements: Defines and communicates the specific requirements for 

deploying CNFs in each cluster, ensuring that local orchestration agents are aware of the 

needs for resource allocation, security, and performance metrics. This confirms that 

deployment actions comply with cluster-specific constraints. 

• Monitoring: Continuously tracks the health, performance, and security status of CNFs and 

network slices. Monitoring data is provided to both local and global orchestration agents 

for insights, enabling timely adjustments to have optimal performance and compliance 

with security policies. Prometheus integration into the orchestrator follows a modular 

approach, either an API call wherever online interaction is required or by accessibility to 

a common data point for offline interactions. 
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Figure 7: Secure-by-Design Orchestration Architecture and components 

The components are presented in Figure 7, which demonstrates the secure-by-design 

orchestration framework and CTI solution. The interaction between these components enables 

secure 6G slice management. The FORK orchestrator’s Global Agent coordinates with the Slice 

Manager and CNF Manager to deploy CNFs, leveraging CTI insights provided by the CTI Agent, 

which collects and shares vulnerability data. Local Orchestration Agents execute deployments, 

the Dependency Operator maps CNF relationships, the FL Algorithm extracts and processes both 

CTI data and monitoring/telemetry metrics, and Monitoring feeds real-time telemetry to the local 

orchestration agents and FL algorithm. Together, the system enables dynamic, adaptive, and 

secure orchestration of 6G slices.  

2.4.2. Interfaces and Protocols 

The orchestration framework relies on well-defined interfaces for communication: 

• Slice Management API: It facilitates communication between the slice manager and other 

components, such as the orchestrator, CNF manager, and local cluster agents. It enables 

operations like workload migration, scaling, and reconfiguration. 

• Global Orchestrator API: A RESTful API enabling the global orchestrator to query resource 

availability, hygiene scores, and initiate deployments or scaling actions. 

• Cluster Local agent API: Local agents expose resource metrics, energy scores, and security 

statuses via a protected endpoint, enabling informed real-time decision-making. 

• Monitoring and Telemetry Interface: Connects to monitoring tools to gather 

performance, resource usage, and telemetry data from clusters and deployments. This 

interface leverages existing monitoring solutions. It reuses existing open-source 

Prometheus APIs, unlike the other NATWORK-specific interfaces.  

• Machine Learning Interface: Supports integration with the AI-based learning framework 

to incorporate predictive insights for slice management decisions 

2.4.3. Data artefacts 

The orchestration framework manages several key data artefacts critical for secure and efficient 

operation: 

• Global Dependency Graphs: Graphs describing the interrelations between the CNFs in a 

6G slice, including dependencies, scaling policies, and preferred cluster placements. 
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• Cluster Capability Descriptors: Structured documents (YAML/JSON) detailing available 

resources, security posture, energy sustainability scores, and supported CNF profiles for 

each cluster. 

• CNF Deployment Templates: Secure YAML templates and Helm charts specifying how 

CNFs should be deployed, including security settings, resource limits, affinity rules, and 

upgrade strategies. 

3. Data Plane Computation Offloading Design 

3.1. Offloading functions in the data plane 

As network security threats continue to evolve, traditional security mechanisms that rely on 

centralized processing in software-defined infrastructures or in dedicated management-based 

collectors and platforms are becoming insufficient. To address this challenge, the activities 

carried out in Task 3.2 focus on the architectural design and implementation of security services, 

microservices, and network functions as fully programmable data plane pipelines. By leveraging 

the capabilities of data plane programmability for different types and variants of backends and 

in different domains of the 6G architecture, the proposed approach aims to offload security 

functionalities directly into network devices, enabling high-performance, low-latency threat 

detection, efficient mitigation mechanisms and overall improved security. 

A key aspect of this approach is the development of Decentralized Feature Extraction (DFE) for 

AI-based security functions. This allows for the real-time analysis of network traffic at the device 

level, enabling advanced security features such as AI-driven traffic pattern prediction, anomaly 

detection, and federated learning-based threat mitigation. The goal is to reinforce security 

mechanisms within 6G networks by embedding intelligence directly into programmable network 

elements, preventing attacks from propagating beyond the data plane. 

To achieve real-time security enforcement, the activity also focuses on the design and 

implementation of Wirespeed AI (WAI) models. These AI-driven security mechanisms will be 

optimized for execution on programmable hardware, such as SmartNICs and FPGA-based 

accelerators, ensuring that security functions operate at full line rate without introducing latency 

overhead. By embedding AI models into network processing units, the system will be capable of 

dynamically identifying and mitigating security threats as they emerge. 

Additionally, the implementation of security pipelines leveraging hardware acceleration 

enhances the efficiency of network threat detection and response. Such pipelines are designed 

to utilize high-performance computing resources within network infrastructure, enabling inline 

security processing that adapts to diverse attack vectors in real time. 
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To facilitate AI-driven security enforcement, the task will also involve the development of data 

plane code generators for AI training and feature telemetry. This includes leveraging tools such 

as P4RROT to enable automated feature extraction and telemetry collection, supporting 

continuous learning and refinement of security models. By integrating AI-powered feature 

collection mechanisms directly into the data plane, the system will be able to adapt security 

policies dynamically based on evolving network conditions. 

The main objective of this initiative is to identify and block Advanced Persistent Threats (APTs) at 

the data plane level, before they reach cloud-based AI collectors or centralized security 

management systems. The key challenge lies in designing a programmable security framework 

that can dynamically adapt to network anomalies and heterogeneous attack events in real time. 

The proposed approach will ensure that security enforcement mechanisms remain proactive and 

responsive, leveraging AI and high-performance networking technologies to protect 6G networks 

from emerging cyber threats. By integrating AI-driven security functionalities directly within 

programmable data plane elements, this initiative will enable a highly efficient, autonomous, and 

adaptive security architecture, ensuring that threats are mitigated at the earliest possible stage, 

without impacting overall network performance. 

 

Figure 8: NATWORK Data Plane offloading solutions and flavours 

 

3.1.1. NATWORK Offloading flavours  

The chart shown in Figure 8 shows the different NATWORK solutions proposed in the context of 

Task 3.2 for the data plane offloading of network functions focused on cybersecurity. Each 

solution has been placed in the graph based on two different classifications: 1) the 6G 
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domain/segment where the solution is deployed and applied, and 2) the type of offloading 

implemented.  

About the 6G segments, most of the envisioned solutions are conceived to be run in the 

backhauling or within the Core Network functionalities. These solutions mainly rely on the 

wirespeed analysis of packets in the proximity of the UPF – outside or inside, depending on the 

considered programmability stack (i.e., whether GTP tunnelling is considered or not). One 

solution, conversely, is based on the processing of the radio signal in the RAN gNB segment, 

targeting anti-jamming detection. 

About the offloading flavour, the classification has been performed based on the degree of 

offloading, as follows:  

1. Control/management plane offloading API: such solutions enable communication 

between orchestrators/controllers to the involved data plane devices to discover, 

configure, activate and dynamically tune the behavior of offloaded network functions. 

Such APIs are designed and developed in strict collaboration with Task 3.1 dedicated to 

security orchestrators 

2. Hybrid offload: the offloaded function may reside partially in the data plane as pure 

pipeline or into dedicated control plane backends. As an example, the LLM-based 

intrusion detection system (IDS) is partially deployed in external GPUs, not directly 

involved in the data plane pipelines. In addition, the anti-jamming detection is based on 

specific xAPPs retrieved by the Near-real time RIC. 

3. Pure data plane offloading: Full offloading refers to the embedding of security network 

functions implemented as pipelines or chain of pipelines inside data plane backends. This 

includes either software-based containers running accelerated pipelines (e.g., eBPF, XDP, 

DPDK) or hardware-based backends such as SmartNIC, programmable switches, or FPGA. 

In this case, network functions requiring the adoption of AI are designed to run AI tasks 

inside the backend. If AI engines are not available (e.g., programmable switches do not 

onboard GPUs), a transformation of the pipeline is implemented to embed the logic of 

the selected AI algorithm. WAI and ML offloading solutions are envisioned and presented 

for different backends. 
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Figure 9: Offloading deployment and runtime configuration options 

3.1.2. Deployment and configuration interfaces 

A hybrid architecture (Figure 9) is adopted to support scalable, flexible, and dynamic deployment 

of security functions in 6G networks. It combines SDN-like control plane (CP) mechanisms with 

cloud-native management plane (MP) orchestration. This hybrid architecture ensures that 

security services can be efficiently deployed and orchestrated based on their specific operational 

requirements—whether they need to be tightly integrated within the network infrastructure or 

implemented as cloud-based applications. 

The CP mechanism (shown as a purple line) follows an SDN-like paradigm, where security 

functions are implemented as programmable pipelines that operate at the data plane level. In 

this model, a centralized P4-based controller is responsible for deploying the security pipeline 

and configuring flow rules dynamically. This approach is particularly well-suited for network-

centric backends, where real-time traffic enforcement, advanced packet processing, and network 

telemetry provide continuous security enforcement. Regarding its implementation, the control 

plane leverages P4 backends to dynamically manage security policies, optimize traffic routing, 

and enforce fine-grained access control mechanisms. A centralized SDN controller orchestrates 

updates and reconfigurations, ensuring adaptive threat response. 

The advantages of this mechanism are the following: 

1. Low-latency packet processing directly at the network level. 

2. Enhanced control over security rules via SDN programmability. 

3. Real-time traffic analysis and mitigation. 
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This approach is particularly relevant for network-oriented research groups and institutions, such 

as CNIT and ELTE, which focus on SDN-based network programmability and secure traffic 

management. 

The Management Plane (MP) – Cloud-Native Approach adopts a cloud-native methodology, 

where security functions and applications are deployed as containerized workloads running 

within environments such as Kubernetes pods or Docker containers. This approach is well-suited 

for function/app backends, where security services need to scale elastically, integrate with cloud-

based AI engines, and interact with software-driven network environments. Security services are 

designed as microservices, packaged into Kubernetes or Docker containers, and orchestrated 

dynamically based on demand. This allows seamless integration with cloud-native AI models, 

data processing pipelines, and federated security mechanisms. The advantages are the following: 

1. High scalability and elasticity for security functions. 

2. Integration with cloud AI-based anomaly detection and mitigation. 

3. Simplified deployment and management through Kubernetes orchestration. 

This model is best suited for function-oriented security applications developed by ISRD and 

CERTH, focusing on AI-enhanced security mechanisms, cloud-native microservices, and 

distributed threat intelligence frameworks. 

In the following sections, we provide an introduction and design details for the different 

NATWORK data plane offloading solutions. 

3.2. Wirespeed AI (WAI) and Decentralized Feature Extraction 

(DFE) 

Enabling ML-driven functions in network devices remains challenging due to the distributed and 

non-linear computations required by Deep Neural Networks (DNNs). Unlike decision trees or 

support vector machines, DNNs demand specialized processing capabilities. We outline four 

architectural approaches to integrating DNNs within network functions, as shown in Figure 10: 

• External DNN Processing: The switch/NIC matches and forwards selected packets to an 

external device (e.g., FPGA) for DNN inference. While feasible, this approach introduces 

delays and power inefficiencies due to inter-device communication. 

• Feature Extraction at the Switch/NIC: To optimize processing, the switch/NIC extracts ML-

relevant features in real time, reducing the computational load on an external device 

(e.g., GPU). However, packets still require buffering until inference is completed. 
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• Integrated GPU within the Switch/NIC: Emerging hardware integrates a dedicated GPU 

alongside programmable ASICs, enhancing processing speed and minimizing inter-device 

communication overhead. However, GPUs remain energy-intensive. 

• Fully Offloaded DNN Processing: The proposed approach offloads the entire ML pipeline 

to a programmable switch/NIC, leveraging match-action tables for in-network inference. 

This eliminates external dependencies, reduces buffering needs, and ensures low-latency 

processing at wire speed. Furthermore, integrating the ML model directly into network 

hardware improves energy efficiency compared to GPU-based setups. 

 

 

Figure 10: Embedding AI/ML inside programmable switches 

The Decentralized Feature Extraction (DFE) and the Wirespeed AI (WAI) have been designed to 

cover all these approaches. In particular, the DFE operates with all the approaches to extract the 

desired features from packet trains and flows received and processed by the network element. 

Depending on the selected approach, the DFE extracts the relevant features and, if needed, 

provides feature telemetry to external consumers (i.e., “a” and “b” in the figure) or to internal 

devices (i.e., “c”). Alternatively, it may act as the first pipeline stages of a fully data plane 

embedded solution including WAI (i.e., “d”). This is the most interesting and challenging case, 

described in Figure 11.  

Packets are received by ingress interfaces, parsed and DFE-analyzed. The DFE pipeline stage is in 

charge of extracting the selected features used internally to feed WAI. The figure also shows the 

possibility of exporting such extracted features as a telemetry stream to feed external collectors 

and consumers. This last design is implemented and evaluated as an additional component in 

Task 4.3.  

Stateful memory is exploited to store and update stateful features (i.e., features related to the 

history of a session/flow/connection or aggregated information averaged in time windows). 

Then, a specific pipeline stage is dedicated to onboard WAI. WAI implements the input-output 

logic of a ML model without necessarily reproducing the full ML structure. Depending on the 

design, the model may be hardcoded in the WAI or configured as a list of control-plane flow 
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entries. In the last case, this WAI can be dynamic, i.e., it can be configured at runtime to change 

the ML network function. Flow rules, policy rules, and enforcement rules are configurable.  

The WAI stage returns the output of the considered ML model, while the next WAI enforcer pipe 

maps the WAI output to a list of actions. As an example, if the classification output of the DDoS 

mitigator WAI stage is Boolean (i.e., “attack”, “non-attack”), the enforcer may implement a 

block/discard action on attack-tagged packets, or a forward port action towards a firewall 

analyser. 

This functional design may be applied to several backends: programmable switches, smart NICs, 

white boxes, software-based switches. In the following, we report the activities involved in 

implementing WAI and DFE on a programmable switch and on a NVIDIA Bluefield-2 DPU. 

 

Figure 11: DFE and WAI design submodules 

3.2.1.  DFE/WAI in P4 programmable switches 

Deploying Deep Neural Networks (DNNs) inside programmable data planes poses a significant 

challenge due to the limited arithmetic and memory capabilities of switching hardware. To 

overcome these limitations, we propose a method to distill a trained, integer-quantized DNN into 

a series of lookup tables (LUTs), enabling fast, predictable inference through P4 match-action 

logic. This approach allows us to embed complex decision logic directly into a switch pipeline, 

supporting low-latency ML-based packet processing without external acceleration. 

The core idea of our method is to reduce the inference phase of an integer-quantized DNN to a 

deterministic match-action operation. The procedure begins with a fully trained, quantized DNN. 

Given that input features and network weights are represented as integers, every possible input 

combination can be mapped to a corresponding DNN output. This exhaustive mapping enables 
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the DNN to be transformed into a static LUT: each entry matches a specific combination of inputs 

and stores the associated output. For an input vector composed of features encoded in n and m 

bits, the LUT requires 2n+m entries. While this process is lossless in terms of model accuracy, the 

exponential growth in memory with the number of input bits quickly becomes a bottleneck. To 

address this, we adopt a hierarchical cascaded design. 

Instead of implementing a monolithic LUT, we construct a network of 2-input DNNs, each distilled 

into smaller LUTs. Input features are grouped in pairs and passed through their respective 2-input 

models. The outputs are then recursively paired and processed by higher-level models, ultimately 

producing a final output. This layered design drastically reduces the memory footprint: for 

instance, a 4-input DNN (8-bit features, 1 output) would require a monolithic 4 GB LUT; with the 

cascaded method, three 64 KB LUTs suffice (192 KB total). 

Our implementation targets a P4_16 programmable switch (e.g., Barefoot Tofino). The solution 

is composed of two primary components: 

• P4 Parser and Stateful Stage: Extracts ML-relevant features from incoming packets (DFE). 

• P4 Pipeline: Executes the cascaded LUT inference using match-action tables (WAI). 

The parser is configured to support common networking headers and extract integer-encoded 

features for DNN inference. It includes stages for parsing Ethernet, IPv4, TCP/UDP, and optionally 

application-specific headers (e.g., GTP for mobile core networks). Each parsed field is stored in 

metadata registers accessible by the pipeline. 

Figure 12 illustrates the parser design. It begins with the parse_ethernet state, followed by 

parse_ipv4, and then TCP/UDP stages where transport-level features (e.g., TCP window size, UDP 

length) are extracted. These become the input features for the cascaded LUTs. 

 

Figure 12: P4 Parser and pipeline for a 6-feature input 
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The pipeline structure directly mirrors the cascaded LUT architecture. Consider a DNN with 6 

input features and 1 output, realized as a cascade of five 2-input distilled LUTs (Figure 13A). The 

P4 pipeline is accordingly composed of five tables (Figure 13B): 

• LUT_1, LUT_2, LUT_3: First layer tables, each taking two input features and producing 

intermediate metadata. 

• LUT_Inter: Second layer table, processing the outputs of the first layer. 

• LUT_Final: Last-stage table, producing the final classification and applying the action (e.g., 

forward, drop). 

 

Figure 13: LUT distilled DNN and its P4 pipeline 

Each table performs an exact match on either packet features or intermediate results stored in 

local_metadata. The action for each match is to set metadata fields using the set_meta or 

set_lut_meta actions. In the final stage, set_egress or drop actions are triggered based on the 

classification output. 

This modular design can easily be extended to support different ML models and additional 

features. By updating the parser, new fields can be extracted without altering the pipeline logic. 

Similarly, updating the LUTs enables rapid deployment of retrained models, making this approach 

suitable for dynamic environments such as intrusion detection or anomaly classification in IoT. 

While the cascaded LUT method enables fast and deterministic DNN inference, several trade-offs 

must be considered: 
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• Memory Scaling: Each additional input feature increases the LUT depth logarithmically 

but not exponentially. Still, total memory usage must be budgeted carefully. 

• Integer Encoding: Input features must be quantized and encoded as integers; floating-

point inputs are not supported. 

• Training Overhead: Cascading introduces training complexity, as multiple small models 

must be trained and distilled. However, inference latency remains constant—one table 

lookup per layer. 

Despite this, the system allows for real-time, inline ML inference in switching hardware, a major 

milestone for in-network computing. 

The algorithms of the offloaded P4 DNN in P4 switches are described in Section 6.5.1. All the 

details of the design, the implementation and the results are reported in a journal publication  

[4] with the NATWORK ack. 

3.2.2. DFE/WAI in NVIDIA Bluefield-2 DPU 

Distributed Denial-of-Service (DDoS) attacks remain a significant cybersecurity threat, disrupting 

legitimate access to services. Among various attack strategies, the TCP SYN flood attack is 

particularly effective, overwhelming target servers by exploiting the TCP handshake mechanism. 

Traditional mitigation techniques, such as rule-based filtering and machine learning-based 

approaches, often introduce high latency and fail to respond effectively to large-scale attacks. To 

address these challenges, this offloading activity proposes a novel DDoS mitigation system 

leveraging programmable Data Processing Units (DPUs) to offload attack detection and 

mitigation processes from the host system. By utilizing hardware acceleration and intelligent 

flow-based filtering, real-time attack prevention is achieved while maintaining high network 

performance. 

The proposed mitigation system is built on the architecture of programmable DPUs, specifically 

leveraging the DOCA Flow framework to define hardware-accelerated packet processing 

pipelines. The system is implemented on a SmartNIC equipped with a multi-core ARM CPU and 

programmable packet processing pipelines. The architecture consists of several processing stages 

that work together to detect and mitigate attacks before they impact the host system. 

At the core of the system is a structured sequence of processing pipelines that efficiently classify, 

filter, and handle network traffic. Packets enter the DPU through either the physical network port 

or the host interface and are first processed by the root pipe, which identifies and filters non-

IPv4 traffic. Once packets pass this initial stage, they are examined by a blacklist pipe that 

instantly drops traffic originating from previously identified malicious sources. The control pipe 
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plays a crucial role in dynamically classifying packets based on TCP flags and forwarding them for 

further analysis. 

The DPU architecture, shown in Figure 14, efficiently intercepts ingress traffic from both network 

and host, processes it, and forwards it to the egress port. Packets enter through either P0 

(network-facing Physical Port) or pf0hpf (host-facing Physical Function). These interfaces connect 

to hardware-offloaded Open-Virtual-Switch (OVS) bridges using Traffic Control (TC) or Data Plane 

Development Kit (DPDK) optimizations to prevent software switch bottlenecks. The bridges link 

P0 and pf0hpf to the DPU-internal Scalable Functions, SF1 and SF2, which are lightweight 

functions deployed on a parent PCIe function. They access the parent's capabilities and resources 

while maintaining dedicated queues (txq, rxq), allowing multiple services to run concurrently. 

 

Figure 14: DPU architecture 

Packets are then processed through programmable hardware pipes defined via DOCA Flow APIs. 

These pipes determine packet handling—whether to drop, modify, forward to the CPU, or steer 

directly to another SF, bypassing the CPU. The DDoS mitigation application runs on the DPU CPU 

and directly interfaces with SF1 and SF2. During environment initialization, hardware pipes are 

created to direct packets to the SF queues when processing is needed. A Receive Side Scaling 

(RSS) mechanism distributes traffic across queues, and the application retrieves packets using 

DPDK APIs in polling mode, parsing and forwarding them accordingly. Assigning one ARM core 

per tx-rx queue pair is recommended to avoid race conditions and performance issues. 

Not only DOCA Flow APIs do establish hardware pipes at setup but also dynamically manage 

them, adding or removing entries as needed. These pipes match standard packet fields, including 
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IP source and destination, L4 protocol, and L4 ports. Additionally, they can assign metadata to 

packets, accessible by subsequent pipes and ARM cores for further processing. 

For SYN flood detection, the system incorporates two specialized pipelines: the SYN pipe and the 

SYN miss pipe. The SYN pipe monitors incoming SYN packets and applies metadata-based tracking 

to detect suspicious patterns, leveraging hardware counters to track per-flow statistics. If an IP 

address shows an abnormal SYN-to-TCP ratio, it is flagged as a potential attacker and blacklisted. 

The SYN miss pipe is responsible for handling previously unseen IPs, ensuring that all new sources 

are added to the monitoring system for further evaluation. 

To ensure high performance and scalability, the architecture is designed to minimize CPU 

intervention. This is an essential design requirement that avoids the implementation of a low-

performance offloading service. Hardware pipes manage most packet classification and filtering 

tasks, while only a limited number of packets require host processing. The system dynamically 

updates flow records, blacklists, and counter thresholds to adapt to evolving attack patterns in 

real time. By leveraging the DPU’s built-in hardware acceleration, the mitigation system is 

capable of handling high-speed network traffic at line rate while maintaining low latency and high 

efficiency. The details of the offloaded DDoS mitigator in DPU are described in Section 6.5.2. All 

the details of the design, the implementation and the results are reported in [5].  

3.3. In-network ML models  

Machine learning (ML) in the programmable data plane, particularly with Intel Tofino, presents 

unique challenges due to the architectural constraints of programmable network switches. 

Tofino, which can be programmed in the P4 (Programming Protocol-independent Packet 

Processors) language, is designed for high-speed packet processing with stage-based pipelines 

but lacks the general-purpose computational capabilities required for complex ML tasks. Unlike 

CPUs and GPUs featuring dedicated tensor cores and floating-point processing units, Tofino’s 

architecture prioritizes efficiency in packet forwarding over extensive computation. As a result, 

executing ML directly on the switch is highly constrained by the available processing power. 

Another major challenge is the limited memory available within Tofino. ML models typically 

require significant storage for parameters, feature representations, and intermediate 

computations. However, Tofino primarily provides SRAM and TCAM memory, which are designed 

for fast packet classification rather than storing large ML models. Additionally, the switch lacks 

native support for floating-point arithmetic, making it difficult to implement models that rely on 

high-precision numerical operations.  

Feature extraction, which is a critical step in many ML applications, is also difficult to implement 

efficiently in the data plane. Traditional ML models process features derived from entire packet 

flows, whereas Tofino operates at the per-packet level, making it challenging to aggregate 
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information across multiple packets. Moreover, P4 lacks support for iterative computations, such 

as loops or complex mathematical operations, which are commonly used in preprocessing and 

normalization steps. Consequently, implementing ML-based anomaly detection, traffic 

classification, or congestion control within the switch requires significant workarounds to extract 

meaningful features from packets in real time. 

To overcome these challenges, we propose a ML model as illustrated in Figure 15Figure 15. The 

model uses a federated learning-based approach for deploying machine learning (ML) in the data 

plane across multiple network slices. Slices A and B are two distinct network slices, each with its 

own ML oracle, controller, and switches. The key components of this approach are: 

1. Oracles: These serve as ground truth sources for training the ML models and monitoring 

their accuracy. 

2. Controllers: Each network slice has a controller that receives a small percentage of flows 

from the switches. The controller updates the ML model if accuracy drops and offloads 

computational work from the switches. 

3. Federated Learning via a Coordinator: Instead of training ML models individually on each 

switch, the Coordinator aggregates models from both network slices through secure data 

aggregation, producing an improved global ML model. This updated model is then sent 

back to the controllers for deployment. 

4. Switches: Each switch is responsible for processing packets using a lightweight ML model 

piece. Only a small fraction of flows is sent to the controller to improve the model without 

overloading switch resources. 

  

Figure 15: Data plane ML model 
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While the architectural limitations pose significant challenges for direct ML deployment in the 

data plane, a federated learning approach with coordinated control-plane support offers a 

practical and scalable solution for enabling intelligent network functions. For implementation 

details and access to the codebase, refer to Section 5.6. 

3.4. RAN security-performance balancer  

The service aims to balance the performance of radio elements, and the security applied to the 

radio to ensure the constant availability of radio resources (Figure 16Figure 16). The balancer will 

consider, on the one hand, the risks of DDoS attacks that occur in the radio interface and, on the 

other hand, the performance requirements posed to the radio software/hardware due to 

increased traffic. The risk of the attack considered by the balancer comes from the anti-DDoS 

xApp which performs attack detection. The main task of the balancer is to understand when the 

increased performance required is due to an attack in progress or regular peak traffic. The 

balancer will inform the agents when they should apply deeper packet inspection or when the 

security controls can be reduced. The service is implemented as a near-Real-Time RAN Intelligent 

Controller (near-RT-RIC) xApp that is compliant with the O-RAN architecture. It communicates 

with the near-RT RIC via standard xApp API. 

 

Figure 16: Security-performance balancer architecture 
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In conclusion, the service acts as a crucial decision-making component within the O-RAN 

architecture, dynamically adjusting security measures and performance parameters based on 

real-time threat assessments and traffic demands. By integrating seamlessly with the near-RT RIC 

through standardized xApp APIs, it provides a robust and adaptive solution to maintain both 

operational efficiency and resilience against DDoS threats in modern radio networks. 

3.5. LLM-based IDS 

To extract useful features for intrusion detection from raw packet sequences, CERTH has 

developed an LLM-based IDS based on the BERT transformer encoder architecture. Our model 

has been pretrained on unlabeled data traffic using self-supervised training methods including 

contrastive learning.  Through our pretraining procedure our model learns to recognize similar 

and dissimilar flows enabling generalizable intrusion detection across diverse traffic domains. 

 

Figure 17: LLM-Based IDS Overview 

In Figure 17, we show an overview of the architecture and pipeline for the traffic data processing. 

In this pipeline we capture traffic that is separated into sequences of packets that are part of a 

flow identifiable by the 5-tuple of IP protocol, IP addresses, and ports. The features selected for 

the packet are various packet fields such as the packet length, TCP flags etc. We also extract 

additional metadata from each packet including a timestamp (relative to the beginning of the 

flow) as well as direction which is a custom binary flag which replaces the IP address and port 
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headers in the packet to hide information that irrelevant (and potentially leak label information) 

during training.  

To generate tokens from this sequence, we use a custom embedding layer that translates all raw 

packet header values into float vectors which are then concatenated together through a linear 

layer to form a packet token. In these tokens we also add information about the order of each 

token in the sequence using a positional embedding layer. The encoder stack of our LLM-based 

IDS takes a sequence of packet tokens as input. The encoder stack of our model is a 4-layer 

transformer encoder stack with 4 attention heads, and the embedding dimension is 256.  In 

addition to the packet tokens, we also append a special CLS’ token at the beginning of the 

sequence, which serves as the output of the model used for classification. Through our 

pretraining procedure the transformer encoder stack has been trained to output a 

representation of the flow packet sequence in the CLS’ token.   

To classify each flow, we use a classifier module (such as a simple MLP) which can either be 

trained along with rest of the model during a supervised fine-tuning step or can be trained on its 

own only to identify malicious flows from the output of our LLM (using a simple MLP or linear 

classifiers such as Logistic Regression, Random Forest etc.). Unsupervised anomaly detection is 

also possible using the output of the LLM to detect flows that significantly differ from regular 

traffic. 
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4. Software Design: Orchestration Support Systems 

4.1. Moving Target Defense (MTD) Framework  

The proposed MTD Framework is responsible for enhancing the security level of network 

functions across the edge-to-cloud spectrum. It enforces both pro-active and reactive actions, 

mainly entailing the re-instantiation and live migration of VNFs and CNFs, which could be either 

a live (i.e., stateful) migration or stateless migration depending on the current state of the 

environment and the target resources. These operations can also be performed in an inter-slice 

manner, allowing a VNF/CNF to be moved not only to different domains, e.g. from the core node 

to an edge node, but also to a different network slice whenever necessary. During such 

operations, advanced forensic analysis can be performed by duplicating the transferred 

checkpoint image for a static image security scan or for running an isolated deployment in a 

sandboxed environment for analysis. In addition, IP shuffling and port shuffling are also provided 

as MTD actions to further strengthen the security of NFV-based Telco Cloud networks. 

 

 

 

Figure 18: Architecture of the MTD framework 

The proposed framework consists of three main components, as shown in Figure 18: Architecture 

of the MTD framework: 
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• MTD Controller is the enforcer component that executes the MTD actions proposed by 

the MTD Strategy Optimizer, via direct interaction with the NFV MANO and the Network 

Slice Manager, supporting the orchestration of the resources on the infrastructure. 

• MTD Strategy Optimizer is mainly responsible for determining the details of the MTD 

actions such as the optimal frequency (for pro-active cases) or the necessary trigger (for 

reactive cases), along with the internal mechanisms to utilize (e.g. live migration). 

• MTD Explainer helps the service owners to gain insight on performed MTD actions, by 

generating a human-interpretable explanation of why such action was necessary to be 

conducted. 

This deliverable focuses on the first component, the MTD Controller, described in the following 

section, while its algorithms are further described in Section 6.4. 

4.1.1. MTD Controller 

The MTD Controller is responsible for applying the MTD actions determined by the MTD Strategy 

Optimizer.   

4.1.1.1. Technical description 

The MTD Controller, as part of its responsibilities, mainly interacts with other internal 

components such as the MTD Strategy Optimizer, and external B5G/6G components such as NFV 

MANO and the Network Slicing Manager. MTD Controller provides an API endpoint to be called 

by the MTD Strategy Optimizer whenever an action is determined to be necessary by the latter 

component. The MTD Controller handles the migration actions by communicating with external 

components via their APIs. 

4.1.1.2. Functionalities provided 

The following functionalities are provided by the MTD Controller: 

• Executing a live migration for a CNF 

• Executing a stateless migration for a VNF 

• Executing a stateless migration for a CNF 

• Performing IP shuffling operations for both VNF and CNF 

• Performing port shuffling operations for both VNF and CNF 

4.1.1.3. Dependencies 

The MTD Controller depends on the following components: 

• The MTD Strategy Optimizer, another component of the proposed MTD Framework. 
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• The NFV MANO: in our 5G testbed we use the open source implementation maintained 

by the makers of the NFV standard, the European Telecommunications Standards 

Institute (ETSI), namely ETSI OSM (Open Source MANO). 

• Kubernetes as NFVO: to orchestrate MTD actions on CNFs, Kubernetes is required as the 

MTD controller is interfaced to its API for operations such as CNF live migration. 

4.1.1.4. Algorithms 

By offloading the algorithmically complex and heavy parts to the MTD Strategy Optimizer 

component, the proposed framework allows MTD Controller to be a simpler component which 

is responsible for executing the policies decided by the former component. 

4.1.1.5. Technologies 

For the MTD Controller component, the following technologies are used: 

• Python as the programming language for the application logic. 

• Kubernetes API for CNF orchestration. 

• OSM API for VNF orchestration. 

4.1.1.6. Interfaces and Protocols 

The following interfaces are provided by the MTD Controller: 

Table 1: Interface to MTD Controller 

EnforceMTDAction 
Description Enforce the MTD action determined by the MTD Strategy Optimizer 

Input Details of the determined MTD action (possibly in JSON format). 

Output Acknowledgement (positive or negative) of the performed MTD action. 

 

4.2. Selective Cyber Threat Intelligence (CTI) solution 

The CTI solution is a middleware component developed to assess and advertise the security 

posture and operational health of clusters in multi-domain environments. Its primary purpose is 

to enable trust-informed orchestration by serving as a mechanism for gauging the 

trustworthiness of a cluster, based on real-time security telemetry and vulnerability insights. 

Rather than acting solely as a data exchange platform, the CTI solution functions as a dynamic 

trust assessment tool, continuously evaluating the hygiene of clusters and using that assessment 

to influence orchestration decisions—such as whether to place or migrate services to a given 

domain. 
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Designed as a decentralized and adaptive framework, the CTI system collects vulnerability 

reports from local scanners or integrated K8s resources, monitors changes in the threat 

landscape, and shares filtered and policy-compliant threat intelligence across domains. This 

information enables clusters to make informed, risk-aware decisions about resource placement, 

thereby reinforcing secure-by-design principles across the orchestration pipeline. The system 

operates via a publish-subscribe architecture, allowing for selective and policy-driven CTI 

dissemination between trusted peers. The CTI solution enhances the overall resilience and 

sustainability of the 6G network by aligning placement decisions with hygiene scores—derived 

from local vulnerability telemetry. The following sections outline the functional components, 

interfaces, and data artifacts that enable this capability. 

4.2.1. Functional components 

The CTI component in each cluster/domain assesses cluster hygiene scores and shares the CTI 

data. Reconfiguration actions are triggered by signals generated from the CTI component's 

analysis of real-time hygiene scores. These insights guide reconfiguration processes, enabling the 

continuity of dynamic policy enforcement. The CTI component communicates findings to the Kxs 

control plane, which can prevent deployments that fail hygiene score requirements or security 

checks. It alerts the orchestrator when cluster hygiene scores fall below acceptable thresholds. 

This interaction allows the CTI component to integrate with the Kxs control plane, supporting 

dynamic security assessments and policy enforcement. It facilitates real-time monitoring, 

workload adjustments, and security compliance while optimizing the overall performance and 

reliability of the network.  

The CTI service at the core includes the following key functional components as shown in Figure 

19: CTI Solution Architecture and components: 

• Vulnerability Operator: Interfaces with local vulnerability scanners and telemetry 

collectors (e.g., Prometheus, custom security tools) to translate raw data into structured 

CTI formats. 

• CTI Agent: Deployed in each cluster to collect, process, and publish local vulnerability data 

and threat information. Manages the subscription and dissemination of CTI data between 

clusters and orchestrators. Ensures that only authorized and policy-compliant data is 

exchanged. 

• CTI Policy Module: Defines and enforces sharing rules based on cluster-specific 

confidentiality, privacy, and trust policies. Controls adaptive filtering of CTI data. 

• CTI Analytics Module: Processes received threat intelligence and computes metrics to 

compute Cluster Hygiene Scores and feed orchestration logic. 
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Figure 19: CTI Solution Architecture and components 

     

The components are presented in Figure 19, which illustrates the key elements of the CTI 

solution. The interaction between these components enables CTI creation and sharing 

mechanisms effectively. The CTI agent is responsible for creating CTI data in STIX format and 

sharing it using TAXII (Trusted Automated Exchange of Intelligence Information) protocol. The CTI 

Agent uses the CTI Policy module to dynamically filter shared data based on the sensitivity of the 

threat intelligence, the trustworthiness of the requesting cluster, and pre-defined compliance 

rules. It enforces sensitivity and necessity algorithms to analyse, examine and prepare each 

vulnerability metadata before sharing it with the other party. This component also calculates the 

CNF and overall cluster hygiene scores. Cluster hygiene scores directly influence CNF placement 

and migration decisions, enabling proactive risk mitigation and maintaining slice continuity. It 

also ensures that the data are structured for sharing with Local orchestration agents previously 

introduced in Section 2.4.1.  

4.2.2. Interfaces and Protocols 

The CTI system communicates using standardised and interoperable protocols and APIs, 

including: 
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• TAXII: Protocol for sharing STIX-based intelligence between CTI Agents, Brokers, and 

Orchestrators. 

• CTI Hygiene Score Reporting interface: Receives cluster/domain hygiene scores and 

supports integration with dynamic security assessment tools. 

• RESTful APIs: Lightweight interfaces for control, subscription management, and metadata 

exchange between CTI components and orchestration modules. 

• STIX data model: for CTI vulnerability representation and sharing across clusters. 

4.2.3. Data artefacts 

The CTI solution manages and exchanges the following key data artefacts: 

• CTI datasets: Final CTI datasets to share with receiving parties. These will be contributed 

as open-source 

• Vulnerability Reports: Data collected from scanners summarizing the vulnerabilities 

present in active services. 

• Cluster Hygiene Scores: Quantitative representation of a cluster’s security posture, based 

on the number and severity of known vulnerabilities. 

Policy Metadata: Definitions of what type of CTI metadata can be shared, filtered, or withheld 

based on security and privacy considerations. 

4.2.4. CTI Cross-Domain selective Sharing 

In a multi-domain 6G environment, sharing CTI information across clusters must be carefully 

managed to ensure that only relevant information is exchanged without exposing sensitive or 

confidential data. To address this, each domain defines a local data model of both the necessity 

and sensitivity of the information contained in CTI artefacts. To guide selective sharing, we 

introduce a confusion matrix that classifies CTI data based on its necessity and sensitivity. This 

matrix, shown in Figure 20: Simple confusion matrix for decision making strategy, provides the 

basis for determining what should be fully shared, anonymized, or withheld, depending on the 

specific trust policies and compliance requirements of each domain. 
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Figure 20: Simple confusion matrix for decision making strategy 

Building upon this classification, we have developed a scoring mechanism that quantifies the 

decision process for each CTI data element. This mechanism evaluates the risk and utility of 

sharing certain fields and is being refined as part of a broader strategy currently under 

development for publication. It utilises two maps named as Sensitivity Map and Necessity Map 

strategies as shown in Figure 21: Sample Sensitivity and Necessity maps for decision making 

strategy. In addition, a policy model is implemented to formalize these decisions. It allows each 

domain to express sharing preferences in a structured format, which is enforced at runtime by 

the CTI Policy Manager. This ensures consistent and policy-compliant sharing behaviour across 

clusters. These efforts support a context-aware, privacy-preserving CTI exchange model, enabling 

NATWORK to achieve secure, adaptive orchestration and management of 6G slices across 

federated domains. 

                            

Figure 21: Sample Sensitivity and Necessity maps for decision making strategy 
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4.3. AI-based Behavioural Analysis service 

4.3.1. DFE/WAI  

4.3.1.1. Technical Description 

DFE (Distributed Feature Extraction) and WAI (Wirespeed AI) are software components designed 

to enable high-performance, intelligent, and adaptive security functions within distributed 

environments in the data plane with different backends. They leverage real-time telemetry and 

AI-driven threat analytics to detect and mitigate network-based attacks efficiently. DFE and WAI 

communicate with the Offloaded Function Agent (OFA) API to exchange function discovery, 

backend state information, requests for activation or deactivation of functions, and change 

mitigation rules. This interaction enables efficient flow policy configuration adaptive AI model 

updates based on threat intelligence, and dynamic enforcement of mitigation policies in response 

to changing attack patterns. Additionally, DFE and WAI expose a REST API that allows external 

systems to interact with and manage their functionalities through well-defined endpoints. 

4.3.1.2. Functionalities provided 

The current functionalities exposed by the OFA are the following:  

1. Discovery of active DPU instances and their capabilities 

2. Activation of accelerated VNF running in the data plane 

3. Deactivation of accelerated VNF in the data plane 

4.3.1.3. Dependencies 

DPU are configured and run with NVIDIA DOCA Flow SDK. However, at the OFA level, the only 

dependency needed for communication is a REST API Client able to send get, post and delete 

methods to the OFA. 

4.3.1.4. Algorithms 

In the current implementation, no algorithms are employed in the OFA. 

4.3.1.5. Interfaces and Protocols 

DFE and WAI communicate with the Offloaded Function Agent (OFA) API to exchange real-time 

telemetry data, attack detection alerts, and mitigation rules. The REST API provides an interface 

for external systems to interact with and manage DFE and WAI functionalities. The following 

endpoints facilitate seamless integration (see Table 2). 
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Table 2: OFA methods 

Endpoint Method Description 
/discovery GET Discovers active DPU instances and their capabilities. 

/startddosfunction POST Activates SYN flood mitigation detection. 

/stopddosfunction DELETE DELETE, Stops the running mitigation function. 

JSON message 
format 

 { 
  "running_containers": [ 
    "DPU_DFE3", 
    "DPU_DFE2", 
    "DPU_DFE1" 
  ] 
} 

 

{ 
  "message": "Container 'DPU_DFE1' started 

successfully!" 
} 

 

{ 
  "message": "Container 'DPU_DFE1' stopped 

successfully!" 
} 

 

4.3.2. Data plane ML  

The proposed data-plane offloaded machine learning (ML) model is a hybrid architecture 

combining in-network processing with control-plane intelligence to achieve scalable and 

efficient traffic classification. 

4.3.2.1. Technical Description 

The following components are used to construct our proposed data-plane offloaded ML model. 

An overview of the architecture and the interactions between the components can be seen in 

Figure 22: 

• Programmable switches, responsible for extracting features from packets, executing in-

network random forest inference, and forwarding a small fraction of the traffic to the 

control plane. 

• An IDS (Intrusion Detection System) running in the control plane. The IDS does not suffer 

from the memory and computational limitations of in-network solutions and can provide 
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more accurate classification results for a great number of traffic patterns, at the cost of 

increased latency and reduced throughput. 

• A controller, which supervises the in-network inference. By using the IDS to classify the 

traffic samples sent by the switches, the controller can detect when the accuracy of the 

in-network inference declines and can train and deploy an improved classification model 

as a response. 

 

Figure 22: Data plane ML components and interactions 

4.3.2.2. Functionalities Provided 

• Feature Extraction: Switches parse incoming packets and extract predefined features 

useful for traffic classification. 

• In-Network Inference: Lightweight random forest inference is performed on the switch to 

classify packets in real time. 

• Traffic Sampling: A small subset of traffic flows is forwarded to the control plane to enable 

model validation and updates. 

4.3.2.3. Dependencies 

• Programmable Data Plane: Requires switches supporting the P4 language (e.g., Intel 

Tofino) for feature extraction and inference logic. 
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• Control Plane Infrastructure: Includes a controller capable of model training, monitoring, 

and deployment. 

• IDS Software: Must be capable of receiving mirrored traffic and classifying it using 

complex ML models. 

4.3.2.4. Algorithms 

• In-Network Random Forest Inference: A decision-tree-based classifier tailored for P4 

and switch constraints (e.g., integer arithmetic, limited memory). 

• Accuracy Monitoring: Periodic evaluation of in-switch inference accuracy using IDS-

classified samples. 

• Model Retraining Algorithm: Triggers when inference accuracy falls below a threshold; 

uses collected data to update the ML model. 

4.3.2.5. Interfaces and Protocols 

Table 3: Interface to P4 Runtime 

P4 Runtime API 
Description Provides a control interface for programming and managing P4-based switch 

behavior, including feature extraction and ML inference logic. 

Input Protobuf or JSON-based configuration describing tables, actions, and match 
fields. 

Output Confirmation of configuration changes or error messages from the switch. 

 

4.3.3. Microservice behavioural analysis  

The NATWORK B5G architecture follows a microservice-based approach. Microservices 

architecture is a fundamental enabler of flexible and scalable 6G network services. Unlike 

monolithic applications, in microservice-based applications, network functions are decomposed 

into smaller, independent components that operate autonomously, allowing for scalable 

deployment, real-time adaptability, and efficient resource management, making them well-

suited for dynamic network environments. In the following section a module that monitors the 

performance of microservices in a continual manner to ensure the efficient operation of system 

is presented.  

4.3.3.1. Technical Description 

The Microservice behavioural analysis module performs continuous microservice performance 

monitoring to ensure efficient operation of the system. In NATWORK, this involves leveraging 

runtime metric collectors and packet sniffers to continuously track key performance indicators, 

such as CPU and memory usage, ingress/egress traffic, etc. The module analyses real-time 
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monitoring data, to determine whether microservices meet predefined performance 

requirements and if abnormal traffic flows occur in the network. If deviations are detected by an 

AI-based Intrusion Detection System (IDS), automated scaling decisions and elasticity actions are 

triggered to maintain optimal resource utilization and prevent service degradation. Figure 23 

shows the position of the microservice behavioural analysis module and its interconnection to 

other modules. In particular, this module comprises microservice profiling techniques and AI-

driven anomaly detection mechanisms for enhanced microservice profiling and threat detection. 

It interacts with the monitoring engine to collect real-time data on microservices resource usage 

and traffic metrics, the microservice orchestrator to trigger scaling decisions dynamically based 

on detected anomalies and the SDN controller to enforce mitigation actions.

 

Figure 23: Position of the microservice behavioural analysis module and interconnection to other modules 

4.3.3.2. Functionalities Provided 

By microservice profiling and behavioural analysis techniques, the following functionalities are 

supported: 

• Capture network traffic at runtime, utilizing packet-captured (Pcap) files 

• Tracking and observation of active flows 

• Real-time monitoring of computational and network resource usage  

• Flow traffic profiling  

• Real-time detection of outliers and identification of anomalies 

• Alarm triggering for irregular flows or resource usage 

• Automated, near-real time enforcement of flow control rules 
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4.3.3.3. Dependencies 

NATWORK’s microservice behavioral analysis modules are tightly integrated with and dependent 

on the real-time monitoring tools being developed in the context of Task 4.2 and documented in 

deliverable D4.1. Indicatively:  

• NATWORK relies upon Software-Defined Networking (SDN) for microservices 

programming and considers Kubernetes for microservice scheduling and orchestration. 

• NATWORK builds upon open-source solutions like free5GC [6] for the deployment of 5G 

networks in compliance with 5G standards. 

• For collecting traffic data to perform microservice profiling, packets sniffers, such as 

tcpdump are being utilized. 

4.3.3.4. Algorithms  

While microservices offer significant advantages, their distributed nature makes them inherently 

more vulnerable to threats such as denial-of-service (DoS) attacks, privilege escalation, and 

unauthorized access. Given these risks, security is another critical aspect, making behavioural 

analysis essential in microservice-based architectures to detect anomalies and provide protection 

against potential breaches.  

To effectively analyse microservice behaviour, it is necessary to monitor their performance both 

on a temporal and a periodic basis, aiming to identify any deviations from normal operation. On 

the one hand, tracking how network traffic patterns change over time allows for capturing 

anomalies that may evolve gradually or threats that are identifiable only by analysing a certain 

period of time. On the other hand, sudden changes in microservice behaviour, such as 

unexpected spikes in ingress traffic or unusual increases in resource consumption, may indicate 

malicious activity and have to be contained immediately.  

To address these challenges, microservice profiling techniques and AI-based intrusion detection 

mechanisms are employed to analyse system behaviour in real-time and identify anomalous 

behaviours. More specifically, two attack mitigation mechanisms are supported: online attack 

detection based on an exponential moving average (EMA) function and an AI-based intrusion 

system. The former allows for dynamic and responsive monitoring of data streams, quickly 

identifying outliers that could indicate abnormal conditions. The AI-powered system 

continuously analyses telemetry monitoring data to establish behavioural models of normal 

microservice operations and b) traffic and flow related data. A 1D Convolutional Neural Network 

(CNN) is utilized for handling the computational resource monitoring data:  By profiling CPU, 

memory, and network usage under typical conditions, the system can classify traffic as normal or 

irregular, identify deviations that indicate potential ongoing attacks or unexpected system 

behaviour that aims at exhausting the network resources.  
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Concerning traffic related data, the AI-powered system processes data input in the form of PCAP 

files. The AI training follows two distinct modalities: (i) by extracting network flows from each 

PCAP file and encoding them as integers, and (ii) by leveraging statistical and temporal features 

derived from each flow, such as packets per second, average packet count, and the time gaps 

between consecutive packets. For each modality, a dedicated AI model is employed: for the first, 

a Fully Connected Multilayer Perceptron (MLP) and a CNN for the second. These models are 

independently trained to learn patterns within the respective data types, aiming to identify 

network behavior indicative of different attack types. During inference, the system processes live 

PCAP-based network data and feeds them to the AI-based IDS analyzing it to detect and alert on 

any signs of malicious activity. The two employed mechanisms are particularly adept at 

recognizing abnormal resource consumption patterns, allowing early threat detection and 

prompt intervention.  

Upon detecting suspicious activity, NATWORK applies adaptive flow control and other automated 

mitigation measures to prevent potential threats and ensure network stability. An example of 

online UDP Flooding attack detection and mitigation is shown in Figure 24: UDP Flooding Attack 

Execution and Figure 25:  New flow control rule (left) and a graphical representation of flow rules 

(right).  

 

Figure 24: UDP Flooding Attack Execution 
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Figure 25:  New flow control rule (left) and a graphical representation of flow rules (right) 

 

4.3.3.1. Interfaces and Protocols 

The following interfaces are provided by the Microservice behavioural Analysis: 

Table 4: Interface to SDN Controller to enforce flow rules 

Interface to SDN Controller 
Description Interface to SDN Controller to enforce flow rules 

Input Json containing a new flow rule (src-ip and port, action enforced) 

Output Json containing the status of the enforcement (success/fail) 

 

Table 5: Interface to Microservice Orchestrator to report irregular resource usage and trigger scaling decisions 

Interface to Microservice Orchestrator 
Description Interface to Microservice Orchestrator to report irregular resource usage and 

trigger scaling decisions 

Input Json containing the resource alert (microservice name, resource usage fields, 
scaling action) 

Output Json containing the status of the enforcement (success/fail) 

 

Table 6: Interface to monitoring engine to retrieve real-time monitoring data 

Interface to monitoring engine 
Description Interface to monitoring engine to retrieve real-time monitoring data  

Input Network and resource utilization data 

Output - 
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4.4. Security-performance balancer service  

4.4.1. Technical description 

The Security-performance balancer service is implemented as a near-Real-Time RAN Intelligent 

Controller (near-RT RIC) xApp that is compliant with the O-RAN architecture. It communicates 

with the near-RT RIC via the standard xApp API. ISRD provides a proprietary implementation of 

the near-RT RIC called Liquid Near-RT RIC which can operate with ISRD proprietary Liquid RAN or 

other O-RAN compliant RANs. The architecture and interfaces of a Liquid Near-RT RIC are shown 

in Figure 26. The Near-RT RIC connects to the E2 nodes (O-DUs and O-CUs), xApps and the Non-

RT RIC over O-RAN compliant E2, xApp API and A1 interfaces, respectively. The SMO/non-RT RIC 

is not included in the ISRD solution but can be provided by 3rd party. 

 

Figure 26: ISRD Liquid Near-RT RIC interfaces. 

The Liquid Near-RT RIC general deployment architecture is depicted in Figure 27. Docker 

Compose is the default deployment method, but Docker Swarm or Kubernetes deployment is 

also possible. It includes the following Docker containers: 

• Management API: Oversees the deployment, configuration, and lifecycle management of 

xApps within the RIC 

• Enablement API: Provides APIs for xApps to interact with essential RIC services 

• A1 API: Manages A1 node connections and maintains the state of A1 interfaces. 

• SDL API: Provides an API for shared data access among RIC components and xApps 

• E2 Service API: Manages E2 node connections and maintains the state of E2 interfaces. 

• Grafana: Includes Grafana for Key Performance Measurement presentation. 

• Valkey Database: key-value data store 

• KPM xApp: It is a proprietary ISRD xApp providing standardized O-RAN KPMs. 
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Figure 27: ISRD Liquid Near-RT RIC general deployment architecture. 

4.4.2. Functionalities provided 

The service provides the following main functionalities: 

• Performance monitoring: receives infrastructure performance parameters such as CPU 

load from RAN L2/L3 nodes (i.e., O-DU/O-CU). 

• Security and performance optimization: optimizes the security xApp parameters, e.g., 

inter-arrival time Performance Measurement (PM) reporting frequency, based on the 

target performance. 

• Node control: sends a control message to xApp to modify its operation parameters. 

4.4.3. Dependencies 

Security-performance balancer service relies on the following components: 

• ISRD anti-DDoS xApp is a Python-based xApp that detects a UE attack on 5G RAN based 

on the RRC Signaling Message Inter-arrival Time PM and disconnects the attacking UEs. 

The Security-performance balancer controls this component to limit its load on the CPU 

while maintaining a high DDoS attack detection rate. 

• ISRD Liquid RAN: ISRD Liquid RAN consists of the following. O-RAN Central Unit (O-CU) is 

a logical node hosting RRC [7], SDAP [8] and PDCP [9] protocols. O-RAN Distributed Unit 

(O-DU) is a logical node hosting RLC [10]/MAC [11]/High-PHY [12] layers based on a lower-

layer functional split [12]. O-DU and O-CU provide performance measurements, e.g., CPU 

usage, to the Security-performance balancer xApp via the standard O-RAN E2 interface 

[13]. 

• ISRD Liquid near-RT-RIC: O-RAN near-real-time RAN Intelligent Controller (near-RT-RIC) 

is a logical function that enables near-real-time control and optimization of O-RAN 

elements and resources via fine-grained data collection and actions over E2 interface [13]. 

The A1 interface, connecting the SMO layer [14] with the near-RT-RIC, enables the SMO 
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to provide Policy Guidance, known as A1 Policies, to control non-real time functions of 

the near-RT-RIC. The Security-performance balancer service resides in the near RT-RIC as 

an xApp and communicates with the RIC platform via the standard API. 

• ISRD KPM xApp: a proprietary ISRD xApp providing standardized O-RAN KPMs. 

4.4.4. Algorithms 

The main task of the balancer is to understand when the increased performance required is due 

to an attack in progress or due to regular peak traffic. The system processes a dataset of n 

samples, each with m feature measurements, and classifies them into k predefined categories 

using a balancing mechanism. When a radio’s resource usage spikes, the system uses inference 

methods like Naïve Bayes to classify new, unseen samples. Unlike standard Bayesian classification 

that assumes all classes are equally represented, this approach adjusts classification thresholds 

to improve decision accuracy. The balancer also dynamically instructs agents to either intensify 

inspection (e.g., deep packet inspection) or relax security controls based on classification 

outcomes. 

4.4.5. Interfaces and protocols 

Table 7: Interface to O-RAN A1 

Standard O-RAN Interface A1 

Description A1 enables policy-driven guidance of near-RT-RIC applications/functions. Its 
Policy functions are Orchestration and Automation functions for non-real-time 
intelligent management of RAN functions. It supports JSON [15]. A1 Policy 
enables the automation of Security-performance balancer parameters 
configuration from the SMO layer. 

Input Configure service parameters using the O-RAN A1 policy in the JSON format. 
Create, update, query, and delete policy. Subscribe to policy status and 
feedback notifications. 

Output Policy status and feedback notifications. 

 
Table 8: Interface to O-RAN E2 

Standard O-RAN Interface E2 

Description The E2 interface is an open interface between two end points, i.e., the near-
RT RIC and the so-called E2 nodes, i.e., DUs and CUs in 5G. E2 allows the 
near-RT RIC to control procedures and functionalities of the E2 nodes [13]. 

Input Performance Measurement: CPU usage. 

Output Subscribe to Performance Measurement: CPU usage. 
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Table 9: Interface to RIC 

RIC APIs (Standard O-RAN Interface) 
Description The Near-RT RIC APIs are a collection of interfaces providing Near-RT RIC 

platform services to xApps [16]. 

Input Reporting parameters from anti-DDoS xApp. 

Output Change parameters of anti-DDoS xApp. 

4.5. Blockchain Based Trust Establishment 

Current 5G authentication mechanisms involve main core network functions such as AMF and 

AUSF for trust establishment, which, while secure, are not designed for repeated or federated 

end-to-end validation. This becomes problematic in scenarios where devices interact with 

multiple external service providers, as the centralized approach introduces delays and potential 

bottlenecks. These challenges are particularly evident in trust-sensitive IoT applications such as 

smart manufacturing and smart cities. To address this, the NATWORK system integrates 

blockchain technology with the 5G authentication process, enabling a decentralized and 

transparent trust establishment. This service allows devices to authenticate directly with service 

providers after initial authentication and registration in the core, reducing reliance on the 5G 

core and supporting scalable, trustless access control in distributed IoT environments. 

4.5.1. Technical Description 

The NATWORK system combines standard 5G components with blockchain elements to support 

blockchain-based trust establishment. It operates on the existing 5G core architecture, 

preserving its functions while introducing blockchain for enhanced trust. Key components include 

the User Equipment (UE), which registers with the 5G network and records a pseudonym on the 

blockchain, and the gNodeB node, which handles the connections. The AMF manages device 

registration and triggers the blockchain-based process, while the AUSF and UDM perform identity 

checks. External services in the Data Network (DN) interact with blockchain mechanisms for 

further authentication, ensuring secure and efficient service access. The service involves five key 

components and their based technologies working together to establish the trust between the 

UE and the service provider. 

• 5G Core: Utilizing Open5GS, it provides central network control, including 

functions such as AMF, AUSF, and UDM, which are responsible for authentication 

and mobility management for IoT devices. 

• UPF and DN: The User Plane Function (UPF) also uses Open5GS and connects to 

the Data Network (DN), facilitating data routing between IoT devices and service 

providers. 
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• UE: Emulating the User Equipment (UE) functionality, a Raspberry Pi with 

UERANSIM is used in the physical testbed to simulate an IoT node. 

• gNB: The gNB acts as the RAN node, utilizing UERANSIM to establish radio access 

and communication between the UE and 5G Core. 

• Blockchain: Implemented by Foundry, the blockchain serves as the distributed 

ledger that integrates smart contracts to handle various parts of the end-to-end 

trust establishment process. 

4.5.2. Dependencies 

This module represents the main component in S3-S-C2: End-to-End Security Management in 

NATWORK. It requires the following: 

• Blockchain: Part of the authorization database is replaced with an Ethereum-

compatible permissioned blockchain. This provides a decentralized, transparent, 

and integrity-safeguarded mechanism for device authentication management. It 

consists of a permissioned Ethereum Blockchain and a smart contract. 

• Bridge: It is a vital component which acts as a communication bridge between the 

5G core network and the blockchain. The main function of this bridge is to listen 

to the log of the AMF function inside the 5G core, derive the pseudonym 

associated with the registration, and to write authentication and access control 

status to the blockchain via Web3 interfaces. 

4.5.3. Functionalities Provided 

As a combination of T3.1 and T4.3 in NATWORK, this module provides the following 

functionalities: 

• Decentralized Authentication: It securely verifies both users and devices across 

IoT environments using end-to-end authentication. This reduces the chances of 

unauthorized access by ensuring each identity is trusted and verified. 

• Access Control Management: It applies strict security policies to manage the UEs 

that can access specific services in the system that are provided by various service 

providers. Only authenticated UEs are granted the right level of access to services. 

• Privacy-preserving Identity Management: It generates secure, privacy-preserving 

tokens that represent UE anonymized identities and their access policies. These 

tokens help maintain anonymity while enabling trusted interactions, minimizing 

the exposure of sensitive identity data. 
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4.5.4. Algorithms & Workflow 

The Service Provider which simulates external applications, leverages the blockchain for 

offloading identity verification. It handles authentication requests, verifies pseudonyms via a 

smart contract, and uses cryptographic signatures for challenge-response interactions. This 

module issues short-term tokens for low-latency access without the need for repeated 

authentication. By utilizing a permissioned blockchain to manage device credentials and access 

control policies, NATWORK ensures verifiable, immutable identity assertions with reduced 

reliance on centralized systems. Additionally, the Bridge facilitates seamless interaction between 

the core and the blockchain, ensuring compatibility while maintaining privacy through 

pseudonym-based identification. This approach aligns with zero-trust principles, improving 

security, decentralization, and latency in IoT services. 

4.5.5. Interfaces and Protocols 

The following interfaces are provided by this service. 

Table 10: Interface to Distributed Insertion 

DistributedInsertion 
Description Registers the UE by storing its pseudonym and associated access policy in the 

blockchain. 

Input Identifier, request payload (possibly in JSON format). 

Output Acknowledgement of success/fail regarding the performed insertion 
(registration). 

Table 11: Interface to Distributed Query 

DistributedQuery 
Description Authenticates a UE against a service provider using token-based verification. 

Input Identifier, request payload contains the token issued for the UE and service 
provider details. (possibly in JSON format). 

Output Acknowledgement of success/ unauthorized access attempt regarding the 
performed query (authentication). 

Table 12: Interface to Token Verification 

TokenVerification 
Description Verifies a service token issued to the UE and validates access using 

blockchain. 

Input Identifier, request payload contains the token to be verified and the 
associated UE details (possibly in JSON format). 

Output Acknowledgement of success/ Invalid token or UE pseudonym regarding the 
performed action (verification). 
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5. Implementation    

5.1. Orchestration at the Extreme Edge (Feather) 

In Feather, Providers are implemented for both Containerd (Containers) and OSv (unikernels on 

KVM). This distinction is made based on metadata fields compliant with the OCI specfication, 

which are ignored by non-Feather agents, specifically feather.backend (container, OSv) and 

feather.runtime (containerd, KVM). This allows runtimes to support multiple image formats, and 

for image formats to run on different runtimes if possible. 

Non-container images are created by including the workload VMdisk/image as a container layer, 

and setting the required metadata. This mechanism is not like the Docker approach of multi-

platform images, and requires different image names per runtime, which is solved at a higher 

level by Flocky. Some features may be limited depending on the chosen runtime, for example 

due to limitations with OSv/KVM, only local read-only mounts are supported for unikernels at 

this point. Kubernetes secrets and mounts are handled by boot scripts added to an OCI 

(unikernel) image through a custom tool “Flint”. 

Multi-runtime networking in Feather is supported in both Kubernetes clusters and in standalone 

mode, although in Kubernetes Feather defaults to “legacy” network operation, which assigns 

unique addresses to each container (instead of per pod) and assumes only a single container per 

pod. Additionally, both IPv4 and IPv6 addressing schemes are developed. 

For Flocky, Capability providers are implemented by Feather (hardware resources, running 

applications, runtime features) and Warrens or a suitable VPN (network security features). 

Remote attestation may also be registered as a separate Capability provider if present. Various 

intents (Traits) are defined to allow workloads to request deployment with (among others) Green 

energy, QoE limits, specific (secure) runtimes, attestation-capable nodes and specific resource 

limits.  

QoE calculation is open to implementation; currently implemented methods involve static 

calculation based on node metadata properties and soft node-to-workload matching. Planned 

ML-based calculation allows online learning of QoE properties from user preferences based on 

gathered metadata.  

Feather repository: 

- Main repository: https://github.com/togoetha/feather-multiruntimenetwork  

- Documentation: README.md in repository 

- License: Apache 2.0 (open source) 

https://github.com/togoetha/feather-multiruntimenetwork
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- Important setup scripts: in repository 

- Publication: in review, preprint 10.13140/RG.2.2.13816.35847 

Flocky repository: 

- Main repository: https://github.com/togoetha/flocky  

- Documentation: README.md in repository 

- License: Apache 2.0 (open source) 

- Important setup scripts: in repository 

- Publication: in review 

5.2. Orchestration at the CRAN  

The core network functions are based on OAI and deployed as microservices within Docker 

containers. These functions include fundamental 5G core components such as the AMF, 

Authentication Server Function (AUSF), Session Management Function (SMF), Unified Data 

Repository (UDR), Unified Data Management (UDM), and multiple User Plane Functions (UPFs), 

each configured with distinct Single Network Slice Selection Assistance Information (S-NSSAI) 

values. An S-NSSAI configuration consists of a Slice Service Type (SST) and a Slice Differentiator 

(SD), enabling an end-to-end slicing mechanism where a User Equipment (UE) can access multiple 

slices through the same gNB. Each slice binds to a specific service type, adhering to predefined 

Service Level Agreements (SLAs). 

Since UE traffic passes through GTP tunnels within the UPFs, these functions play a crucial role in 

detecting abnormal behaviours and analysing user demands. Recognizing the significance of 

traffic data, 3GPP has introduced the Network Data Analytics Function (NWDAF) to collect and 

analyze core network statistics. However, the O-RAN architecture does not yet integrate NWDAF. 

To address this gap, we propose positioning NWDAF within the non-RT RIC, allowing it to process 

core network data via the O1 interface when deployed within a Service Management and 

Orchestration framework. NWDAF could subsequently apply traffic policies and send analytical 

summaries to the RT RIC via the A1 interface, enabling real-time control through xApps that 

manage RAN resources dynamically.  

As an open-source implementation of NWDAF is currently unavailable, we developed a custom 

solution named the Anomaly Traffic Detector (ATD). This network function monitors UPF traffic 

and analyzes packets using Scapy [1], effectively serving as an NWDAF substitute. The ATD is 

integrated with the FlexRIC-based RT RIC, chosen for its minimal computational overhead and 

compliance with O-RAN specifications [17]. FlexRIC provides an E2 agent, near-RT RIC, and an 

xApp development framework. In our setup, OAI’s gNB acts as the E2-Agent, while the xApp we 

developed utilizes FlexRIC’s SDK to infer RAN functionalities from the E2-Agent, with a primary 

http://dx.doi.org/10.13140/RG.2.2.13816.35847
https://github.com/togoetha/flocky
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focus on the RAN Control (RC) SM. The ATD continuously monitors traffic at the UPF, classifying 

UEs based on their IP addresses and associated S-NSSAI values. It intercepts packets in real time, 

extracting the necessary features for classification. After collecting an initial set of N packets, the 

ATD preprocesses the data and feeds it into the trained Random Forest model. The model 

employs a sliding window mechanism, analyzing batches of 30 packets at a time to ensure near 

real-time classification while mitigating false positives. 

Beyond traffic analysis, the ATD incorporates a machine learning (ML) module to differentiate 

between benign and malicious traffic. The ML model was trained using the KDDCUP'99 dataset, 

a widely recognized benchmark for network intrusion detection systems [18]. This dataset 

comprises over 4 million training instances and approximately 311,029 test samples, containing 

a diverse range of features related to network connections, including packet header details and 

content-based attributes. 

For our classification model, we selected five critical features: 

• Protocol Type (e.g., TCP, SCTP, UDP) 

• Service Type (e.g., HTTP, FTP, SSH) 

• Connection Status Flag (e.g., SF for normal, REJ for rejected, RST for reset) 

• Source and Destination Byte Counts 

These features were chosen for their significance in distinguishing between normal and malicious 

traffic and their compatibility with real-time packet analysis via Scapy. Additionally, the dataset 

includes four types of attack labels: Probing Attack, Remote-to-Local Attack, Denial of Service 

(DoS) Attack, and User-to-Root Attack. The preprocessing pipeline included: 

• Label Conversion: Transforming multi-class labels into a binary classification—1 for 

attacks, 0 for normal traffic. 

• Flag Standardization: Converting dataset-specific flag values to formats recognized by 

Scapy. 

• Feature Selection: Extracting packet-level features relevant to real-time classification. 

• Encoding and Scaling: Applying OneHotEncoder for categorical variables and 

MinMaxScaler for numerical values to normalize data. 

Following preprocessing, we trained multiple ML models using TensorFlow, including Random 

Forest, One-Class SVM, Local Outlier Factor, K-Nearest Neighbors (KNN), and Autoencoders. 

Performance evaluations led us to select Random Forest due to its superior accuracy and efficient 

training/inference times. Upon detecting anomalies, the ATD reports the per-UE anomaly 

percentage to the xApp, which then executes RAN control countermeasures. It processes 
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incoming messages from ATD clients, extracting UE identifiers, S-NSSAI values, and the associated 

anomaly ratios. 

The detailed operation of our framework is illustrated in Figure 28. The ATD unit utilizing Scapy, 

continuously monitors UPF traffic and classifies clients based on their IP and S-NSSAI values. It 

manipulates each packet in real-time, extracting the necessary features that our ML model was 

trained on. After collecting the first N packets, the ATD preprocesses these features and feeds 

them into the Random Forest classifier. Then the Random Forest by applying a sliding window 

mechanism processes N=30 packets at a time, classifying the traffic as benign or malicious. The 

reason we selected 30 packets-window is to reduce infer/prediction times as close to real-time 

and avoid false outliers in the classification with a larger input range. Finally, the ATD sends the 

anomaly percentage per UE to the xApp for the RAN Control and countermeasures. 

 

 

Figure 28: Detailed Architecture of the AI-Driven Network Intrusion Detection System 

Code repository: 

− Main repository: https://github.com/teo-tsou/oai-anomaly-detection/ 

− Documentation: README.md in repository 

− License: Apache 2.0 (open source) 

− Publication: https://doi.org/10.1145/3636534.3697311 

 

5.3. Orchestration at the Core  

The SCOUT system is implemented as a container-based architecture composed of 4 main 

components: Vulnerability operator, CTI agent, CTI broker and a MongoDB database. It has a 

backend API and frontend UI. The backend is developed in Python using the Flask framework, 

and it handles the ingestion, processing, and transformation of vulnerability reports into STIX 2.1 

format, which are then published to a TAXII 2.1 server. The frontend is built with React and 

TypeScript, styled using the Mantine UI framework, and served using Vite.  

https://github.com/teo-tsou/oai-anomaly-detection/
https://github.com/teo-tsou/oai-anomaly-detection/blob/main/README.md
https://doi.org/10.1145/3636534.3697311
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FORK system is also implemented as a container-based architecture. It deploys its dependency 

operator and orchestration and connection components to ensure cluster connectivity and 

application dependency. Both components are containerized and deployed in Kubernetes for 

ease of deployment and scalability. Communication between the UI and API is handled via 

RESTful HTTP endpoints. The system can be deployed either manually using Github repo 

implementation steps in Kubernetes with kubectl or using automated scripts. 

SCOUT Code repository (CTI framework): 

− Main repository:  https://github.com/NetworkConvergenceLab/scout  

− Documentation: README.md in repository 

− License: Apache 2.0 

− Publication:  in submission 

sFORK Code repository: 

− Main repository:  https://github.com/NetworkConvergenceLab/fork  

− Documentation: README.md in repository 

− License: Apache 2.0 (open source) 

− Publication:  https://doi.org/10.1109/ICIN60470.2024.10494435  

 

5.4. WAI/DFE  

The software implementing WAI and DFE at the DPU and P4 switches is based on the backend 

features of the hardware platform. In the case of the DPU, a DOCA Flow VNF has been 

implemented in C++ to realize the DDoS mitigator offloading program, based on DOCA libraries 

version 2.9. In the case of P4, a baseline P4 program featuring a cascade of flow tables has been 

employed to test the P4 capabilities in terms of stateful memory and SRAM/TCAM requirements, 

utilizing the P4 Insight and the P4 Studio SDE 9.7 tools provided along with the APS Tofino switch 

available at the CNIT laboratories.  

Currently, the only available open-source software repository is the P4 DNN Distillation method 

implementation and assessment software: The software repositories (DOCA programs, P4 

programs) have not been released as open source. The plan is to release them on the next 

deliverables. 

Code repository: 

− Main repository: https://github.com/emiliopaolini/P4NN_journal 

− License: Apache 2.0 (open source) 

− Publication: https://doi.org/10.1109/OJCOMS.2024.3411071 

https://github.com/NetworkConvergenceLab/scout
https://github.com/NetworkConvergenceLab/scout/blob/main/README.md
https://github.com/NetworkConvergenceLab/fork
https://github.com/NetworkConvergenceLab/fork/blob/main/INSTALLATION.md
https://doi.org/10.1109/ICIN60470.2024.10494435
https://github.com/emiliopaolini/P4NN_journal
https://doi.org/10.1109/OJCOMS.2024.3411071
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5.5. Security Performance Balancer 

The Security Performance Balancer is implemented as an O-RAN compliant xApp and shipped 

with ISRD Liquid RAN and Liquid Near-RT RIC as a commercial product package. The product is 

provided to our customers on a per-license basis and as such there is no public repository 

available.  

5.6. In-network ML 

Our In-network ML repository is structured around a flexible development and simulation 

environment. It includes tools for compiling and deploying P4 programs for both eBPF and Intel 

Tofino targets. It supports launching a Mininet-based testbed, simulating traffic using PCAP files, 

and orchestrating various components such as controllers, oracles, and coordinators. Key 

components include a Docker setup for managing dependencies, Python scripts for model 

coordination and evaluation, and a shared library for synchronizing constants between P4 and 

Python. The design emphasizes modularity and experimentation, making it easy for prototyping 

secure and scalable in-network ML systems. 

− Main repository: https://github.com/P4ELTE/Natwork-DataPlaneML  

− Documentation: README.md in repository 

− License: Apache 2.0 (open source) 

− Publication: submitted to IEEE Globecom 2025, under review 

 

5.7. MTD Controller  

The MTD controller operates the parallel live migration (LiMi) of containers and microservices as 

an MTD operation to enhance the security of an NFV orchestration platform, specifically 

Kubernetes orchestration for CNFs, dynamically changing the attack surface of the cloud native 

systems both in the edge and core domains. Within MTD, container migration can serve as one 

of the approaches to achieving this dynamic shift by relocating workloads and disrupting 

potential attack vectors. Additionally, such migration can be useful for isolating an infected 

container by moving it to a secure cluster, allowing deeper analysis when an unknown attack 

occurs. This isolation helps contain the breach, preventing the infection of other applications, 

unauthorized access, and exfiltration of data. 

The proposed migration approach leverages Kubernetes orchestration, the CRIU library, a 

network file system (NFS), and a local container image registry. CRIU (Checkpoint/Restore In 

Userspace) is a Linux-based software tool capable of freezing a running process, container, or 

application and creating a checkpoint of its current state, saving it to the disk. This checkpoint 

https://github.com/P4ELTE/Natwork-DataPlaneML
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can then be transferred to and restored on any host, allowing the application to resume its work 

as when it was frozen on the source host. The Kubelet checkpoint API of the Kubernetes 

orchestrator provides the mechanism for creating these checkpoints. This API allows its users to 

initiate a checkpoint, which captures the complete state of a container, including its memory, 

process information, and file system data. The resulting checkpoint can later be used to restore 

the container to its exact previous state. Triggering the kubelet API initiates checkpoint creation 

through the container runtime in use. The runtime forwards this request to its lower-level 

components, which, upon receipt, utilize CRIU to carry out the checkpointing process [19]. During 

this process, CRIU performs various steps as shown in Figure 29. 

 

Figure 29: CRIU steps 

During the checkpoint process CRIU injects a “parasite code” into the container to collect process 

IDs (PID), task resources, file descriptors, including open files and sockets, registers, and other 

essential task parameters. The checkpoint can then be found as an archive file on the source 

node. CRIU then removes the parasite code and detaches itself from the container’s process. 

In contrast to checkpointing, restoring a container is currently not possible via the Kubelet API. 

Thus, the MTD controller uses the algorithm and phases defined in Section 6.4. to restore the 

container on the destination cluster while keeping the high-level Kubernetes orchestration aware 

of the changes. 

Benchmarking CNFs have been developed to test the MTD controller’s performance using various 

containers, each specialized to handle resource-intensive tasks. They are designed to evaluate 

migration performance under different service requirements, as detailed below: 

1. CPU: The CPU benchmarking application is a program that simulates state transitions via 

a series of states. In each of its four states, a CPU-intensive computation is performed, 

beginning in State 1 (S1). By calculating 2 to the power of 256 10 million times in a loop, 

a sustained high CPU load is created for an extended period. Once the task is completed 

in a given state, the program transitions to the next state, repeating the process. When 
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the task in the last state is finished, it transitions to S1 again, thus continuously repeating 

the workload while tracking the number of completed cycles and current state. 

2. Memory: To perform migrations of applications that are running memory-intensive tasks, 

a local redis in-memory cache is deployed. For comparison, three instances with three 

different amounts of entries are migrated. 10'000, 100'000 and 1'000'000 key-value pairs 

are written into the database. 

3. Disk: To explore the impact of disk usage on the proposed migration, a MongoDB instance 

is used, storing its data in BSON documents, a binary representation of JSON files. 

Code Repository 

− Main repository:  https://github.com/RinchenKolo/ContMigration  

− Documentation: README.md in repository  

− License: Apache 2.0 (open source)  

− Publication: in review  

5.8. Blockchain Based Trust Establishment 

The implementation provides a general guide in setting up and validating a 5G testbed 

environment designed to demonstrate blockchain based trust establishment between IoT 

devices and service providers. The setup leverages components such as Open5GS (5G 

core), HTTPS Server (service provider network), UERANSIM (radio simulation), Raspberry 

Pi (IoT UE), and Foundry (blockchain): 

Testbed Initialization 

Install and configure Open5GS, UERANSIM, and blockchain tools. 

Set up UE, and gNB and 5G Core interaction. 

Software Stack Setup 

Deploy core NFs: AMF, AUSF, UDM, SMF, UPF. 

Configure blockchain (via Foundry) and smart contract for trust attestation. 

UE Registration Flow 

UE initiates first-time network registration through gNB. 

AMF/AUSF authenticate and record pseudonym/trust info to blockchain. 

Blockchain Verification 

IoT service provider queries blockchain using pseudonym. 

On successful attestation, mutual authentication is completed. 

      Validation Criteria 

Establishment of trust without further core network involvement. 

Successful cryptographic verification and secure channel setup. 

      Code Repository 

https://github.com/RinchenKolo/ContMigration
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− Main repository: https://github.com/elte-cybersec/E2E-5G-Trust   

− Documentation: README.md in repository 

− License: Apache 2.0 (open source) 

− Publication: under review 

https://github.com/elte-cybersec/E2E-5G-Trust
https://github.com/elte-cybersec/E2E-5G-Trust
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6. Strategies and Optimisation Algorithms 

6.1. Orchestration at the Extreme Edge (Feather) 

6.1.1.1. Strategies adopted 

Orchestration in the edge is divided into two main aspects: flexibility, to support non-container 

workloads and highly heterogeneous device topologies, and decentralization, which requires a 

level of node and workload modeling not supported by common APIs such as Kubernetes. The 

solution is presented in terms of Feather, which uses eBPF and backend detection to support 

multi-runtime pods (networking) and to advertise its capabilities, and Flocky, which uses Open 

Application Model (OAM) to enable decentralized metadata discovery and orchestration. 

6.1.1.2. Problem Definition  

Two critical aspects must be solved to enable effective orchestration in the edge: 

− Device specifications and user/service requirements are far more varied than in the cloud. 

This presents an opportunity to support various types of workloads other than containers 

depending on device capabilities but also requires suitable capability modelling for 

optimal orchestration. 

− A decentralized solution is more suitable for edge orchestration; therefore, a suitable 

framework should be constructed that supersedes existing solutions such as the 

Kubernetes API, allowing devices and workloads to be modeled at a high level for 

decentralized metadata discovery and exchange. 

6.1.1.3. Developed Solution 

Feather leverages Virtual Kubelets, combined with eBPF traffic routing and extensible backend 

(i.e. containerd, OSv) implementations to support various types of workloads in a single 

orchestrator agent for Kubernetes/OAM deployments. 

Flocky extends OAM and the Swirly [20] discovery mechanism to enable decentralized node 

metadata discovery, including supported runtimes and available applications. With a pluggable 

orchestration system allowing for different preferences and algorithms per node. The 

deployment algorithm for an application is summarized as follows: 

• Split into components (individual workloads) 

• For each component 
o Find suitable implementations in Metadata repository based on Traits (intents) 
o (Optionally) rank implementations by preference 
o For each implementation 
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▪ Check if a suitable one (same or higher Traits) is already deployed on a 
remote node 

• Use if found 
▪ Find acceptable nodes using Metadata repository 
▪ Rank acceptable nodes by Quality of Experience (QoE) according to 

chosen definition/implementation (QoE evaluator) 
▪ In order of ascending QoE, attempt deployment of the component 

implementation on each node until successful 

The “Find acceptable nodes” and “Rank by QoE” stages can be extended by implementing a “QoE 

evaluator” interface and configuring a specific Flocky instance to use that implementation. 

6.2. Orchestration at the CRAN 

6.2.1. Strategies adopted 

To effectively manage the CRAN, we leverage containerized network functions and intelligent 
control mechanisms, ensuring optimal resource allocation and user management. The strategies 
involve utilizing OAI core and RAN network components, deploying them as microservices using 
Docker. Also, by using FlexRIC for the Real-Time RIC and integrating AI-based anomaly detection 
xApp to enhance network security and performance. 

6.2.1.1. Problem Definition 

Sophisticated attacks compromise data integrity, user privacy, and overall network functionality. 
In our experimental setup we demonstrate that a DoS attack can disrupt key 5G core components 
such as the UPF, leading to failures within the RAN causing permanent bufferfloats. Beyond 
network disruptions, these security threats result in inefficient resource utilization, higher 
operational costs, and increased recovery efforts. 

6.2.1.2. Developed Solution 

To counter these challenges, we propose a solution that integrates real-time anomaly detection, 
adaptive resource management, and user traffic monitoring. The xApp leverages AI/ML models 
trained on real-world datasets to classify network traffic and dynamically allocate resources and 
suppress malicious users. It detects malicious behaviour, triggering RRC connection terminations 
to protect the network while prioritizing legitimate users via end-to-end slicing. This 
implementation, built within the OAI platform, utilizes standardized O-RAN interfaces and Service 
Models from FlexRIC. The functionality of the xApp is described below: 

Algorithm: xApp Functionality 

1. Initialization: 
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 Establish a connection with RT-RIC and subscribe to the RC SM. 

 Accept incoming ATD client connections. 

 Initialize data structures for tracking UE activity. 
2. Monitoring and Data Processing: 

 Receive and parse ATD messages. 

 Extract UE ID, S-NSSAI values, and anomaly ratios. 

 Continuously update UE-related records. 
3. Dynamic Resource Allocation: 

 Calculate PRB assignments based on anomaly scores. 

 Apply scaling mechanisms to maintain fair resource distribution. 
4. Threat Mitigation and Countermeasures: 

 Identify and classify UEs exhibiting malicious behavior. 

 Reduce PRB allocation for flagged users and redistribute resources. 

 If a UE reaches 100% anomaly ratio, trigger RRC connection release. 

6.3. Orchestration at the Core  

6.3.1. CTI Cross-Domain selective Sharing 

Sharing CTI data requires caution, as it must include relevant threat details without exposing 

sensitive or confidential information. If not properly filtered, such data could reveal system-

sensitive information and lead to security risks. The Selective CTI sharing mechanism applies CTI 

policy to examine each vulnerability data obtained through the security scanner. These policies 

determine which metadata can be included in the CTI package. It filters the vulnerability 

metadata using data anonymisation and exclusion. After this process, the CTI agent generates 

the CTI data with the selected vulnerability metadata and complies with the STIX data 

serialisation standard.  The CTI component in each cluster/domain assesses cluster hygiene 

scores and shares the CTI data. Reconfiguration actions are triggered by signals generated from 

the CTI component's analysis of real-time hygiene score. These insights guide reconfiguration 

processes, enabling the continuity of dynamic policy enforcement. The CTI component 

communicates findings to the orchestration components in local clusters and control planes, 

which can prevent deployments that fail hygiene score requirements or security checks. It alerts 

the orchestrator when cluster hygiene scores fall below acceptable thresholds. It facilitates real-

time monitoring, workload adjustments, and security compliance while optimising the overall 

performance and reliability of the network.   

6.3.1.1. Problem Definition: Sensitivity vs. Necessity 

In CTI sharing, organisations face a trade-off between protecting sensitive information and 

ensuring the utility of shared data. CTI data often includes sensitive information that makes 

organisations hesitate to share and collaborate. If exposed, highly sensitive indicators may pose 
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privacy, reputational, or security risks. However, omitting such details can significantly reduce 

the usefulness and actionability of the threat intelligence. The challenge lies in determining which 

information is essential (necessary) for the receiving party, while minimising the exposure of 

sensitive data. This tension between sensitivity and necessity forms a core problem in secure and 

effective CTI exchange. 

6.3.1.2. Developed Solution 

To address this challenge, we designed a dynamic and adaptive mapping framework that assigns 

a sensitivity score and a necessity score to each data field within the shared intelligence. Each 

vulnerability is assessed individually; vulnerability metadata is utilised to assign relative scores. 

This dual-scoring system enables granular control over what is shared, allowing CTI Agents to 

prioritise data that is critical for defence while withholding or anonymising overly sensitive fields. 

These scores are used in the decision-making algorithm to determine the appropriate sharing 

policy for each piece of information. This ensures a balanced, policy-driven exchange of CTI that 

supports collaboration without compromising security or privacy.  

6.3.2. Workload Prediction for Scheduling 

6.3.2.1. Problem Definition: workload prediction including anomalous 

In large-scale distributed networks, efficient workload scheduling becomes increasingly complex. 

Traditional schedulers might often react to immediate resource usage without anticipating 

upcoming demands. This can lead to poor performance, especially when there are sudden spikes 

in traffic or abnormal activity. Without the ability to predict workloads, the system may either 

over-allocate resources (wasting energy) or under-allocate (SLA loss). The key challenge is to 

forecast future load and adjust scheduling decisions in advance while also handling unpredictable 

behaviour like Denial of Sustainability (DoST) attacks or traffic bursts. 

6.3.2.2. Developed Solution: AI prediction  

To address this challenge, we designed a lightweight, AI-driven workload prediction component 

as a microservice that can be integrated into the orchestration and scheduling layer. This 

component exposes a standardized API, allowing the orchestrator to query predictions on key 

workload indicators—such as node-level usage trends or traffic surges—based on historical 

telemetry or CTI events. It receives telemetry data inputs (e.g., CPU and memory metrics) and 

returns short-term forecasts for resource demand across nodes. These forecasts assist the 

orchestrator in taking preemptive actions— scaling workloads or adjusting placements to energy-

efficient zones—before overload or performance degradation occurs. The prediction service also 

supports scenarios involving anomalous patterns, helping distinguish between typical usage 

fluctuations and potential DoSt-like anomalies. This ensures better performance, lower energy 

usage, and improved resilience in dynamic network environments. 
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6.4. Moving Target Defence (MTD) 

The proposed Moving Target Defence (MTD) framework introduces two algorithms designed to 

optimize stateful live migration (LiMi) performance for CNFs: 

I. Container Restore Algorithm for Kubernetes-aware Orchestration: This ensures seamless 

state restoration during migration while maintaining Kubernetes cluster constraints. 

II. Parallel LiMi Scheduling Using ML-based Time Prediction: this leverages ML to predict and 

optimize migration timing across multiple concurrent instances. 

Each of the following subsections outlines the problem being addressed and the corresponding 

algorithm developed to solve it. 

6.4.1. Container Restore Algorithm for Kubernetes-aware Orchestration 

As previously described in Section 5.7, the CRIU library is partially integrated to Kubernetes, with 

kubelet API allowing the creation of a checkpoint of a running container but missing an API 

request to equivalently restore the container from the checkpoint on the destination cluster.  

To solve this issue, the MTD controller defines a process/algorithm for the restore phase of a 

stateful container live migration (LiMi) performed as an MTD operation. A live migration in this 

context refers to the process of transferring a stateful containerized application running in a 

Kubernetes pod from one cluster to another with the goal of minimal downtime (i.e., the time an 

application is unavailable), while preserving the application's state. Thus, the restore process 

starts with having a container checkpoint and is summarized as follows: 

1. Create a checkpoint using the kubelet API. 

2. Change the permissions of checkpoint files to enable non-root users to restore the 

container. 

3. Convert the checkpoint into a container image. 

4. Push the new image to a local or remote registry (e.g., Dockerhub). 

5. Apply a prepared YAML file that pulls the new image. 

 

This above-described algorithm is implemented as a shell script. The first part of the script 

searches for a pod name, which must be given as an argument when running the program. Once 

the existence of the pod is confirmed, a checkpoint is created by using the kubelet API's POST 

command. The checkpoint file is then saved to the NFS. As the file is saved with permissions 

allowing modifications only by root users, the next part of the algorithm changes the permissions 

of the above-mentioned file. Once non-root users can change the file, buildah is used to convert 

the checkpoint file into an image and push it to the local registry. Once the image is successfully 
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pushed, the new image is pulled by Kubernetes via a YAML file, which contains the necessary 

information using the pod's original name.    

At the end of the migration script, the remote migration controller applies a predefined YAML 

file to launch the previously checkpointed container. Kubernetes is then instructed to wait for 

the pod to be ready, and once it is, let it run for five seconds. After that, the StatefulSet and its 

corresponding pod are deleted, and the execution cycle starts over again. 

6.4.2. Parallel LiMi Scheduling Using ML-based Time Prediction  

Due to the interdependency of components (e.g. the back-end part may need to have a persistent 

connection with the DB instance), it is crucial to determine the order of migration for each 

component, so that the migration time would be minimized. Furthermore, the workload of each 

component also affects the migration process, requiring a careful estimation of how long it will 

take for each container to be migrated and functional in the destination location. The problem in 

this case is to develop an accurate estimation method for the migration time of each component 

and consequently, a proper scheduler to prioritize the migration of certain components for the 

least service disruption. 

As depicted in Figure 30, the first part of the solution, the Container Migration Optimizer, 

develops an ML-based classifier selecting the best migration method per container to minimize 

the migration time and service downtime of the container, based on its workload type. To this 

end, a tool for collecting metrics of a running container is required to be connected to the MTD 

framework, providing the resource utilization of the corresponding container and feeding it to 

the ML classifier or heuristic model (formed from statistical analysis of the dataset used for 

training the classifier). Once the migration method is selected, the second part of the solution, 

the Migration Scheduler, considers the estimated migration time for each container, based on a 

developed regressor estimating the total migration time. The solution, then, provides a schedule 



D3.1 
Secure-by-design orchestration and management & Data plane computation 

offloading.r1 
 

Page 81 of 96 
 

plan for the microservice-based application, presenting the time to start the migration for each 

component, aiming to minimize the total migration time.  

 

Figure 30: ML Classifier + regressor to optimize the live migration of microservice-based applications 

6.5. DFE/WAI offloading  

This subsection provides the technical details, from the algorithmic point of view, of the DFE 

and WAI offloading solutions presented in Section 3.2. 

6.5.1. WAI and DFE for P4 switch DNN 

6.5.1.1. Problem definition  

Current programmable switches face two key limitations: (1) restricted parallelization and (2) 

hardware backends that lack full P4 language support, leading to suboptimal latency 

performance. For example, software-based P4 DNN implementations achieve intra-switch 

latencies nearly an order of magnitude higher than standard pipelines like forwarding and 

steering. This stems from hardware vendors prioritizing fast memory access for lookup tables 

over computational resources like ALUs. While fully in-network ML processing is conceptually 
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possible, conventional methods struggle to deploy DNNs within the data plane. DNNs rely on 

multiply-accumulate operations and nonlinear functions, but programmable ASICs in commercial 

P4 switches lack both floating-point and integer arithmetic support. Although DNNs can tolerate 

low-precision inputs when trained appropriately, the inability to perform even integer-based 

multiply-accumulate operations prevents their direct deployment. While feature extraction can 

be efficiently implemented on a programmable ASIC backend, adapting the DNN function 

requires a complete remapping to bypass ALU-dependent operations. 

6.5.1.2. Developed solution 

To enable DNN deployment in hardware pipelines lacking arithmetic capabilities, we propose 

distilling a trained, integer-quantized DNN into a lookup table (LUT). This approach transforms 

inference into a match-action operation by encoding integer inputs as LUT addresses and storing 

precomputed outputs for all possible input combinations. As illustrated in Figure 31, a network 

with two inputs of n and m bits forms a compound address of n+m bits, generating 2m+n LUT 

entries. This method extends to multi-input networks by concatenating all inputs into a single 

key. The process is lossless and preserves model accuracy. Compared to existing table-based 

quantization strategies available in the literature, our approach embeds the entire DNN within a 

LUT rather than merely accelerating operations. However, it presents challenges: (i) memory 

usage grows exponentially with input bit-width, (ii) inputs must be integer-encoded (with 

floating-point representation restricted to hidden layers), and (iii) the LUT scales linearly with the 

number of output variables. Memory constraints affect key size and the number of entries that 

can be defined, impacting scalability. 

 

Figure 31: DNN to lookup distillation method 

Despite these limitations, this method enables DNN deployment in P4 switches without 

restrictions on model complexity or type. It generalizes to other ML algorithms if inputs and 

outputs are quantized accordingly. In networking scenarios, where data types are less complex 

than images, quantization constraints are more manageable. Additionally, larger DNNs can be 

trained to enhance accuracy without affecting inference speed, as lookup time remains constant. 

Retraining is also feasible—updated models can be distilled and deployed by simply refreshing 

the LUT entries. 
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Transforming neural networks into lookup tables (LUTs) presents a significant challenge due to 

the precision and wide range of 32-bit floating point numbers. This large input-output space 

makes it impractical to create LUTs directly, as the memory and computational requirements 

become infeasible. Quantization addresses this issue by reducing the precision of inputs and 

outputs, mapping continuous values to a smaller, discrete set. This significantly reduces the LUT 

size and makes LUT-based computation more viable, especially in resource-constrained 

environments such as embedded systems or programmable network devices. 

To maintain accuracy under limited precision, we adopt Quantization -Aware Training (QAT), 

where the impact of quantization is accounted for during training. In this approach, inputs are 

quantized using a dedicated quantizer q_input, while weights remain in full precision. The 

quantized layer computes the activation 𝑦 as follows: 𝑦 =  𝜎(𝑓(𝑤, 𝑞_𝑖𝑛𝑝𝑢𝑡(𝑥))  +  𝑏) 

where w represents the weights, x is the input, f is the layer operation, σ is the activation function, 

and b is the bias. We employ DoReFa quantizers for their flexibility in specifying bit-widths, 

making them well-suited for hardware-efficient implementations of neural networks. 

6.5.2. DFE and WAI in DPU-based mitigation 

6.5.2.1. Problem definition 

A prevalent method used in Distributed Denial-of-Service (DDoS) attacks is the TCP SYN flood 

attack. In this type of attack, the target server is overwhelmed with many TCP SYN (synchronize) 

packets. The server, following the standard TCP handshake process, allocates resources and 

responds with SYN-ACK (synchronize-acknowledgment) packets. However, the attackers 

deliberately do not send the final ACK packet, preventing the connection from being completed. 

As a result, the server’s TCP session table becomes exhausted, rendering it unable to process 

legitimate connection requests and effectively denying service to authorized users. 

To address DDoS attacks, various detection and mitigation techniques have been proposed, 

including rule-based, signature-based, commercial solutions, Machine Learning (ML), anomaly-

based, and flow-based approaches. Despite their effectiveness, these methods often introduce 

non-negligible latency in detecting and responding to attacks. This delay can be particularly 

problematic when attack rates are high, as a substantial portion of the attack traffic may remain 

unmitigated for a critical period, worsening the impact on the target system.  

A first DFE/WAI design and implementation fully offloaded in a DPU using DOCA libraries faces 

the complexity of minimizing the number of ARM core processing calls (which are relatively slow), 

while maximizing the number of operations that can be done using hardware accelerators (high 

speed). 
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6.5.2.2. Developed solution 

To manage the stateless nature of hardware pipes, a stateful control logic is deployed on the 

ARM cores. Written in C, it dynamically orchestrates and updates hardware pipes by inserting, 

modifying, and removing entries as needed. This approach ensures that attack detection remains 

adaptive while leveraging hardware acceleration to minimize latency. Metadata tagging is used 

to track packet flow, enabling real-time decision-making regarding traffic handling. 

The DDoS mitigator logic is deployed on the ARM cores and written in C programming language, 

including all the available C libraries to properly fill, update, query, and finally remove entries in 

the pipes. This distribution of tasks between the main two components of the fully offloaded 

system, namely the ARM cores and the offloading hardware, is explicitly described in Figure 32. 

 

Figure 32: DOCA-based offloaded DDoS mitigator 

Packets entering the DPU through port P0 are first processed by SF1 and the root pipe, which 

filters out non-IPv4 traffic. The blacklist pipe immediately drops packets from known malicious 

sources. The control pipe evaluates remaining traffic, directing TCP packets to the appropriate 

processing path. Non-TCP packets are forwarded to SF2 to reach the host.  

If a packet has the SYN flag set and remains under the rate limiter threshold, it is processed in 

the SYN pipe. Otherwise, it is sent to the SYN_MISS pipe for further analysis. The TCP_COUNT 

pipe updates per-source statistics, tracking the number of legitimate TCP packets. If no matching 

entry is found, the packet is dropped to prevent unauthorized access. The system employs a rate 

limiter to regulate the number of SYN packets sent to the host, preventing CPU overload.  

Additionally, all outgoing traffic from the host is forwarded through a dedicated hardware pipe 

from SF2 to SF1, reducing processing overhead and ensuring efficient data flow. 
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A multi-threaded application on the ARM cores handles real-time SYN flood detection and 

mitigation. The pseudo-code of the application is detailed in Figure 33. Each thread polls assigned 

RX queues via DPDK libraries, processing only packets requiring in-depth inspection. If a packet 

comes from a previously unmonitored source, an IP record is created to track SYN counts and 

register the entry ID in the TCP_COUNT and SYN pipes. Metadata values are updated to facilitate 

efficient lookup and tracking. 

For already monitored sources, the system retrieves statistics and recalculates the SYN-to-TCP 

ratio. If the ratio exceeds a predefined threshold, the source is blacklisted, ensuring subsequent 

packets are dropped at the hardware level without involving the CPU. The system continuously 

updates and removes outdated entries to free resources for new traffic.  

By efficiently distributing tasks between hardware pipes and ARM cores, this architecture 

maintains high throughput and low latency, effectively mitigating large-scale SYN flood attacks in 

real time. 

 

Figure 33: Offloaded DDoS mitigator algorithm 

6.6. Data plane ML  

Our proposed model employs as-soon-as-possible in-network inference and online learning to 

enable accurate, low-latency network attack detection. Additionally, data plane program 
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disaggregation is used to ensure that switches retain sufficient resources for other essential tasks, 

such as packet routing. 

6.6.1. Feature Extraction 

6.6.1.1. Problem definition 

The classification of network flows—determining whether they represent an attack or benign 

traffic—is based on various features derived from individual packets within the flows. These 

features include parameters such as current and maximum packet length, the number of times 

different TCP flags were set, and the source and destination ports. 

To compute some of these features, the system requires persistent storage of flow-specific data.  

6.6.1.2. Developed solution 

This persistence is implemented using registers indexed by the hash of the flow’s identifier (5-

tuple). However, this approach introduces the risk of hash collisions, so that different flows can 

inadvertently share the same register locations, resulting in data corruption. 

To mitigate this risk, we implemented flow timeouts: flows that have been inactive for at least 

30 seconds are considered terminated, allowing their register slots to be reset when a new flow 

is assigned. 

6.6.2. Model Training and Online Learning 

6.6.2.1. Problem definition 

Pre-trained models and pre-initialized datasets often present significant challenges in the context 

of programmable network hardware. Large models require significant memory and 

computational resources, which exceed the capabilities of network hardware. Conversely, 

smaller or more compact models may lack the necessary accuracy to provide reliable results, 

making them ineffective for critical tasks such as security applications or traffic optimization.  

This creates a trade-off between resource efficiency and classification precision, with neither 

extreme providing a fully viable solution for real-time, high-performance network operations. 
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6.6.2.2. Developed solution 

Our proposed model operates entirely through online learning, eliminating the need for pre-

trained models or pre-initialized datasets. The control plane is responsible for training models 

using sampled features received from programmable switches.  

These switches randomly select a fraction of their flows for monitoring and forwarding the 

extracted features—and classification results, if available—to the control plane. Flow selection is 

based on a combination of the flow identifier and a random number initialized at switch startup. 

To support real-time inference, flow features must be collected after each received packet. This 

ensures that separate classifier models can be trained for different flow lengths. 

The controller caches flow features and classification results received from the switches for a few 

minutes. These features are then forwarded in batches to an external Intrusion Detection System 

(IDS), which provides highly accurate flow labels. The external IDS performs network attack 

detection with high accuracy, though at the cost of reduced throughput and increased latency 

compared to in-network approaches. The labels provided by the IDS serve as the ground truth, 

while the in-network classification results act as predicted labels. These true and predicted labels 

are used to assess the accuracy or F1-score of the in-network classifier. 

The controller regularly trains new random forest models using the sampled features and true 

labels. The training approach follows a methodology, where a separate random forest is trained 

for each subflow (i.e., the first N packets of a flow). A decision from a random forest is only 

accepted if its certainty exceeds a predefined threshold, and only sufficiently accurate random 

forests are incorporated into the final model. This approach enables early classification for some 

flows after just a few packets, while others may require more packets to achieve the necessary 

confidence level. Once a new model is trained, it undergoes an evaluation phase, where it 

classifies the collected features and its predictions are compared to the true labels. If the new 

model surpasses the performance of the currently deployed in-network model by a predefined 

threshold (e.g., a 1% improvement in accuracy), it is deployed to the switches, replacing the 

previous model. Model Encoding for Match-Action Tables 

6.6.2.3. Problem definition 

The P4 data plane programming language supports multiple types of programmable switches. 

We tested our model on two different P4 targets: CPU-based eBPF switches and Intel Tofino 

hardware switches. These targets have distinct limitations, requiring different approaches to 

embedding machine learning models. 
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The match-action tables of eBPF-based switches do not currently support range matching (i.e., 

mapping actions to numerical value intervals).  

6.6.2.4. Developed solution 

Therefore, we used a model encoding method, where each depth level of each decision tree 

corresponds to a separate match-action table. The table entries represent decision tree nodes, 

while the table actions compare feature values to thresholds, determine verdicts, or forward 

processing to the next match-action table. 

In contrast, Tofino switches support range match keys but do not allow long sequences of match-

action tables where earlier results are required before executing subsequent tables. 

Consequently, we applied the encoding method from prior research, where each decision tree is 

embedded into a single match-action table. Each feature is assigned a range match key, and each 

decision tree leaf corresponds to a table entry that specifies the required feature ranges for 

classification. However, this approach limits the number of features that can be used, as Tofino 

switches only support a limited number of range match keys per table. 

Since our approach relies on as-soon-as-possible inference, separate random forests must be 

trained and encoded for different flow lengths. To facilitate this, each match-action table includes 

an additional key that identifies which random forest to use. This identifier is determined using 

a separate table that maps the flow’s packet count to the corresponding random forest identifier. 

6.6.3. Model Disaggregation 

6.6.3.1. Problem definition 

The accuracy of network attack detection can be improved by increasing the number of decision 

trees within each random forest or by extending the depth of decision trees. However, both 

approaches increase the model’s resource requirements, such as memory. Since switches must 

also allocate resources for other tasks like packet forwarding, it is crucial to limit the resource 

consumption of in-network attack detection. 

6.6.3.2. Developed solution 

If flows traverse multiple switches within the internal network, the per-switch resource 

requirements can be reduced by partitioning the P4 program and distributing its components 

across multiple switches. In our random forest-based approach, this means embedding different 

decision trees of the forest in different switches. However, certain components must be present 
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in all switches—particularly those at the network edge—so that flow features can be computed 

or received from upstream switches. 

Determining which decision trees should be deployed on which switches is beyond the scope of 

this work. While decision trees within a random forest can operate independently, edge switches 

need access to the verdicts of all decision trees to compute the final classification result. To 

facilitate this, an extra header is added to packets upon entering the internal network and 

removed when exiting. This header stores information about pending decision trees and already 

computed verdicts. 

6.7. RAN security-performance balancer  

The core idea of our approach to security is to balance the performance of radio and edge 

elements and the security added to the radio for the constant availability of the radio resources. 

The balancer will consider, on the one hand, the risks that appeared in the radio interface and, 

on the other hand, the performance requirements posed to the radio software/hardware due to 

increased traffic. The main task of the balancer is to understand when the increased performance 

required is due to an attack in progress or due to regular peak traffic. 

6.7.1. Problem definition 

Modern radio access networks (RANs) face the dual challenge of maintaining high performance 

under dynamic traffic conditions while also ensuring robust security against evolving threats such 

as DDoS attacks. Traditional static security configurations can either underperform during 

legitimate traffic peaks or overburden the system when reacting to benign conditions. This 

creates a critical need for a dynamic mechanism that can intelligently distinguish between 

increased traffic caused by legitimate usage and that triggered by malicious activities. 

The core problem addressed in this work is the need to balance the performance of radio and 

edge elements with the security mechanisms applied to the radio interface, in order to ensure 

the constant availability of radio resources. 

6.7.2. Developed Solution 

We will consider an observed data set with n data samples, where each sample contains the 

measurements of m features observed during a given time interval. Then, the balancer will 

classify each sample in known classes of interest. In the moment that the radio increases the 

consumption of resources, the balancer will apply inference (e.g., Naïve Bayesian) for deciding 

when an unobserved sample Xn+1 may be instantiated to one of the classes. Normally, Bayesian 

classifier design tries to make the classification process “balanced” as if all classes were 

represented by a non-zero number of samples in training set X. Our approach will consist of 
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adjusting the threshold for the Bayesian classifier to classify the sample in one of the classes. The 

balancer will inform the agents when they should apply deeper packet inspection or when the 

security controls can be reduced.  

6.8. LLM-based IDS 

In recent developments within deep learning, self-supervised learning (SSL) has gained 

prominence as a powerful alternative to traditional supervised approaches, particularly through 

the adoption of Transformer-based architectures and large language models (LLMs). These 

models demonstrate strong capabilities in extracting rich and generalizable representations from 

unlabeled data, thereby reducing reliance on extensive manually annotated datasets. In this 

context, we introduce an IDS built upon the BERT architecture, a bidirectional Transformer model 

originally tailored for natural language understanding tasks. The BERT model’s encoder-centric 

design, coupled with its bidirectional self-attention mechanism, enables it to capture complex 

contextual relationships within structured, sequential inputs, making it especially well-suited for 

traffic classification tasks in network security. Unlike generative LLMs such as GPT, which are 

optimized for text generation, BERT’s architecture inherently supports discriminative learning 

objectives, offering a more suitable foundation for accurate and efficient real-time threat 

detection. 

6.8.1. Packet-token embedding optimization  

6.8.1.1. Problem Definition 

LLMs and Transformer-based models in general are powerful tools for processing sequential 

data. However, as the number of tokens in a sequence increases, so does the training and 

inference time, as transformer attention computation time scales quadratically with the number 

of tokens. Treating each packet header or the raw bytes of the packet as individual tokens can 

quickly increase the number of tokens that need to be processed. 

6.8.1.2. Developed Solution 

Τo optimise the processing time of our model we employed the packet-token based embedding 

procedure described in Section 3.5 which significantly reduces the number of tokens that our 

LLM-based IDS has to process. In addition to this, we implement a time limit as well as a limit to 

the number of packets to 32 for each flow to keep the packet sequences short. This does not 

impact the performance of our model. 
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6.8.2. Contrastive learning and flow augmentation process 

6.8.2.1. Problem Definition 

As the digital landscape becomes more interconnected, the frequency and severity of zero-day 

attacks have significantly increased, leading to an urgent need for innovative IDS. Machine 

Learning-based IDS that learn from the network traffic characteristics and can discern attack 

patterns from benign traffic offer an advanced solution to traditional signature-based IDS. 

However, they heavily rely on labeled datasets, and their ability to generalize when encountering 

unseen traffic patterns remains a challenge. To provide a generalizable baseline model for 

intrusion detection we devised a self-supervised contrastive learning process on unlabelled raw 

packet sequences, as a pretraining task for the encoder stack of the LLM. 

 

Figure 34: Overview of the contrastive learning and augmentation process 

6.8.2.2. Developed Solution 

The objective of the contrastive learning task is to learn meaningful representations by bringing 

the representations of similar flows closer to each other in the embedding space while at the 

same time pushing apart flow representations that are dissimilar. To achieve this, we have to 

generate flow samples that are relatively similar to each other for the contrastive learning 

process. We call these artificially generated samples augmented views of an original flow. To 

create these augmented views, we devised a simple procedure which is illustrated in  Figure 34. 

To create similar pairs of flow packet sequences we create a new packet sequence by mixing up 

the packets of an original flow sequence with those of a randomly chosen flow that has the same 
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length as the original one. From the original flow sample, we select a random patch of continuous 

packets and replace them with the packets that are in the same positions from the randomly 

chosen flow. The original sample and the augmented view are then forwarded to our LLM-IDS to 

generate the representation for each sequence in the output of the CLS’ token. Finally, the CLS’ 

token is forwarded to a projection head which in our case is a simple 2-layer MLP, which is used 

to train our model on the contrastive loss objective function, by attracting the views of the 

original sample and the augmented view, while repelling the representation of the original flow 

with all other flows in a mini-batch. After the pretraining procedure, the projection head is 

discarded and replaced with the classification module as noted in Section 3.5.  

6.8.3. Security policy enforcement  

6.8.3.1. Problem Definition 

In order to enforce appropriate security policies on potentially malicious traffic, it is essential to 

accurately track and identify packet flows. This requires maintaining stateful information related 

to the origin and characteristics of each flow. Specifically, flow identifiers such as the 5-tuple 

(source IP, destination IP, source port, destination port, and protocol) must be extracted and 

monitored in real time. Without such contextual information, it becomes challenging to reliably 

associate traffic with specific entities or apply precise mitigation strategies, especially in 

environments where threats may be dynamic, stealthy, or distributed. 

6.8.3.2. Developed Solution 

To mitigate security threats, the proposed solution introduces a modular, ML-assisted traffic 

analysis pipeline integrated with an IDS. This pipeline leverages a traffic classifier, trained using 

publicly available datasets such as CIC-IDS 2017 [21] and UNSW-NB15 [22], to identify and flag 

malicious or anomalous flows in real time. The IDS acts as the enforcement component, which 

cross-references the provided metadata with ongoing traffic patterns and applies predefined 

security policies. 

These policies may include: 

I. Blocking incoming or outgoing traffic from the identified malicious IPs. 

II. Rate limiting traffic to prevent potential DoS attacks. 

III. Generating alerts or logs for further forensic analysis. 

The classifier is designed to be lightweight and extensible, enabling real-time inference. To 

handle possible attacks when the classifier identifies a flow as malicious it proceeds to inform the 

IDS that monitors network traffic, with the 5-tuple that is associated with the flow, so that the 

IDS can act against the malicious IPs by implementing a security policy. This solution provides a 

coordinated and context-aware approach to detecting and mitigating threats, offering better 
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performance, reduced false positives, and greater adaptability to emerging network attack 

patterns. 
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7. Conclusions 
The deliverable D3.1 “Secure-by-design orchestration and management & Data plane 

computation offloading” presented the first integrated view of NATWORK’s secure orchestration 

and programmable data plane capabilities, outlining both software architecture and initial 

implementation results. As 6G architectures grow increasingly complex, dynamic, and 

performance-critical, NATWORK proposes a cohesive solution that bridges orchestration, 

security, and intelligent automation across all layers of the network—from extreme edge to core. 

Collectively, these technologies form a holistic, modular, and interoperable foundation for 

secure, sustainable, and scalable 6G network orchestration and management. This work not only 

addresses today’s limitations in network security, efficiency, and responsiveness but also sets the 

stage for future extensions through federated intelligence and continuous optimization. The 

services and solutions described above will continue to develop in the upcoming months of the 

project, according to the provisional workplan, to reach their projected technology readiness 

level. This will enable them to be validated through real-world use cases and testbeds in the next 

phases of the NATWORK project, meeting their expected KPIs, providing technical maturity, 

integration feasibility and impact across diverse 6G verticals. 
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