

Net-Zero self-adaptive

activation of distributed self-

resilient augmented services

D3.1 : Secure-by-design orchestration and management & Data plane

computation offloading.r1

Lead beneficiary UEssex Lead author Mays AL-Naday, Sumeyya
Birtane, Shankha Gupta

Reviewers Edgardo Montes de Oca (MONT), Sándor LAKI (ELTE)

Type R Dissemination PU

Document version V1.0 Due date 30/06/2025

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 2 of 96

Project information

Project title Net-Zero self-adaptive activation of distributed self-resilient
augmented services

Project acronym NATWORK

Grant Agreement No 101139285

Type of action HORIZON JU Research and Innovation Actions

Call HORIZON-JU-SNS-2023

Topic HORIZON-JU-SNS-2023-STREAM-B-01-04
Reliable Services and Smart Security

Start date 01/01/2024

Duration 36months

Document information

Associated WP WP3

Associated task(s) T3.1, T3.2

Main Author(s) Sumeyya Birtane, Shankha Gupta, Mays AL-Naday (UEssex)

Author(s) Wissem Soussi, Gökcan Cantali, Gürkan Gür (ZHAW), Péter Vörös,
Mohammed Alshawki (ELTE), Konstantinos Pournaras, Kostas
Lampropoulos (PNET), Maria B. Safianowska (ISRD), Antonios Lalas,
Virgilios Passas, Sarantis Kalafatidis, Nikolaos Makris, Donatos
Stavropoulos, Stelios Mpatziakas, Ioanna Kapetanidou, Konstantinos
Giapantzis, Georgios Agrafiotis, Thanasis Korakis, Anastasios Drosou
(CERTH), Tom Goethals (IMEC), Francesco Paolucci (CNIT)

Reviewers Edgardo Montes de Oca (MONT), Sándor LAKI (ELTE)

Type R – Document, Report

Dissemination level PU – Public

Due date M18 (30/06/2025)

Submission date 30/06/2025

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 3 of 96

Document version history

Version Date Changes Contributor (s)
v0.1 02/12/2024 Initial table of contents Mays AL-Naday,

Sumeyya Birtane
(UEssex)

v0.2 10/01/2025 Updated ToC and partner
assignment

Sumeyya Birtane
Mays AL-Naday (UEssex)

v0.3 21/01/2025 Further update to ToC and partner
assignment

Sumeyya Birtane
(UEssex)

v0.4 04/02/2025 Further update to ToC and partner
assignment

Francesco Paolucci
(CNIT)

v0.5 25/02/2025 Filled content for the parts: Section
4.1 - Moving Target Defense (MTD)
Framework
Section 6.4 - MTD

Gökcan Cantali, Wissem
Soussi (ZHAW)

v0.6 20/03/2025 Contribution for Section 2.3, 3.5, 5.2,
6.2, 6.8

Virgilios Passas (CERTH)

v0.7 19/06/2025 Reviewed version Sàndor Laki (ELTE),
Edgardo Montes de Oca
(MONT)

v0.75 22/6/2025 Refinement based on review
comments

All authors

v0.8 24/06/2025 Near final version Mays AL-Naday (UEssex)

v0.9 27/06/2025 Quality review Joachim Schmidt,
Leonardo Padial (HES-SO)

v0.95 29/06/2025 Final review and refinements Antonios Lalas, Virgilios
Passas (CERTH) and
CERTH team

v1.0 30/06/2025 Final version for submission Antonios Lalas (CERTH)

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 4 of 96

Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or 6G-SNS. Neither the European Union nor the granting
authority can be held responsible for them. The European Commission is not responsible for any use that may be
made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the NATWORK consortium make no warranty of any kind with regard to this material including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the NATWORK Consortium nor any of its members, their officers, employees, or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the NATWORK Consortium nor any of its
members, their officers, employees, or agents shall be liable for any direct or indirect or consequential loss or
damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© NATWORK Consortium. This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation, or both. Reproduction is authorised provided the source is acknowledged.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 5 of 96

Table of Content
Table of Content ... 5

List of acronyms and abbreviations .. 9

List of figures ... 11

List of tables .. 12

Executive summary ... 13

1. Introduction .. 14

1.1. Purpose and structure of the document .. 14

1.2. Intended Audience .. 15

1.3. Interrelations .. 16

2. Software Design: Orchestrator(s) .. 17

2.1. Guided design and development by OSL patterns ... 17

2.2. Orchestration at the Extreme Edge (Feather) .. 19

2.2.1. Functional components .. 19

2.2.2. Interfaces and Protocols ... 21

2.2.3. Data artefacts .. 22

2.3. Orchestration at the CRAN ... 22

2.3.1. Functional components .. 23

2.3.2. Interfaces and Protocols ... 25

2.3.3. Data artefacts .. 25

2.4. Secure-by-Design Orchestration at the Core .. 25

2.4.1. Functional components .. 26

2.4.2. Interfaces and Protocols ... 28

2.4.3. Data artefacts .. 28

3. Data Plane Computation Offloading Design ... 29

3.1. Offloading functions in the data plane ... 29

3.1.1. NATWORK Offloading flavours ... 30

3.1.2. Deployment and configuration interfaces .. 32

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 6 of 96

3.2. Wirespeed AI (WAI) and Decentralized Feature Extraction (DFE) 33

3.2.1. DFE/WAI in P4 programmable switches ... 35

3.2.2. DFE/WAI in NVIDIA Bluefield-2 DPU ... 38

3.3. In-network ML models ... 40

3.4. RAN security-performance balancer .. 42

3.5. LLM-based IDS ... 43

4. Software Design: Orchestration Support Systems ... 45

4.1. Moving Target Defense (MTD) Framework .. 45

4.1.1. MTD Controller ... 46

4.2. Selective Cyber Threat Intelligence (CTI) solution .. 47

4.2.1. Functional components .. 48

4.2.2. Interfaces and Protocols ... 49

4.2.3. Data artefacts .. 50

4.2.4. CTI Cross-Domain selective Sharing .. 50

4.3. AI-based Behavioural Analysis service .. 52

4.3.1. DFE/WAI .. 52

4.3.2. Data plane ML ... 53

4.3.3. Microservice behavioural analysis ... 55

4.4. Security-performance balancer service ... 60

4.4.1. Technical description .. 60

4.4.2. Functionalities provided ... 61

4.4.3. Dependencies.. 61

4.4.4. Algorithms ... 62

4.4.5. Interfaces and protocols ... 62

4.5. Blockchain Based Trust Establishment ... 63

4.5.1. Technical Description .. 63

4.5.2. Dependencies.. 64

4.5.3. Functionalities Provided ... 64

4.5.4. Algorithms & Workflow .. 65

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 7 of 96

4.5.5. Interfaces and Protocols ... 65

5. Implementation ... 66

5.1. Orchestration at the Extreme Edge (Feather) .. 66

5.2. Orchestration at the CRAN ... 67

5.3. Orchestration at the Core ... 69

5.4. WAI/DFE .. 70

5.5. Security Performance Balancer .. 71

5.6. In-network ML ... 71

5.7. MTD Controller ... 71

5.8. Blockchain Based Trust Establishment ... 73

6. Strategies and Optimisation Algorithms ... 75

6.1. Orchestration at the Extreme Edge (Feather) .. 75

6.2. Orchestration at the CRAN ... 76

6.2.1. Strategies adopted .. 76

6.3. Orchestration at the Core ... 77

6.3.1. CTI Cross-Domain selective Sharing .. 77

6.3.2. Workload Prediction for Scheduling ... 78

6.4. Moving Target Defence (MTD) ... 79

6.4.1. Container Restore Algorithm for Kubernetes-aware Orchestration 79

6.4.2. Parallel LiMi Scheduling Using ML-based Time Prediction 80

6.5. DFE/WAI offloading .. 81

6.5.1. WAI and DFE for P4 switch DNN ... 81

6.5.2. DFE and WAI in DPU-based mitigation ... 83

6.6. Data plane ML ... 85

6.6.1. Feature Extraction ... 86

6.6.2. Model Training and Online Learning .. 86

6.6.3. Model Disaggregation ... 88

6.7. RAN security-performance balancer .. 89

6.7.1. Problem definition .. 89

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 8 of 96

6.7.2. Developed Solution ... 89

6.8. LLM-based IDS ... 90

6.8.1. Packet-token embedding optimization .. 90

6.8.2. Contrastive learning and flow augmentation process .. 91

6.8.3. Security policy enforcement ... 92

7. Conclusions ... 94

8. References .. 95

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 9 of 96

List of acronyms and abbreviations

Abbreviation Description
5GC 5G Core

AMF Access and Mobility Management Function

AI Artificial Intelligence

ATD Anomaly Traffic Detector

AUSF Authentication Server Function

CRAN Cloud Radio Access Network

CTI Cyber Threat Intelligence

DFE Decentralized Feature Extraction

DoS Denial of Service

ΕΜΑ exponential moving average

FQDN Fully Qualified Domain Name

GTP GPRS Tunnelling Protocol

IDS Intrusion Detection System

KPI Key Performance Indicator

LLM Large Language Model

ML Machine Learning

MLP Multi-layer Perceptron

MTD Moving Target Defense

NFV Network Functions Virtualization

NSD Network Service Descriptor

NWDAF Network Data Analytics Function

OAI OpenAirInterface

O-RAN Open Radio Access Network

OSL OpenSLice

PRB Physical Resource Block

RAN Radio Access Network

RC RAN Control

RIC RAN Intelligent Controller

RRC Radio Resource Control

RT-RIC Real Time RAN Intelligent Controller

SD Slice Differentiator

SDN Software-Defined Networking

SLA Service Level Agreement

SM Service Model

SMF Session Management Function

S-NSSAI Single Network Slice Selection Assistance Information

SSL Self-Supervised Learning

SST Slice Service Type

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 10 of 96

Abbreviation Description
STIX Structured Threat Information eXpression

TAXII Trusted Automated eXchange of Intelligence Information

TCP Transmission Control Protocol

TMF TeleManagement Forum

UDM Unified Data Management

UDR Unified Data Repository

UE User Equipment

UPF User Plane Function

VNF Virtualized Network Function

WAI Wirespeed Artificial Intelligence

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 11 of 96

List of figures
Figure 1: OSL Reference Architecture ... 17

Figure 2: Service Lifecycle Workflow .. 19

Figure 3: Feather architecture, with main components in yellow (orchestration) and green

(networking). ... 20

Figure 4: Overview of Flocky services, their main components, and interaction between nodes

... 21

Figure 5: End-to-End Deployment of the AI-Driven Network Intrusion Detection 5G Network .. 23

Figure 6: O-RAN Architecture ... 24

Figure 7: Secure-by-Design Orchestration Architecture and components 28

Figure 8: NATWORK Data Plane offloading solutions and flavours .. 30

Figure 9: Offloading deployment and runtime configuration options ... 32

Figure 10: Embedding AI/ML inside programmable switches .. 34

Figure 11: DFE and WAI design submodules .. 35

Figure 12: P4 Parser and pipeline for a 6-feature input ... 36

Figure 13: LUT distilled DNN and its P4 pipeline .. 37

Figure 14: DPU architecture .. 39

Figure 15: Data plane ML model ... 41

Figure 16: Security-performance balancer architecture .. 42

Figure 17: LLM-Based IDS Overview ... 43

Figure 18: Architecture of the MTD framework ... 45

Figure 19: CTI Solution Architecture and components ... 49

Figure 20: Simple confusion matrix for decision making strategy ... 51

Figure 21: Sample Sensitivity and Necessity maps for decision making strategy 51

Figure 22: Data plane ML components and interactions ... 54

Figure 23: Position of the microservice behavioural analysis module and interconnection to

other modules ... 56

Figure 24: UDP Flooding Attack Execution ... 58

Figure 25: New flow control rule (left) and a graphical representation of flow rules (right) 59

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 12 of 96

Figure 26: ISRD Liquid Near-RT RIC interfaces. ... 60

Figure 27: ISRD Liquid Near-RT RIC general deployment architecture. 61

Figure 28: Detailed Architecture of the AI-Driven Network Intrusion Detection System 69

Figure 29: CRIU steps .. 72

Figure 30: ML Classifier + regressor to optimize the live migration of microservice-based

applications ... 81

Figure 31: DNN to lookup distillation method .. 82

Figure 32: DOCA-based offloaded DDoS mitigator ... 84

Figure 33: Offloaded DDoS mitigator algorithm ... 85

Figure 34: Overview of the contrastive learning and augmentation process 91

List of tables
Table 1: Interface to MTD Controller .. 47

Table 2: OFA methods ... 53

Table 3: Interface to P4 Runtime .. 55

Table 4: Interface to SDN Controller to enforce flow rules .. 59

Table 5: Interface to Microservice Orchestrator to report irregular resource usage and trigger

scaling decisions .. 59

Table 6: Interface to monitoring engine to retrieve real-time monitoring data 59

Table 7: Interface to O-RAN A1 ... 62

Table 8: Interface to O-RAN E2 ... 62

Table 9: Interface to RIC.. 63

Table 10: Interface to Distributed Insertion ... 65

Table 11: Interface to Distributed Query .. 65

Table 12: Interface to Token Verification ... 65

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 13 of 96

Executive summary

The purpose of this deliverable is to present the design principles, architectural components, and

initial implementation steps toward achieving secure-by-design orchestration and management

of 6G network slices, as well as exploring advanced mechanisms for data plane computation

offloading. As part of the NATWORK project’s broader goal to enable secure, sustainable, and

resilient 6G services, this document focuses on developing decentralised and intelligent

management services capable of responding to emerging security threats while addressing

energy efficiency and trust in multi-domain environments.

The report introduces decentralised orchestration components, services and algorithms capable

of maintaining service continuity under evolving cybersecurity threats while optimising energy

consumption across the edge-to-cloud continuum. It also outlines advanced approaches for

offloading computation into the network data plane to reduce latency and enhance in-network

intelligence.

The deliverable further defines critical supporting frameworks such as decentralised Cyber Threat

Intelligence (CTI) exchange, AI-based behavioural analysis, Moving Target Defence (MTD)

mechanisms, and security-performance balancer services. These modules work together to

strengthen the orchestration platform and dynamically adapt to operational and threat

conditions.

Early implementation strategies are described alongside validation approaches and

methodologies to evaluate orchestration effectiveness, energy efficiency, and security

performance in the context of 6G networks. The results of this work lay the foundation for

upcoming large-scale integration and testing activities in NATWORK.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 14 of 96

1. Introduction

The rapid evolution of 6G networks demands innovative solutions to manage the complexity of

massive device connectivity, data-intensive applications, and escalating security threats in edge-

to-cloud ecosystems. The deliverable "Secure-by-design orchestration and management & Data

plane computation offloading" addresses these challenges by presenting a cohesive framework

for decentralised orchestration, secure management, and optimised data plane computation

offloading. The purpose of this deliverable is to provide a detailed account of the software design,

implementation strategies, and validation outcomes for orchestration and offloading in 6G

networks. The document is organised into several sections to guide the reader through

NATWORK’s key contributions. Following the Executive Summary, this introductory chapter

(Section 1) is divided into subsections: Section 1.1 outlines the purpose and structure of the

document, Section 1.2 describes the intended audience, and Section 1.3 highlights how the work

connects to broader research and development initiatives.

The document is structured to provide a clear progression from design to implementation, as

follows: The Software Design: Orchestrator(s)the design of orchestrators deployed at different

layers of the 6G continuum, covering orchestration at the extreme edge, Cloud Radio Access

Network (CRAN), and core edge-cloud continuum enabling 6G core. The Data Plane Computation

Offloading Design section explores strategies to optimise latency and energy use, covering

offloading classification, Wirespeed AI (WAI) and Decentralised Feature Extraction (DFE), in-

network machine learning models, and a Radio Access Network (RAN) security-performance

balancer. The Software Design: Orchestration Support Systems section presents security

enhancements, including a Moving Target Defence (MTD) framework, decentralised CTI sharing,

AI-based behavioural analysis, and a security-performance balancing. The Implementation

section describes the deployment of the design components, optimisation algorithms and

testbed validations, ensuring secure and efficient 6G operations. Finally, the Conclusions section

reflects on the project’s strategic orientation and outlines expectations for future milestones in

scalable 6G deployments.

1.1. Purpose and structure of the document

The purpose of the "Secure-by-design orchestration and management & Data plane computation

offloading" deliverable is to present a comprehensive overview of the NATWORK project’s

advancements in developing secure, sustainable, and efficient 6G network solutions. It details

the design, implementation, and validation of a decentralised orchestration framework alongside

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 15 of 96

innovative data plane computation offloading strategies to address critical challenges in energy

consumption, cybersecurity, and computational efficiency in edge-to-cloud 6G ecosystems. By

integrating real-time Cyber Threat Intelligence (CTI), AI-driven analytics, and energy-efficient

algorithms, this document demonstrates how the project enables service continuity and aligns

with Net-Zero and EU Horizon objectives.

Following the Introduction, which sets the stage for the document's purpose, audience, and its

interconnections within the project’s framework, the structure continues as follows:

• Section 2 – Software design: Orchestrators: Presents the project's orchestration service

designs, detailing how secure, decentralized, and intent-compliant orchestration is

achieved across extreme edge, CRAN, and core network domains.

• Section 3 – Data Plane Computation Offloading Design: Describes the NATWORK

strategies for computation offloading, including offloading classifications, Wirespeed AI

(WAI), Decentralized Feature Extraction (DFE), and the deployment of in-network

machine learning models.

• Section 4 – Software Design: Orchestration Support Systems: Presents the NATWORK

support services, such as the Moving Target Defense (MTD) framework, CTI selective

sharing mechanisms, AI-based behavioral analysis, and the security-performance

balancer, which enhance orchestration resilience and adaptability.

• Section 5 – Implementation: Describes the implementation progress of the orchestration

and offloading components.

• Section 6 – Strategies and Optimisation Algorithms: Details the strategies and

optimization methods used to enable adaptive orchestration, proactive threat mitigation,

and energy-efficient service management.

• Conclusions: Wraps up the document by reflecting on NATWORK’s strategic direction,

summarizing achievements, and establishing expectations for the upcoming validation

and integration milestones.

1.2. Intended Audience

The Deliverable D3.1 "Secure-by-design orchestration and management & Data plane

computation offloading" is devised for public use in the context of project management and

dissemination/ communication activities of the NATWORK consortium, comprising members,

project partners, and affiliated stakeholders. This document mainly focuses on the secure-by-

design orchestration, management frameworks, and data plane computation offloading aspects

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 16 of 96

of the project, thereby serving as a referential tool throughout the project's lifespan. Also, the

document highlights the strategic blueprint and collective vision of the project, ensuring that all

collaborative efforts are harmonised and directed toward the fulfilment of the project's

ambitions.

1.3. Interrelations

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and

resources from academia, industry, and research sectors, focusing on user-centric service

development, robust economic and business models, cutting-edge cybersecurity, seamless

interoperability, and comprehensive on-demand services. The project integrates a collaboration

of fifteen partners from ten EU member states and associated countries (UK and CH), ensuring a

broad representation for addressing security requirements of emerging 6G Smart Networks and

Services in Europe and beyond.

NATWORK is categorized as a "Research Innovation Action - RIA" project and is methodically

segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple

activities across various WPs, the structure ensures clarity in responsibilities and optimizes

communication amongst the consortium's partners, boards, and committees. The interrelation

framework within NATWORK offers smooth operation and collaborative innovation across the

consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e.,

Research Institutes, Universities, SMEs, and large industries) enabling scientific, technological,

and security advancements in the realm of 6G. The D3.1 "Secure-by-design orchestration and

management & Data Plane Computation Offloading" deliverable addresses all activities of the

NATWORK project related to the design, development, and validation of secure, resilient, and

energy-efficient orchestration frameworks, as well as advanced data plane offloading

mechanisms. It interrelates closely with architectural work defined in WP2, security and

orchestration advancements from WP3, AI-driven management solutions from WP4, and

integration and validation efforts within WP6, ensuring consistency and alignment across the

project's technical pillars.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 17 of 96

2. Software Design: Orchestrator(s)

2.1. Guided design and development by OSL patterns

OpenSlice (OSL) is an open-source operations support system designed to provide support for

VNF/NSD onboarding and management. The platform supports TM FORUM OpenAPIs related to

Service Catalog Management, Ordering, Resource, and more. It enables NFV developers to

onboard and manage VNF and network service artifacts, while allowing vertical customers to

browse available service specifications.

While OSL itself is not a direct component of the NATWORK project, it remains highly relevant.

The experience and insights gained from OSL in terms of modular design, API integration, and

automation have contributed to the development of NATWORK orchestrator services.

Conversely, innovations and service orchestration strategies emerging from NATWORK can be

applied back into the OSL ecosystem to enhance its capabilities. This mutual influence fosters

stronger alignment between open-source frameworks and emerging innovations in 6G

orchestration and management.

Figure 1: OSL Reference Architecture

OSL design principles pave the way for a modular architecture where each component has a

well-defined role, promoting separation of concerns and facilitating easier maintenance and

scalability (Figure 1). Key aspects include:

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 18 of 96

• Service Catalogs and Specifications: Services are defined using standardized templates,

enabling consistent exposure and management within the Service Catalogs. This

approach allows for both predefined network services and the flexibility to define custom

configurations.

• Standardized APIs: Utilizing TM Forum Open APIs (e.g., TMF 638 for Service Inventory,

TMF 641 for Service Ordering) ensures seamless integration with external systems and

promotes interoperability across different domains.

• Automation and Workflow Management: The orchestration engine supports automated

workflows, managing the provisioning, configuration, and lifecycle of network services.

This automation is crucial for efficient service delivery and adherence to predefined

policies and standards.

OpenSlice focuses on aspects related to 6G slice lifecycle management by supporting the

modelling, ordering, and orchestration of services that underpin network slices. For example, it

can handle slice templates representing vertical services, manage slice instantiation requests,

and interface with lower-layer domain orchestrators responsible for RAN, core or transport

slicing. This enables coordination of network slice deployment and assures service-level

requirements in an end-to-end manner. These capabilities are complementary to NATWORK

orchestration services, which focus on distributing and peering services across clusters where the

security requirements of assigned services and hosting clusters are met; thereby, providing

secure-by-design end-to-end slice operation over multiple domains.

The orchestrator design inherently supports closer interaction and interfacing between

components:

• End-to-End Service Orchestration: The orchestrator coordinates with various domain

controllers (e.g., SDN, NFV, RAN) to provision and manage services across the entire

network stack, from user devices to core networks and cloud services.

• Lifecycle Management (Figure 2): Services undergo a comprehensive lifecycle, including

provisioning, monitoring, scaling, and decommissioning. OSL provides the framework for

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 19 of 96

managing these stages effectively, ensuring services operate as intended throughout

their lifespan.

Figure 2: Service Lifecycle Workflow

• Resource and Service Inventory Management: Maintaining accurate records of both

resources and services is essential. OSL defines mechanisms for tracking and managing

these inventories, enabling real-time insights and efficient resource utilization.

By integrating these OSL design principles into the orchestrator design, we establish a robust

foundation that promotes efficient service delivery, adaptability to evolving requirements, and

seamless integration within the broader network ecosystem.

2.2. Orchestration at the Extreme Edge (Feather)

Workload orchestration at the (extreme) edge is achieved through two frameworks developed

during the project: Feather, a Kubernetes-compatible agent, leverages multiple runtimes in

addition to containers, allowing the ideal execution format for any single deployment (e.g.

microVM, container). While microVM support was already present, WASM support and cross-

runtime pod networking, as well as Flocky support, have been specifically added for NATWORK.

Flocky is a newly created higher-level framework designed as a decentralized alternative to

Kubernetes, which leverages Feather as a deployment agent. Flocky is designed around the Open

Application Model (OAM), and detects node capabilities (e.g. security options, attestation) which

can be used by deployments as required.

2.2.1. Functional components

Figure 3 shows the relations of the various components in Feather (listing only the relevant

ones, excluding implementation details):

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 20 of 96

• Pod Manager: handles pod-level logic, splitting each deployment into individual

workloads to be handled by providers. This component provides minimal info to the

PodNetwork manager for pod-level networking.

• Providers: Each provider represents a single type of workload e.g. containers, unikernels.

The API is standardized in an interface, and based on the Open Container Initiative Image

Specification for extensibility.

• Pod WAN/Network/Address Manager: components for a custom pod networking

framework which allows workloads from different runtimes in the same pod to

communicate as if they were all container-based.

• eBPF traffic routing: traffic routing for the pod networking framework is based on various

eBPF programs to enhance performance, handling traffic at the kernel level. Instances

and configuration are managed from the PodNetwork manager.

• Workload runtimes: while not directly a component of Feather, at least one of these is

required on each Feather node for Feather to work correctly; e.g. containerd, KVM.

Figure 3: Feather architecture, with main components in yellow (orchestration) and green (networking).

At the orchestration level, Flocky (Figure 4Figure 4) uses three main services, each of which may

be (partially) deployed on any node in a cluster depending on its role:

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 21 of 96

• Discovery Service: responsible for finding other Flocky nodes in the cluster, within a

preconfigured latency range. The discovery process is entirely decentralized and

resembles gossip-based networks or algorithms. It operates entirely at the network level,

gathering only the required properties for node identification and communication. Other

services may subscribe to updates from the Discovery service.

• Metadata Repository/service: The Repository service gathers additional metadata from

discovered nodes based on an extension of the Open Application Model. Specifically, it

collects hardware resource status, important node properties (e.g. dedicated hardware,

attestation, security), and operational status e.g. applications and detected runtimes.

Metadata collection is highly flexible and handled through Capability providers, while the

actual metadata is stored in a local repository.

• Swirly/Deployment services: workload deployment is split into two separate services as

Swirly (orchestration) and Deployment. The Swirly service receives requests for

application deployments (i.e. one or more workloads), splits them into multiple parts

based on workload requirements and discovered node capabilities, and deploys each

workload on the most suitable node. For orchestration-only nodes, the Deployment

service may be ignored, and vice versa.

Figure 4: Overview of Flocky services, their main components, and interaction between nodes

2.2.2. Interfaces and Protocols

Feather offers two interfaces for workload deployment:

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 22 of 96

• Virtual Kubelet API: A REST API capable of communicating with a Kubernetes cluster;

requires authentication data to join the cluster.

• Standalone API: A custom REST API which accepts Kubernetes deployment manifests to

be deployed on the local node, primarily used with Flocky.

All Flocky interfaces are REST APIs, and may be used to extract information or extend the

framework:

• Disco API: offers pull- or subscribe-based methods of receiving node discovery updates.

• Repo API: Offers subscribe-based methods for remote node metadata updates and newly

discovered workload types/definitions (i.e. new software pushed into the cluster). Also

provides methods for matching workloads with specific implementations based on

requirements, and for fetching remote node metadata. Finally, it supports subscription-

based methods to register Capability providers, allowing future components to provide

more orchestration functionality.

• Swirly API: Hosted on each node with an orchestrator role; exposes methods exclusively

for deploying an OAM application.

• Deployment API: Hosted on each worker node and contains only methods to deploy

individual workloads.

2.2.3. Data artefacts

• Discovery data: In-memory node catalog used by the Discovery service, containing node

names and (public) IP addresses.

• Metadata repository: In-memory OAM metadata store, containing the latest hardware

status, running workloads, available runtimes and node properties as reported by each

discovered node.

• Latency/Quality of Experience: Used by the Discovery and Swirly services to determine

eligible nodes for discovery and deployment, respectively. The latter depends on the

chosen optimization parameters and implementation, and relies on information from the

Metadata repository.

2.3. Orchestration at the CRAN

This section presents the orchestration mechanisms and architectural design developed within

the scope of the NATWORK project, for managing CRAN in an O-RAN-compliant environment.

While the implementation is being validated on CERTH’s infrastructure using the

OpenAirInterface (OAI) platform, the proposed solution is infrastructure-agnostic and can be

deployed on any CRAN setup equipped with an OAI-compatible RF frontend. The framework

introduces novel, AI-driven orchestration strategies that integrate network intrusion detection,

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 23 of 96

dynamic resource allocation, and user management. Specifically, the solution employs AI/ML

models trained on real-world datasets to classify network traffic and dynamically adjust resource

allocation and user management. It identifies malicious users and triggers a Radio Resource

Control (RRC) connection release to mitigate their impact on the network while prioritizing

legitimate users through end-to-end slicing. Below, we analyze the components of the

framework.

Figure 5: End-to-End Deployment of the AI-Driven Network Intrusion Detection 5G Network

2.3.1. Functional components

The CRAN orchestration framework consists of several key components as illustrated in Figure 5,

which consists of the experimental setup. The components are responsible for managing

resources, suppressing attacks and optimizing performance. These include:

• Orchestrator: The central Docker/Kubernetes-based entity that coordinates real-time

network intrusion detection and dynamic resource allocation based on AI/ML models. It

deploys the necessary network functions (gNB, UPF, AMF, SMF, etc.) and facilitates their

communication. Core network functions communicate through a service-based

architecture (SBA) using Fully Qualified Domain Name (FQDN) resolution, while

communication between the Access and Mobility Management Function (AMF) and gNB

occurs via Docker bridges.

• Anomaly Traffic Detector (ATD): This component resides near the User Plane Function

(UPF) and continuously monitors GPRS Tunnelling Protocol (GTP) traffic, currently using

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 24 of 96

Scapy [1] in this first prototype. After collecting and processing packet data, it classifies it

with a Random Forest model and computes the anomaly ratio per User Equipment (UE).

This ratio is sent to the xApp via a socket-based interface, functionally representing the

A1 interface.

• O-RAN RIC (Radio Intelligent Controller): Based on FlexRIC, it serves as the programmable

control plane for the RAN. It supports Service Models (SM) such as Key Performance

Monitoring (KPM) and Radio Resource Control (RC), and it manages interactions with

multiple xApps.

• xApp: Upon receiving anomaly ratio metrics from the ATD, the xApp performs two critical

actions: 1) reallocates PRBs (physical resource blocks) to prioritize legitimate users

(slicing), and 2) triggers an RRC Connection Release for malicious users, effectively

disconnecting them from the network. These actions are enforced through the E2

interface using the RC SM.

These components operate in a tightly integrated loop: the ATD observes traffic and sends per-

UE anomaly ratios to the xApp; the xApp computes updated slicing or release decisions and

applies them via the RIC to the RAN. This feedback loop enables both rapid intrusion response

and optimal resource allocation.

Figure 6: O-RAN Architecture

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 25 of 96

2.3.2. Interfaces and Protocols

The framework consists of interfaces and protocols to ensure seamless interoperability between

components. For clarity, Figure 6 illustrates the O-RAN Architecture. The interfaces include:

• E2 Interface: Facilitates communication between the near-real-time RAN Intelligent
Controller (RIC) and the E2 agent, which is gNodeB, allowing dynamic radio resource
management.

• O1 Interface: Supports the exchange of management and orchestration data between the
non-real-time RIC and network components. In this context, it enables the management
of user traffic within the UPF. We propose that the ATD be deployed on the non-RT RIC,
parsing user data through the O1 interface, as core network functions may be deployed
on a Service Management and Orchestration framework.

• A1 Interface: Enables policy-based control from the non-real-time RIC to the near-real-
time RIC for AI/ML-driven optimization. Since there is currently no open-source
implementation of non-real-time RIC, a socket-based interface was defined between the
ATD and the xApp for real-time anomaly classification and policy enforcement

• NG Interface: Connects the 5G Core (5GC) to the gNodeB for control and user-plane traffic
handling.

2.3.3. Data artefacts

• Anomaly Packet Ratio: Describes the percentage of anomaly packets per UE within a total
packet window size N.

• Packet Flow Data: Traffic flows from UPFs, analyzed by the ATD to detect anomalies and
enforce security policies. The traffic flows contain the following features: Protocol Type
(e.g., TCP, SCTP, UDP), Service Type (e.g., HTTP, FTP, SSH), Connection Status Flag (e.g., SF
for normal, REJ for rejected, RST for reset) and Source and Destination Byte Counts.

• Resource Block Allocation Percentage: This is the security policy/decision metric, and it
determines the resource block allocation per UE after the calculation of the anomaly ratio
per UE.

• KPM Data: Real-time performance metrics, including throughput, latency, and resource

utilization, collected via Key Performance Indicator Service Model.

2.4. Secure-by-Design Orchestration at the Core

Orchestration at the core network level is pivotal for scalable, secure, and sustainable

management of 6G slices. At the core domain of the 6G architecture, orchestration must handle

high-scale, multi-tenant environments to ensure secure, efficient, and resilient management of

slices and services. The first components have been designed prior to NATWORK in [2][2], and

initial development of the FORK: A Kubernetes-Compatible Federated Orchestrator [3]. The

secure-by-design orchestrator, namely secure FORK (sFORK), is under development in NATWORK

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 26 of 96

and will be deployed at the core, serves as a decentralised coordination hub, managing

dependency graphs, optimising resource distribution, and ensuring end-to-end security across

distributed domains. sFORK will deliver novel capabilities on top of its baseline, including:

implementation of global components operated by slice providers, API communication to enable

interaction between different clusters and their client (i.e. slice provider), new functional

components to gather information regarding the security status and requirements of slice

components as well as clusters, and accordingly make distribution as well as deployment

decisions. sFork integrates with a peer-to-peer Cyber Threat Intelligence (CTI) sharing solution –

developed within NATWORK as an Operation Support System (OSS) - to drive cluster hygiene

scores, mitigating threats like Denial of Sustainability (DoSt) attacks while aligning with Net-Zero

goals. The following subsections detail the secure-by-design orchestration and the CTI solution

components, focusing on their roles, functionalities, interfaces, and data artefacts.

The Secure-by-Design Orchestration framework ensures that deployment and management of

network slices, cloud-native functions (CNFs), and associated services are conducted in a secure,

dynamic, and sustainable manner across distributed clusters. This section will explain the

functional components, interfaces and protocols, and data artefacts of the Secure-by-Design

Orchestration framework.

2.4.1. Functional components

The secure-by-Design orchestrator architecture comprises the following key functional

components as shown in Figure 7 Figure 7: Secure-by-Design Orchestration Architecture and

components:

• Global Agent: Acts as the central decision-maker, responsible for managing global

dependency graphs, initiating and monitoring deployments, and negotiating with local

orchestration agents. It evaluates cluster offerings based on a variety of factors such as

hygiene, security, resource availability, and energy sustainability metrics.

• CNF Manager: Manages the lifecycle of Cloud-Native Functions (CNFs), including their

deployment, scaling, and monitoring. It ensures that the CNFs adhere to the defined

requirements and interacts with local orchestrators to execute deployments.

• Slice Manager: Handles the orchestration of network slices, dynamically tracks slice

status, and ensures that resources are allocated efficiently to meet slice-specific

requirements. It interfaces with the global agent and local orchestration agents to

dynamically deploy slices based on demand and available resources and monitor them.

• Local Orchestration Agents: Operate within each cluster to manage the actual

deployment and lifecycle of CNFs. These agents are responsible for exposing cluster

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 27 of 96

capabilities, such as resource availability, hygiene scores, and compliance data, to the

global agent. They execute deployment decisions and provide real-time status updates

back to the global agent.

• Dependency Operator: Responsible for dynamically creating and maintaining global

dependency graphs, mapping the relationships between microservices and CNFs across

clusters. It guarantees that these dependencies are up-to-date and that the correct

subgraphs are distributed across clusters based on resource availability and security

criteria.

• AI-Powered Scheduling: Utilizes machine learning models to enhance resource allocation

and scheduling decisions within clusters. By analysing patterns obtained from cluster

components and predicting future demands, it provides the local orchestration agents

with intelligent insights to optimize the use of available resources.

• Cluster Requirements: Defines and communicates the specific requirements for

deploying CNFs in each cluster, ensuring that local orchestration agents are aware of the

needs for resource allocation, security, and performance metrics. This confirms that

deployment actions comply with cluster-specific constraints.

• Monitoring: Continuously tracks the health, performance, and security status of CNFs and

network slices. Monitoring data is provided to both local and global orchestration agents

for insights, enabling timely adjustments to have optimal performance and compliance

with security policies. Prometheus integration into the orchestrator follows a modular

approach, either an API call wherever online interaction is required or by accessibility to

a common data point for offline interactions.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 28 of 96

Figure 7: Secure-by-Design Orchestration Architecture and components

The components are presented in Figure 7, which demonstrates the secure-by-design

orchestration framework and CTI solution. The interaction between these components enables

secure 6G slice management. The FORK orchestrator’s Global Agent coordinates with the Slice

Manager and CNF Manager to deploy CNFs, leveraging CTI insights provided by the CTI Agent,

which collects and shares vulnerability data. Local Orchestration Agents execute deployments,

the Dependency Operator maps CNF relationships, the FL Algorithm extracts and processes both

CTI data and monitoring/telemetry metrics, and Monitoring feeds real-time telemetry to the local

orchestration agents and FL algorithm. Together, the system enables dynamic, adaptive, and

secure orchestration of 6G slices.

2.4.2. Interfaces and Protocols

The orchestration framework relies on well-defined interfaces for communication:

• Slice Management API: It facilitates communication between the slice manager and other

components, such as the orchestrator, CNF manager, and local cluster agents. It enables

operations like workload migration, scaling, and reconfiguration.

• Global Orchestrator API: A RESTful API enabling the global orchestrator to query resource

availability, hygiene scores, and initiate deployments or scaling actions.

• Cluster Local agent API: Local agents expose resource metrics, energy scores, and security

statuses via a protected endpoint, enabling informed real-time decision-making.

• Monitoring and Telemetry Interface: Connects to monitoring tools to gather

performance, resource usage, and telemetry data from clusters and deployments. This

interface leverages existing monitoring solutions. It reuses existing open-source

Prometheus APIs, unlike the other NATWORK-specific interfaces.

• Machine Learning Interface: Supports integration with the AI-based learning framework

to incorporate predictive insights for slice management decisions

2.4.3. Data artefacts

The orchestration framework manages several key data artefacts critical for secure and efficient

operation:

• Global Dependency Graphs: Graphs describing the interrelations between the CNFs in a

6G slice, including dependencies, scaling policies, and preferred cluster placements.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 29 of 96

• Cluster Capability Descriptors: Structured documents (YAML/JSON) detailing available

resources, security posture, energy sustainability scores, and supported CNF profiles for

each cluster.

• CNF Deployment Templates: Secure YAML templates and Helm charts specifying how

CNFs should be deployed, including security settings, resource limits, affinity rules, and

upgrade strategies.

3. Data Plane Computation Offloading Design

3.1. Offloading functions in the data plane

As network security threats continue to evolve, traditional security mechanisms that rely on

centralized processing in software-defined infrastructures or in dedicated management-based

collectors and platforms are becoming insufficient. To address this challenge, the activities

carried out in Task 3.2 focus on the architectural design and implementation of security services,

microservices, and network functions as fully programmable data plane pipelines. By leveraging

the capabilities of data plane programmability for different types and variants of backends and

in different domains of the 6G architecture, the proposed approach aims to offload security

functionalities directly into network devices, enabling high-performance, low-latency threat

detection, efficient mitigation mechanisms and overall improved security.

A key aspect of this approach is the development of Decentralized Feature Extraction (DFE) for

AI-based security functions. This allows for the real-time analysis of network traffic at the device

level, enabling advanced security features such as AI-driven traffic pattern prediction, anomaly

detection, and federated learning-based threat mitigation. The goal is to reinforce security

mechanisms within 6G networks by embedding intelligence directly into programmable network

elements, preventing attacks from propagating beyond the data plane.

To achieve real-time security enforcement, the activity also focuses on the design and

implementation of Wirespeed AI (WAI) models. These AI-driven security mechanisms will be

optimized for execution on programmable hardware, such as SmartNICs and FPGA-based

accelerators, ensuring that security functions operate at full line rate without introducing latency

overhead. By embedding AI models into network processing units, the system will be capable of

dynamically identifying and mitigating security threats as they emerge.

Additionally, the implementation of security pipelines leveraging hardware acceleration

enhances the efficiency of network threat detection and response. Such pipelines are designed

to utilize high-performance computing resources within network infrastructure, enabling inline

security processing that adapts to diverse attack vectors in real time.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 30 of 96

To facilitate AI-driven security enforcement, the task will also involve the development of data

plane code generators for AI training and feature telemetry. This includes leveraging tools such

as P4RROT to enable automated feature extraction and telemetry collection, supporting

continuous learning and refinement of security models. By integrating AI-powered feature

collection mechanisms directly into the data plane, the system will be able to adapt security

policies dynamically based on evolving network conditions.

The main objective of this initiative is to identify and block Advanced Persistent Threats (APTs) at

the data plane level, before they reach cloud-based AI collectors or centralized security

management systems. The key challenge lies in designing a programmable security framework

that can dynamically adapt to network anomalies and heterogeneous attack events in real time.

The proposed approach will ensure that security enforcement mechanisms remain proactive and

responsive, leveraging AI and high-performance networking technologies to protect 6G networks

from emerging cyber threats. By integrating AI-driven security functionalities directly within

programmable data plane elements, this initiative will enable a highly efficient, autonomous, and

adaptive security architecture, ensuring that threats are mitigated at the earliest possible stage,

without impacting overall network performance.

Figure 8: NATWORK Data Plane offloading solutions and flavours

3.1.1. NATWORK Offloading flavours

The chart shown in Figure 8 shows the different NATWORK solutions proposed in the context of

Task 3.2 for the data plane offloading of network functions focused on cybersecurity. Each

solution has been placed in the graph based on two different classifications: 1) the 6G

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 31 of 96

domain/segment where the solution is deployed and applied, and 2) the type of offloading

implemented.

About the 6G segments, most of the envisioned solutions are conceived to be run in the

backhauling or within the Core Network functionalities. These solutions mainly rely on the

wirespeed analysis of packets in the proximity of the UPF – outside or inside, depending on the

considered programmability stack (i.e., whether GTP tunnelling is considered or not). One

solution, conversely, is based on the processing of the radio signal in the RAN gNB segment,

targeting anti-jamming detection.

About the offloading flavour, the classification has been performed based on the degree of

offloading, as follows:

1. Control/management plane offloading API: such solutions enable communication

between orchestrators/controllers to the involved data plane devices to discover,

configure, activate and dynamically tune the behavior of offloaded network functions.

Such APIs are designed and developed in strict collaboration with Task 3.1 dedicated to

security orchestrators

2. Hybrid offload: the offloaded function may reside partially in the data plane as pure

pipeline or into dedicated control plane backends. As an example, the LLM-based

intrusion detection system (IDS) is partially deployed in external GPUs, not directly

involved in the data plane pipelines. In addition, the anti-jamming detection is based on

specific xAPPs retrieved by the Near-real time RIC.

3. Pure data plane offloading: Full offloading refers to the embedding of security network

functions implemented as pipelines or chain of pipelines inside data plane backends. This

includes either software-based containers running accelerated pipelines (e.g., eBPF, XDP,

DPDK) or hardware-based backends such as SmartNIC, programmable switches, or FPGA.

In this case, network functions requiring the adoption of AI are designed to run AI tasks

inside the backend. If AI engines are not available (e.g., programmable switches do not

onboard GPUs), a transformation of the pipeline is implemented to embed the logic of

the selected AI algorithm. WAI and ML offloading solutions are envisioned and presented

for different backends.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 32 of 96

Figure 9: Offloading deployment and runtime configuration options

3.1.2. Deployment and configuration interfaces

A hybrid architecture (Figure 9) is adopted to support scalable, flexible, and dynamic deployment

of security functions in 6G networks. It combines SDN-like control plane (CP) mechanisms with

cloud-native management plane (MP) orchestration. This hybrid architecture ensures that

security services can be efficiently deployed and orchestrated based on their specific operational

requirements—whether they need to be tightly integrated within the network infrastructure or

implemented as cloud-based applications.

The CP mechanism (shown as a purple line) follows an SDN-like paradigm, where security

functions are implemented as programmable pipelines that operate at the data plane level. In

this model, a centralized P4-based controller is responsible for deploying the security pipeline

and configuring flow rules dynamically. This approach is particularly well-suited for network-

centric backends, where real-time traffic enforcement, advanced packet processing, and network

telemetry provide continuous security enforcement. Regarding its implementation, the control

plane leverages P4 backends to dynamically manage security policies, optimize traffic routing,

and enforce fine-grained access control mechanisms. A centralized SDN controller orchestrates

updates and reconfigurations, ensuring adaptive threat response.

The advantages of this mechanism are the following:

1. Low-latency packet processing directly at the network level.

2. Enhanced control over security rules via SDN programmability.

3. Real-time traffic analysis and mitigation.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 33 of 96

This approach is particularly relevant for network-oriented research groups and institutions, such

as CNIT and ELTE, which focus on SDN-based network programmability and secure traffic

management.

The Management Plane (MP) – Cloud-Native Approach adopts a cloud-native methodology,

where security functions and applications are deployed as containerized workloads running

within environments such as Kubernetes pods or Docker containers. This approach is well-suited

for function/app backends, where security services need to scale elastically, integrate with cloud-

based AI engines, and interact with software-driven network environments. Security services are

designed as microservices, packaged into Kubernetes or Docker containers, and orchestrated

dynamically based on demand. This allows seamless integration with cloud-native AI models,

data processing pipelines, and federated security mechanisms. The advantages are the following:

1. High scalability and elasticity for security functions.

2. Integration with cloud AI-based anomaly detection and mitigation.

3. Simplified deployment and management through Kubernetes orchestration.

This model is best suited for function-oriented security applications developed by ISRD and

CERTH, focusing on AI-enhanced security mechanisms, cloud-native microservices, and

distributed threat intelligence frameworks.

In the following sections, we provide an introduction and design details for the different

NATWORK data plane offloading solutions.

3.2. Wirespeed AI (WAI) and Decentralized Feature Extraction

(DFE)

Enabling ML-driven functions in network devices remains challenging due to the distributed and

non-linear computations required by Deep Neural Networks (DNNs). Unlike decision trees or

support vector machines, DNNs demand specialized processing capabilities. We outline four

architectural approaches to integrating DNNs within network functions, as shown in Figure 10:

• External DNN Processing: The switch/NIC matches and forwards selected packets to an

external device (e.g., FPGA) for DNN inference. While feasible, this approach introduces

delays and power inefficiencies due to inter-device communication.

• Feature Extraction at the Switch/NIC: To optimize processing, the switch/NIC extracts ML-

relevant features in real time, reducing the computational load on an external device

(e.g., GPU). However, packets still require buffering until inference is completed.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 34 of 96

• Integrated GPU within the Switch/NIC: Emerging hardware integrates a dedicated GPU

alongside programmable ASICs, enhancing processing speed and minimizing inter-device

communication overhead. However, GPUs remain energy-intensive.

• Fully Offloaded DNN Processing: The proposed approach offloads the entire ML pipeline

to a programmable switch/NIC, leveraging match-action tables for in-network inference.

This eliminates external dependencies, reduces buffering needs, and ensures low-latency

processing at wire speed. Furthermore, integrating the ML model directly into network

hardware improves energy efficiency compared to GPU-based setups.

Figure 10: Embedding AI/ML inside programmable switches

The Decentralized Feature Extraction (DFE) and the Wirespeed AI (WAI) have been designed to

cover all these approaches. In particular, the DFE operates with all the approaches to extract the

desired features from packet trains and flows received and processed by the network element.

Depending on the selected approach, the DFE extracts the relevant features and, if needed,

provides feature telemetry to external consumers (i.e., “a” and “b” in the figure) or to internal

devices (i.e., “c”). Alternatively, it may act as the first pipeline stages of a fully data plane

embedded solution including WAI (i.e., “d”). This is the most interesting and challenging case,

described in Figure 11.

Packets are received by ingress interfaces, parsed and DFE-analyzed. The DFE pipeline stage is in

charge of extracting the selected features used internally to feed WAI. The figure also shows the

possibility of exporting such extracted features as a telemetry stream to feed external collectors

and consumers. This last design is implemented and evaluated as an additional component in

Task 4.3.

Stateful memory is exploited to store and update stateful features (i.e., features related to the

history of a session/flow/connection or aggregated information averaged in time windows).

Then, a specific pipeline stage is dedicated to onboard WAI. WAI implements the input-output

logic of a ML model without necessarily reproducing the full ML structure. Depending on the

design, the model may be hardcoded in the WAI or configured as a list of control-plane flow

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 35 of 96

entries. In the last case, this WAI can be dynamic, i.e., it can be configured at runtime to change

the ML network function. Flow rules, policy rules, and enforcement rules are configurable.

The WAI stage returns the output of the considered ML model, while the next WAI enforcer pipe

maps the WAI output to a list of actions. As an example, if the classification output of the DDoS

mitigator WAI stage is Boolean (i.e., “attack”, “non-attack”), the enforcer may implement a

block/discard action on attack-tagged packets, or a forward port action towards a firewall

analyser.

This functional design may be applied to several backends: programmable switches, smart NICs,

white boxes, software-based switches. In the following, we report the activities involved in

implementing WAI and DFE on a programmable switch and on a NVIDIA Bluefield-2 DPU.

Figure 11: DFE and WAI design submodules

3.2.1. DFE/WAI in P4 programmable switches

Deploying Deep Neural Networks (DNNs) inside programmable data planes poses a significant

challenge due to the limited arithmetic and memory capabilities of switching hardware. To

overcome these limitations, we propose a method to distill a trained, integer-quantized DNN into

a series of lookup tables (LUTs), enabling fast, predictable inference through P4 match-action

logic. This approach allows us to embed complex decision logic directly into a switch pipeline,

supporting low-latency ML-based packet processing without external acceleration.

The core idea of our method is to reduce the inference phase of an integer-quantized DNN to a

deterministic match-action operation. The procedure begins with a fully trained, quantized DNN.

Given that input features and network weights are represented as integers, every possible input

combination can be mapped to a corresponding DNN output. This exhaustive mapping enables

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 36 of 96

the DNN to be transformed into a static LUT: each entry matches a specific combination of inputs

and stores the associated output. For an input vector composed of features encoded in n and m

bits, the LUT requires 2n+m entries. While this process is lossless in terms of model accuracy, the

exponential growth in memory with the number of input bits quickly becomes a bottleneck. To

address this, we adopt a hierarchical cascaded design.

Instead of implementing a monolithic LUT, we construct a network of 2-input DNNs, each distilled

into smaller LUTs. Input features are grouped in pairs and passed through their respective 2-input

models. The outputs are then recursively paired and processed by higher-level models, ultimately

producing a final output. This layered design drastically reduces the memory footprint: for

instance, a 4-input DNN (8-bit features, 1 output) would require a monolithic 4 GB LUT; with the

cascaded method, three 64 KB LUTs suffice (192 KB total).

Our implementation targets a P4_16 programmable switch (e.g., Barefoot Tofino). The solution

is composed of two primary components:

• P4 Parser and Stateful Stage: Extracts ML-relevant features from incoming packets (DFE).

• P4 Pipeline: Executes the cascaded LUT inference using match-action tables (WAI).

The parser is configured to support common networking headers and extract integer-encoded

features for DNN inference. It includes stages for parsing Ethernet, IPv4, TCP/UDP, and optionally

application-specific headers (e.g., GTP for mobile core networks). Each parsed field is stored in

metadata registers accessible by the pipeline.

Figure 12 illustrates the parser design. It begins with the parse_ethernet state, followed by

parse_ipv4, and then TCP/UDP stages where transport-level features (e.g., TCP window size, UDP

length) are extracted. These become the input features for the cascaded LUTs.

Figure 12: P4 Parser and pipeline for a 6-feature input

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 37 of 96

The pipeline structure directly mirrors the cascaded LUT architecture. Consider a DNN with 6

input features and 1 output, realized as a cascade of five 2-input distilled LUTs (Figure 13A). The

P4 pipeline is accordingly composed of five tables (Figure 13B):

• LUT_1, LUT_2, LUT_3: First layer tables, each taking two input features and producing

intermediate metadata.

• LUT_Inter: Second layer table, processing the outputs of the first layer.

• LUT_Final: Last-stage table, producing the final classification and applying the action (e.g.,

forward, drop).

Figure 13: LUT distilled DNN and its P4 pipeline

Each table performs an exact match on either packet features or intermediate results stored in

local_metadata. The action for each match is to set metadata fields using the set_meta or

set_lut_meta actions. In the final stage, set_egress or drop actions are triggered based on the

classification output.

This modular design can easily be extended to support different ML models and additional

features. By updating the parser, new fields can be extracted without altering the pipeline logic.

Similarly, updating the LUTs enables rapid deployment of retrained models, making this approach

suitable for dynamic environments such as intrusion detection or anomaly classification in IoT.

While the cascaded LUT method enables fast and deterministic DNN inference, several trade-offs

must be considered:

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 38 of 96

• Memory Scaling: Each additional input feature increases the LUT depth logarithmically

but not exponentially. Still, total memory usage must be budgeted carefully.

• Integer Encoding: Input features must be quantized and encoded as integers; floating-

point inputs are not supported.

• Training Overhead: Cascading introduces training complexity, as multiple small models

must be trained and distilled. However, inference latency remains constant—one table

lookup per layer.

Despite this, the system allows for real-time, inline ML inference in switching hardware, a major

milestone for in-network computing.

The algorithms of the offloaded P4 DNN in P4 switches are described in Section 6.5.1. All the

details of the design, the implementation and the results are reported in a journal publication

[4] with the NATWORK ack.

3.2.2. DFE/WAI in NVIDIA Bluefield-2 DPU

Distributed Denial-of-Service (DDoS) attacks remain a significant cybersecurity threat, disrupting

legitimate access to services. Among various attack strategies, the TCP SYN flood attack is

particularly effective, overwhelming target servers by exploiting the TCP handshake mechanism.

Traditional mitigation techniques, such as rule-based filtering and machine learning-based

approaches, often introduce high latency and fail to respond effectively to large-scale attacks. To

address these challenges, this offloading activity proposes a novel DDoS mitigation system

leveraging programmable Data Processing Units (DPUs) to offload attack detection and

mitigation processes from the host system. By utilizing hardware acceleration and intelligent

flow-based filtering, real-time attack prevention is achieved while maintaining high network

performance.

The proposed mitigation system is built on the architecture of programmable DPUs, specifically

leveraging the DOCA Flow framework to define hardware-accelerated packet processing

pipelines. The system is implemented on a SmartNIC equipped with a multi-core ARM CPU and

programmable packet processing pipelines. The architecture consists of several processing stages

that work together to detect and mitigate attacks before they impact the host system.

At the core of the system is a structured sequence of processing pipelines that efficiently classify,

filter, and handle network traffic. Packets enter the DPU through either the physical network port

or the host interface and are first processed by the root pipe, which identifies and filters non-

IPv4 traffic. Once packets pass this initial stage, they are examined by a blacklist pipe that

instantly drops traffic originating from previously identified malicious sources. The control pipe

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 39 of 96

plays a crucial role in dynamically classifying packets based on TCP flags and forwarding them for

further analysis.

The DPU architecture, shown in Figure 14, efficiently intercepts ingress traffic from both network

and host, processes it, and forwards it to the egress port. Packets enter through either P0

(network-facing Physical Port) or pf0hpf (host-facing Physical Function). These interfaces connect

to hardware-offloaded Open-Virtual-Switch (OVS) bridges using Traffic Control (TC) or Data Plane

Development Kit (DPDK) optimizations to prevent software switch bottlenecks. The bridges link

P0 and pf0hpf to the DPU-internal Scalable Functions, SF1 and SF2, which are lightweight

functions deployed on a parent PCIe function. They access the parent's capabilities and resources

while maintaining dedicated queues (txq, rxq), allowing multiple services to run concurrently.

Figure 14: DPU architecture

Packets are then processed through programmable hardware pipes defined via DOCA Flow APIs.

These pipes determine packet handling—whether to drop, modify, forward to the CPU, or steer

directly to another SF, bypassing the CPU. The DDoS mitigation application runs on the DPU CPU

and directly interfaces with SF1 and SF2. During environment initialization, hardware pipes are

created to direct packets to the SF queues when processing is needed. A Receive Side Scaling

(RSS) mechanism distributes traffic across queues, and the application retrieves packets using

DPDK APIs in polling mode, parsing and forwarding them accordingly. Assigning one ARM core

per tx-rx queue pair is recommended to avoid race conditions and performance issues.

Not only DOCA Flow APIs do establish hardware pipes at setup but also dynamically manage

them, adding or removing entries as needed. These pipes match standard packet fields, including

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 40 of 96

IP source and destination, L4 protocol, and L4 ports. Additionally, they can assign metadata to

packets, accessible by subsequent pipes and ARM cores for further processing.

For SYN flood detection, the system incorporates two specialized pipelines: the SYN pipe and the

SYN miss pipe. The SYN pipe monitors incoming SYN packets and applies metadata-based tracking

to detect suspicious patterns, leveraging hardware counters to track per-flow statistics. If an IP

address shows an abnormal SYN-to-TCP ratio, it is flagged as a potential attacker and blacklisted.

The SYN miss pipe is responsible for handling previously unseen IPs, ensuring that all new sources

are added to the monitoring system for further evaluation.

To ensure high performance and scalability, the architecture is designed to minimize CPU

intervention. This is an essential design requirement that avoids the implementation of a low-

performance offloading service. Hardware pipes manage most packet classification and filtering

tasks, while only a limited number of packets require host processing. The system dynamically

updates flow records, blacklists, and counter thresholds to adapt to evolving attack patterns in

real time. By leveraging the DPU’s built-in hardware acceleration, the mitigation system is

capable of handling high-speed network traffic at line rate while maintaining low latency and high

efficiency. The details of the offloaded DDoS mitigator in DPU are described in Section 6.5.2. All

the details of the design, the implementation and the results are reported in [5].

3.3. In-network ML models

Machine learning (ML) in the programmable data plane, particularly with Intel Tofino, presents

unique challenges due to the architectural constraints of programmable network switches.

Tofino, which can be programmed in the P4 (Programming Protocol-independent Packet

Processors) language, is designed for high-speed packet processing with stage-based pipelines

but lacks the general-purpose computational capabilities required for complex ML tasks. Unlike

CPUs and GPUs featuring dedicated tensor cores and floating-point processing units, Tofino’s

architecture prioritizes efficiency in packet forwarding over extensive computation. As a result,

executing ML directly on the switch is highly constrained by the available processing power.

Another major challenge is the limited memory available within Tofino. ML models typically

require significant storage for parameters, feature representations, and intermediate

computations. However, Tofino primarily provides SRAM and TCAM memory, which are designed

for fast packet classification rather than storing large ML models. Additionally, the switch lacks

native support for floating-point arithmetic, making it difficult to implement models that rely on

high-precision numerical operations.

Feature extraction, which is a critical step in many ML applications, is also difficult to implement

efficiently in the data plane. Traditional ML models process features derived from entire packet

flows, whereas Tofino operates at the per-packet level, making it challenging to aggregate

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 41 of 96

information across multiple packets. Moreover, P4 lacks support for iterative computations, such

as loops or complex mathematical operations, which are commonly used in preprocessing and

normalization steps. Consequently, implementing ML-based anomaly detection, traffic

classification, or congestion control within the switch requires significant workarounds to extract

meaningful features from packets in real time.

To overcome these challenges, we propose a ML model as illustrated in Figure 15Figure 15. The

model uses a federated learning-based approach for deploying machine learning (ML) in the data

plane across multiple network slices. Slices A and B are two distinct network slices, each with its

own ML oracle, controller, and switches. The key components of this approach are:

1. Oracles: These serve as ground truth sources for training the ML models and monitoring

their accuracy.

2. Controllers: Each network slice has a controller that receives a small percentage of flows

from the switches. The controller updates the ML model if accuracy drops and offloads

computational work from the switches.

3. Federated Learning via a Coordinator: Instead of training ML models individually on each

switch, the Coordinator aggregates models from both network slices through secure data

aggregation, producing an improved global ML model. This updated model is then sent

back to the controllers for deployment.

4. Switches: Each switch is responsible for processing packets using a lightweight ML model

piece. Only a small fraction of flows is sent to the controller to improve the model without

overloading switch resources.

Figure 15: Data plane ML model

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 42 of 96

While the architectural limitations pose significant challenges for direct ML deployment in the

data plane, a federated learning approach with coordinated control-plane support offers a

practical and scalable solution for enabling intelligent network functions. For implementation

details and access to the codebase, refer to Section 5.6.

3.4. RAN security-performance balancer

The service aims to balance the performance of radio elements, and the security applied to the

radio to ensure the constant availability of radio resources (Figure 16Figure 16). The balancer will

consider, on the one hand, the risks of DDoS attacks that occur in the radio interface and, on the

other hand, the performance requirements posed to the radio software/hardware due to

increased traffic. The risk of the attack considered by the balancer comes from the anti-DDoS

xApp which performs attack detection. The main task of the balancer is to understand when the

increased performance required is due to an attack in progress or regular peak traffic. The

balancer will inform the agents when they should apply deeper packet inspection or when the

security controls can be reduced. The service is implemented as a near-Real-Time RAN Intelligent

Controller (near-RT-RIC) xApp that is compliant with the O-RAN architecture. It communicates

with the near-RT RIC via standard xApp API.

Figure 16: Security-performance balancer architecture

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 43 of 96

In conclusion, the service acts as a crucial decision-making component within the O-RAN

architecture, dynamically adjusting security measures and performance parameters based on

real-time threat assessments and traffic demands. By integrating seamlessly with the near-RT RIC

through standardized xApp APIs, it provides a robust and adaptive solution to maintain both

operational efficiency and resilience against DDoS threats in modern radio networks.

3.5. LLM-based IDS

To extract useful features for intrusion detection from raw packet sequences, CERTH has

developed an LLM-based IDS based on the BERT transformer encoder architecture. Our model

has been pretrained on unlabeled data traffic using self-supervised training methods including

contrastive learning. Through our pretraining procedure our model learns to recognize similar

and dissimilar flows enabling generalizable intrusion detection across diverse traffic domains.

Figure 17: LLM-Based IDS Overview

In Figure 17, we show an overview of the architecture and pipeline for the traffic data processing.

In this pipeline we capture traffic that is separated into sequences of packets that are part of a

flow identifiable by the 5-tuple of IP protocol, IP addresses, and ports. The features selected for

the packet are various packet fields such as the packet length, TCP flags etc. We also extract

additional metadata from each packet including a timestamp (relative to the beginning of the

flow) as well as direction which is a custom binary flag which replaces the IP address and port

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 44 of 96

headers in the packet to hide information that irrelevant (and potentially leak label information)

during training.

To generate tokens from this sequence, we use a custom embedding layer that translates all raw

packet header values into float vectors which are then concatenated together through a linear

layer to form a packet token. In these tokens we also add information about the order of each

token in the sequence using a positional embedding layer. The encoder stack of our LLM-based

IDS takes a sequence of packet tokens as input. The encoder stack of our model is a 4-layer

transformer encoder stack with 4 attention heads, and the embedding dimension is 256. In

addition to the packet tokens, we also append a special CLS’ token at the beginning of the

sequence, which serves as the output of the model used for classification. Through our

pretraining procedure the transformer encoder stack has been trained to output a

representation of the flow packet sequence in the CLS’ token.

To classify each flow, we use a classifier module (such as a simple MLP) which can either be

trained along with rest of the model during a supervised fine-tuning step or can be trained on its

own only to identify malicious flows from the output of our LLM (using a simple MLP or linear

classifiers such as Logistic Regression, Random Forest etc.). Unsupervised anomaly detection is

also possible using the output of the LLM to detect flows that significantly differ from regular

traffic.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 45 of 96

4. Software Design: Orchestration Support Systems

4.1. Moving Target Defense (MTD) Framework

The proposed MTD Framework is responsible for enhancing the security level of network

functions across the edge-to-cloud spectrum. It enforces both pro-active and reactive actions,

mainly entailing the re-instantiation and live migration of VNFs and CNFs, which could be either

a live (i.e., stateful) migration or stateless migration depending on the current state of the

environment and the target resources. These operations can also be performed in an inter-slice

manner, allowing a VNF/CNF to be moved not only to different domains, e.g. from the core node

to an edge node, but also to a different network slice whenever necessary. During such

operations, advanced forensic analysis can be performed by duplicating the transferred

checkpoint image for a static image security scan or for running an isolated deployment in a

sandboxed environment for analysis. In addition, IP shuffling and port shuffling are also provided

as MTD actions to further strengthen the security of NFV-based Telco Cloud networks.

Figure 18: Architecture of the MTD framework

The proposed framework consists of three main components, as shown in Figure 18: Architecture

of the MTD framework:

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 46 of 96

• MTD Controller is the enforcer component that executes the MTD actions proposed by

the MTD Strategy Optimizer, via direct interaction with the NFV MANO and the Network

Slice Manager, supporting the orchestration of the resources on the infrastructure.

• MTD Strategy Optimizer is mainly responsible for determining the details of the MTD

actions such as the optimal frequency (for pro-active cases) or the necessary trigger (for

reactive cases), along with the internal mechanisms to utilize (e.g. live migration).

• MTD Explainer helps the service owners to gain insight on performed MTD actions, by

generating a human-interpretable explanation of why such action was necessary to be

conducted.

This deliverable focuses on the first component, the MTD Controller, described in the following

section, while its algorithms are further described in Section 6.4.

4.1.1. MTD Controller

The MTD Controller is responsible for applying the MTD actions determined by the MTD Strategy

Optimizer.

4.1.1.1. Technical description

The MTD Controller, as part of its responsibilities, mainly interacts with other internal

components such as the MTD Strategy Optimizer, and external B5G/6G components such as NFV

MANO and the Network Slicing Manager. MTD Controller provides an API endpoint to be called

by the MTD Strategy Optimizer whenever an action is determined to be necessary by the latter

component. The MTD Controller handles the migration actions by communicating with external

components via their APIs.

4.1.1.2. Functionalities provided

The following functionalities are provided by the MTD Controller:

• Executing a live migration for a CNF

• Executing a stateless migration for a VNF

• Executing a stateless migration for a CNF

• Performing IP shuffling operations for both VNF and CNF

• Performing port shuffling operations for both VNF and CNF

4.1.1.3. Dependencies

The MTD Controller depends on the following components:

• The MTD Strategy Optimizer, another component of the proposed MTD Framework.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 47 of 96

• The NFV MANO: in our 5G testbed we use the open source implementation maintained

by the makers of the NFV standard, the European Telecommunications Standards

Institute (ETSI), namely ETSI OSM (Open Source MANO).

• Kubernetes as NFVO: to orchestrate MTD actions on CNFs, Kubernetes is required as the

MTD controller is interfaced to its API for operations such as CNF live migration.

4.1.1.4. Algorithms

By offloading the algorithmically complex and heavy parts to the MTD Strategy Optimizer

component, the proposed framework allows MTD Controller to be a simpler component which

is responsible for executing the policies decided by the former component.

4.1.1.5. Technologies

For the MTD Controller component, the following technologies are used:

• Python as the programming language for the application logic.

• Kubernetes API for CNF orchestration.

• OSM API for VNF orchestration.

4.1.1.6. Interfaces and Protocols

The following interfaces are provided by the MTD Controller:

Table 1: Interface to MTD Controller

EnforceMTDAction
Description Enforce the MTD action determined by the MTD Strategy Optimizer

Input Details of the determined MTD action (possibly in JSON format).

Output Acknowledgement (positive or negative) of the performed MTD action.

4.2. Selective Cyber Threat Intelligence (CTI) solution

The CTI solution is a middleware component developed to assess and advertise the security

posture and operational health of clusters in multi-domain environments. Its primary purpose is

to enable trust-informed orchestration by serving as a mechanism for gauging the

trustworthiness of a cluster, based on real-time security telemetry and vulnerability insights.

Rather than acting solely as a data exchange platform, the CTI solution functions as a dynamic

trust assessment tool, continuously evaluating the hygiene of clusters and using that assessment

to influence orchestration decisions—such as whether to place or migrate services to a given

domain.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 48 of 96

Designed as a decentralized and adaptive framework, the CTI system collects vulnerability

reports from local scanners or integrated K8s resources, monitors changes in the threat

landscape, and shares filtered and policy-compliant threat intelligence across domains. This

information enables clusters to make informed, risk-aware decisions about resource placement,

thereby reinforcing secure-by-design principles across the orchestration pipeline. The system

operates via a publish-subscribe architecture, allowing for selective and policy-driven CTI

dissemination between trusted peers. The CTI solution enhances the overall resilience and

sustainability of the 6G network by aligning placement decisions with hygiene scores—derived

from local vulnerability telemetry. The following sections outline the functional components,

interfaces, and data artifacts that enable this capability.

4.2.1. Functional components

The CTI component in each cluster/domain assesses cluster hygiene scores and shares the CTI

data. Reconfiguration actions are triggered by signals generated from the CTI component's

analysis of real-time hygiene scores. These insights guide reconfiguration processes, enabling the

continuity of dynamic policy enforcement. The CTI component communicates findings to the Kxs

control plane, which can prevent deployments that fail hygiene score requirements or security

checks. It alerts the orchestrator when cluster hygiene scores fall below acceptable thresholds.

This interaction allows the CTI component to integrate with the Kxs control plane, supporting

dynamic security assessments and policy enforcement. It facilitates real-time monitoring,

workload adjustments, and security compliance while optimizing the overall performance and

reliability of the network.

The CTI service at the core includes the following key functional components as shown in Figure

19: CTI Solution Architecture and components:

• Vulnerability Operator: Interfaces with local vulnerability scanners and telemetry

collectors (e.g., Prometheus, custom security tools) to translate raw data into structured

CTI formats.

• CTI Agent: Deployed in each cluster to collect, process, and publish local vulnerability data

and threat information. Manages the subscription and dissemination of CTI data between

clusters and orchestrators. Ensures that only authorized and policy-compliant data is

exchanged.

• CTI Policy Module: Defines and enforces sharing rules based on cluster-specific

confidentiality, privacy, and trust policies. Controls adaptive filtering of CTI data.

• CTI Analytics Module: Processes received threat intelligence and computes metrics to

compute Cluster Hygiene Scores and feed orchestration logic.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 49 of 96

Figure 19: CTI Solution Architecture and components

The components are presented in Figure 19, which illustrates the key elements of the CTI

solution. The interaction between these components enables CTI creation and sharing

mechanisms effectively. The CTI agent is responsible for creating CTI data in STIX format and

sharing it using TAXII (Trusted Automated Exchange of Intelligence Information) protocol. The CTI

Agent uses the CTI Policy module to dynamically filter shared data based on the sensitivity of the

threat intelligence, the trustworthiness of the requesting cluster, and pre-defined compliance

rules. It enforces sensitivity and necessity algorithms to analyse, examine and prepare each

vulnerability metadata before sharing it with the other party. This component also calculates the

CNF and overall cluster hygiene scores. Cluster hygiene scores directly influence CNF placement

and migration decisions, enabling proactive risk mitigation and maintaining slice continuity. It

also ensures that the data are structured for sharing with Local orchestration agents previously

introduced in Section 2.4.1.

4.2.2. Interfaces and Protocols

The CTI system communicates using standardised and interoperable protocols and APIs,

including:

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 50 of 96

• TAXII: Protocol for sharing STIX-based intelligence between CTI Agents, Brokers, and

Orchestrators.

• CTI Hygiene Score Reporting interface: Receives cluster/domain hygiene scores and

supports integration with dynamic security assessment tools.

• RESTful APIs: Lightweight interfaces for control, subscription management, and metadata

exchange between CTI components and orchestration modules.

• STIX data model: for CTI vulnerability representation and sharing across clusters.

4.2.3. Data artefacts

The CTI solution manages and exchanges the following key data artefacts:

• CTI datasets: Final CTI datasets to share with receiving parties. These will be contributed

as open-source

• Vulnerability Reports: Data collected from scanners summarizing the vulnerabilities

present in active services.

• Cluster Hygiene Scores: Quantitative representation of a cluster’s security posture, based

on the number and severity of known vulnerabilities.

Policy Metadata: Definitions of what type of CTI metadata can be shared, filtered, or withheld

based on security and privacy considerations.

4.2.4. CTI Cross-Domain selective Sharing

In a multi-domain 6G environment, sharing CTI information across clusters must be carefully

managed to ensure that only relevant information is exchanged without exposing sensitive or

confidential data. To address this, each domain defines a local data model of both the necessity

and sensitivity of the information contained in CTI artefacts. To guide selective sharing, we

introduce a confusion matrix that classifies CTI data based on its necessity and sensitivity. This

matrix, shown in Figure 20: Simple confusion matrix for decision making strategy, provides the

basis for determining what should be fully shared, anonymized, or withheld, depending on the

specific trust policies and compliance requirements of each domain.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 51 of 96

Figure 20: Simple confusion matrix for decision making strategy

Building upon this classification, we have developed a scoring mechanism that quantifies the

decision process for each CTI data element. This mechanism evaluates the risk and utility of

sharing certain fields and is being refined as part of a broader strategy currently under

development for publication. It utilises two maps named as Sensitivity Map and Necessity Map

strategies as shown in Figure 21: Sample Sensitivity and Necessity maps for decision making

strategy. In addition, a policy model is implemented to formalize these decisions. It allows each

domain to express sharing preferences in a structured format, which is enforced at runtime by

the CTI Policy Manager. This ensures consistent and policy-compliant sharing behaviour across

clusters. These efforts support a context-aware, privacy-preserving CTI exchange model, enabling

NATWORK to achieve secure, adaptive orchestration and management of 6G slices across

federated domains.

Figure 21: Sample Sensitivity and Necessity maps for decision making strategy

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 52 of 96

4.3. AI-based Behavioural Analysis service

4.3.1. DFE/WAI

4.3.1.1. Technical Description

DFE (Distributed Feature Extraction) and WAI (Wirespeed AI) are software components designed

to enable high-performance, intelligent, and adaptive security functions within distributed

environments in the data plane with different backends. They leverage real-time telemetry and

AI-driven threat analytics to detect and mitigate network-based attacks efficiently. DFE and WAI

communicate with the Offloaded Function Agent (OFA) API to exchange function discovery,

backend state information, requests for activation or deactivation of functions, and change

mitigation rules. This interaction enables efficient flow policy configuration adaptive AI model

updates based on threat intelligence, and dynamic enforcement of mitigation policies in response

to changing attack patterns. Additionally, DFE and WAI expose a REST API that allows external

systems to interact with and manage their functionalities through well-defined endpoints.

4.3.1.2. Functionalities provided

The current functionalities exposed by the OFA are the following:

1. Discovery of active DPU instances and their capabilities

2. Activation of accelerated VNF running in the data plane

3. Deactivation of accelerated VNF in the data plane

4.3.1.3. Dependencies

DPU are configured and run with NVIDIA DOCA Flow SDK. However, at the OFA level, the only

dependency needed for communication is a REST API Client able to send get, post and delete

methods to the OFA.

4.3.1.4. Algorithms

In the current implementation, no algorithms are employed in the OFA.

4.3.1.5. Interfaces and Protocols

DFE and WAI communicate with the Offloaded Function Agent (OFA) API to exchange real-time

telemetry data, attack detection alerts, and mitigation rules. The REST API provides an interface

for external systems to interact with and manage DFE and WAI functionalities. The following

endpoints facilitate seamless integration (see Table 2).

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 53 of 96

Table 2: OFA methods

Endpoint Method Description
/discovery GET Discovers active DPU instances and their capabilities.

/startddosfunction POST Activates SYN flood mitigation detection.

/stopddosfunction DELETE DELETE, Stops the running mitigation function.

JSON message
format

 {
 "running_containers": [
 "DPU_DFE3",
 "DPU_DFE2",
 "DPU_DFE1"
]
}

{
 "message": "Container 'DPU_DFE1' started

successfully!"
}

{
 "message": "Container 'DPU_DFE1' stopped

successfully!"
}

4.3.2. Data plane ML

The proposed data-plane offloaded machine learning (ML) model is a hybrid architecture

combining in-network processing with control-plane intelligence to achieve scalable and

efficient traffic classification.

4.3.2.1. Technical Description

The following components are used to construct our proposed data-plane offloaded ML model.

An overview of the architecture and the interactions between the components can be seen in

Figure 22:

• Programmable switches, responsible for extracting features from packets, executing in-

network random forest inference, and forwarding a small fraction of the traffic to the

control plane.

• An IDS (Intrusion Detection System) running in the control plane. The IDS does not suffer

from the memory and computational limitations of in-network solutions and can provide

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 54 of 96

more accurate classification results for a great number of traffic patterns, at the cost of

increased latency and reduced throughput.

• A controller, which supervises the in-network inference. By using the IDS to classify the

traffic samples sent by the switches, the controller can detect when the accuracy of the

in-network inference declines and can train and deploy an improved classification model

as a response.

Figure 22: Data plane ML components and interactions

4.3.2.2. Functionalities Provided

• Feature Extraction: Switches parse incoming packets and extract predefined features

useful for traffic classification.

• In-Network Inference: Lightweight random forest inference is performed on the switch to

classify packets in real time.

• Traffic Sampling: A small subset of traffic flows is forwarded to the control plane to enable

model validation and updates.

4.3.2.3. Dependencies

• Programmable Data Plane: Requires switches supporting the P4 language (e.g., Intel

Tofino) for feature extraction and inference logic.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 55 of 96

• Control Plane Infrastructure: Includes a controller capable of model training, monitoring,

and deployment.

• IDS Software: Must be capable of receiving mirrored traffic and classifying it using

complex ML models.

4.3.2.4. Algorithms

• In-Network Random Forest Inference: A decision-tree-based classifier tailored for P4

and switch constraints (e.g., integer arithmetic, limited memory).

• Accuracy Monitoring: Periodic evaluation of in-switch inference accuracy using IDS-

classified samples.

• Model Retraining Algorithm: Triggers when inference accuracy falls below a threshold;

uses collected data to update the ML model.

4.3.2.5. Interfaces and Protocols

Table 3: Interface to P4 Runtime

P4 Runtime API
Description Provides a control interface for programming and managing P4-based switch

behavior, including feature extraction and ML inference logic.

Input Protobuf or JSON-based configuration describing tables, actions, and match
fields.

Output Confirmation of configuration changes or error messages from the switch.

4.3.3. Microservice behavioural analysis

The NATWORK B5G architecture follows a microservice-based approach. Microservices

architecture is a fundamental enabler of flexible and scalable 6G network services. Unlike

monolithic applications, in microservice-based applications, network functions are decomposed

into smaller, independent components that operate autonomously, allowing for scalable

deployment, real-time adaptability, and efficient resource management, making them well-

suited for dynamic network environments. In the following section a module that monitors the

performance of microservices in a continual manner to ensure the efficient operation of system

is presented.

4.3.3.1. Technical Description

The Microservice behavioural analysis module performs continuous microservice performance

monitoring to ensure efficient operation of the system. In NATWORK, this involves leveraging

runtime metric collectors and packet sniffers to continuously track key performance indicators,

such as CPU and memory usage, ingress/egress traffic, etc. The module analyses real-time

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 56 of 96

monitoring data, to determine whether microservices meet predefined performance

requirements and if abnormal traffic flows occur in the network. If deviations are detected by an

AI-based Intrusion Detection System (IDS), automated scaling decisions and elasticity actions are

triggered to maintain optimal resource utilization and prevent service degradation. Figure 23

shows the position of the microservice behavioural analysis module and its interconnection to

other modules. In particular, this module comprises microservice profiling techniques and AI-

driven anomaly detection mechanisms for enhanced microservice profiling and threat detection.

It interacts with the monitoring engine to collect real-time data on microservices resource usage

and traffic metrics, the microservice orchestrator to trigger scaling decisions dynamically based

on detected anomalies and the SDN controller to enforce mitigation actions.

Figure 23: Position of the microservice behavioural analysis module and interconnection to other modules

4.3.3.2. Functionalities Provided

By microservice profiling and behavioural analysis techniques, the following functionalities are

supported:

• Capture network traffic at runtime, utilizing packet-captured (Pcap) files

• Tracking and observation of active flows

• Real-time monitoring of computational and network resource usage

• Flow traffic profiling

• Real-time detection of outliers and identification of anomalies

• Alarm triggering for irregular flows or resource usage

• Automated, near-real time enforcement of flow control rules

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 57 of 96

4.3.3.3. Dependencies

NATWORK’s microservice behavioral analysis modules are tightly integrated with and dependent

on the real-time monitoring tools being developed in the context of Task 4.2 and documented in

deliverable D4.1. Indicatively:

• NATWORK relies upon Software-Defined Networking (SDN) for microservices

programming and considers Kubernetes for microservice scheduling and orchestration.

• NATWORK builds upon open-source solutions like free5GC [6] for the deployment of 5G

networks in compliance with 5G standards.

• For collecting traffic data to perform microservice profiling, packets sniffers, such as

tcpdump are being utilized.

4.3.3.4. Algorithms

While microservices offer significant advantages, their distributed nature makes them inherently

more vulnerable to threats such as denial-of-service (DoS) attacks, privilege escalation, and

unauthorized access. Given these risks, security is another critical aspect, making behavioural

analysis essential in microservice-based architectures to detect anomalies and provide protection

against potential breaches.

To effectively analyse microservice behaviour, it is necessary to monitor their performance both

on a temporal and a periodic basis, aiming to identify any deviations from normal operation. On

the one hand, tracking how network traffic patterns change over time allows for capturing

anomalies that may evolve gradually or threats that are identifiable only by analysing a certain

period of time. On the other hand, sudden changes in microservice behaviour, such as

unexpected spikes in ingress traffic or unusual increases in resource consumption, may indicate

malicious activity and have to be contained immediately.

To address these challenges, microservice profiling techniques and AI-based intrusion detection

mechanisms are employed to analyse system behaviour in real-time and identify anomalous

behaviours. More specifically, two attack mitigation mechanisms are supported: online attack

detection based on an exponential moving average (EMA) function and an AI-based intrusion

system. The former allows for dynamic and responsive monitoring of data streams, quickly

identifying outliers that could indicate abnormal conditions. The AI-powered system

continuously analyses telemetry monitoring data to establish behavioural models of normal

microservice operations and b) traffic and flow related data. A 1D Convolutional Neural Network

(CNN) is utilized for handling the computational resource monitoring data: By profiling CPU,

memory, and network usage under typical conditions, the system can classify traffic as normal or

irregular, identify deviations that indicate potential ongoing attacks or unexpected system

behaviour that aims at exhausting the network resources.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 58 of 96

Concerning traffic related data, the AI-powered system processes data input in the form of PCAP

files. The AI training follows two distinct modalities: (i) by extracting network flows from each

PCAP file and encoding them as integers, and (ii) by leveraging statistical and temporal features

derived from each flow, such as packets per second, average packet count, and the time gaps

between consecutive packets. For each modality, a dedicated AI model is employed: for the first,

a Fully Connected Multilayer Perceptron (MLP) and a CNN for the second. These models are

independently trained to learn patterns within the respective data types, aiming to identify

network behavior indicative of different attack types. During inference, the system processes live

PCAP-based network data and feeds them to the AI-based IDS analyzing it to detect and alert on

any signs of malicious activity. The two employed mechanisms are particularly adept at

recognizing abnormal resource consumption patterns, allowing early threat detection and

prompt intervention.

Upon detecting suspicious activity, NATWORK applies adaptive flow control and other automated

mitigation measures to prevent potential threats and ensure network stability. An example of

online UDP Flooding attack detection and mitigation is shown in Figure 24: UDP Flooding Attack

Execution and Figure 25: New flow control rule (left) and a graphical representation of flow rules

(right).

Figure 24: UDP Flooding Attack Execution

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 59 of 96

Figure 25: New flow control rule (left) and a graphical representation of flow rules (right)

4.3.3.1. Interfaces and Protocols

The following interfaces are provided by the Microservice behavioural Analysis:

Table 4: Interface to SDN Controller to enforce flow rules

Interface to SDN Controller
Description Interface to SDN Controller to enforce flow rules

Input Json containing a new flow rule (src-ip and port, action enforced)

Output Json containing the status of the enforcement (success/fail)

Table 5: Interface to Microservice Orchestrator to report irregular resource usage and trigger scaling decisions

Interface to Microservice Orchestrator
Description Interface to Microservice Orchestrator to report irregular resource usage and

trigger scaling decisions

Input Json containing the resource alert (microservice name, resource usage fields,
scaling action)

Output Json containing the status of the enforcement (success/fail)

Table 6: Interface to monitoring engine to retrieve real-time monitoring data

Interface to monitoring engine
Description Interface to monitoring engine to retrieve real-time monitoring data

Input Network and resource utilization data

Output -

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 60 of 96

4.4. Security-performance balancer service

4.4.1. Technical description

The Security-performance balancer service is implemented as a near-Real-Time RAN Intelligent

Controller (near-RT RIC) xApp that is compliant with the O-RAN architecture. It communicates

with the near-RT RIC via the standard xApp API. ISRD provides a proprietary implementation of

the near-RT RIC called Liquid Near-RT RIC which can operate with ISRD proprietary Liquid RAN or

other O-RAN compliant RANs. The architecture and interfaces of a Liquid Near-RT RIC are shown

in Figure 26. The Near-RT RIC connects to the E2 nodes (O-DUs and O-CUs), xApps and the Non-

RT RIC over O-RAN compliant E2, xApp API and A1 interfaces, respectively. The SMO/non-RT RIC

is not included in the ISRD solution but can be provided by 3rd party.

Figure 26: ISRD Liquid Near-RT RIC interfaces.

The Liquid Near-RT RIC general deployment architecture is depicted in Figure 27. Docker

Compose is the default deployment method, but Docker Swarm or Kubernetes deployment is

also possible. It includes the following Docker containers:

• Management API: Oversees the deployment, configuration, and lifecycle management of

xApps within the RIC

• Enablement API: Provides APIs for xApps to interact with essential RIC services

• A1 API: Manages A1 node connections and maintains the state of A1 interfaces.

• SDL API: Provides an API for shared data access among RIC components and xApps

• E2 Service API: Manages E2 node connections and maintains the state of E2 interfaces.

• Grafana: Includes Grafana for Key Performance Measurement presentation.

• Valkey Database: key-value data store

• KPM xApp: It is a proprietary ISRD xApp providing standardized O-RAN KPMs.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 61 of 96

Figure 27: ISRD Liquid Near-RT RIC general deployment architecture.

4.4.2. Functionalities provided

The service provides the following main functionalities:

• Performance monitoring: receives infrastructure performance parameters such as CPU

load from RAN L2/L3 nodes (i.e., O-DU/O-CU).

• Security and performance optimization: optimizes the security xApp parameters, e.g.,

inter-arrival time Performance Measurement (PM) reporting frequency, based on the

target performance.

• Node control: sends a control message to xApp to modify its operation parameters.

4.4.3. Dependencies

Security-performance balancer service relies on the following components:

• ISRD anti-DDoS xApp is a Python-based xApp that detects a UE attack on 5G RAN based

on the RRC Signaling Message Inter-arrival Time PM and disconnects the attacking UEs.

The Security-performance balancer controls this component to limit its load on the CPU

while maintaining a high DDoS attack detection rate.

• ISRD Liquid RAN: ISRD Liquid RAN consists of the following. O-RAN Central Unit (O-CU) is

a logical node hosting RRC [7], SDAP [8] and PDCP [9] protocols. O-RAN Distributed Unit

(O-DU) is a logical node hosting RLC [10]/MAC [11]/High-PHY [12] layers based on a lower-

layer functional split [12]. O-DU and O-CU provide performance measurements, e.g., CPU

usage, to the Security-performance balancer xApp via the standard O-RAN E2 interface

[13].

• ISRD Liquid near-RT-RIC: O-RAN near-real-time RAN Intelligent Controller (near-RT-RIC)

is a logical function that enables near-real-time control and optimization of O-RAN

elements and resources via fine-grained data collection and actions over E2 interface [13].

The A1 interface, connecting the SMO layer [14] with the near-RT-RIC, enables the SMO

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 62 of 96

to provide Policy Guidance, known as A1 Policies, to control non-real time functions of

the near-RT-RIC. The Security-performance balancer service resides in the near RT-RIC as

an xApp and communicates with the RIC platform via the standard API.

• ISRD KPM xApp: a proprietary ISRD xApp providing standardized O-RAN KPMs.

4.4.4. Algorithms

The main task of the balancer is to understand when the increased performance required is due

to an attack in progress or due to regular peak traffic. The system processes a dataset of n

samples, each with m feature measurements, and classifies them into k predefined categories

using a balancing mechanism. When a radio’s resource usage spikes, the system uses inference

methods like Naïve Bayes to classify new, unseen samples. Unlike standard Bayesian classification

that assumes all classes are equally represented, this approach adjusts classification thresholds

to improve decision accuracy. The balancer also dynamically instructs agents to either intensify

inspection (e.g., deep packet inspection) or relax security controls based on classification

outcomes.

4.4.5. Interfaces and protocols

Table 7: Interface to O-RAN A1

Standard O-RAN Interface A1

Description A1 enables policy-driven guidance of near-RT-RIC applications/functions. Its
Policy functions are Orchestration and Automation functions for non-real-time
intelligent management of RAN functions. It supports JSON [15]. A1 Policy
enables the automation of Security-performance balancer parameters
configuration from the SMO layer.

Input Configure service parameters using the O-RAN A1 policy in the JSON format.
Create, update, query, and delete policy. Subscribe to policy status and
feedback notifications.

Output Policy status and feedback notifications.

Table 8: Interface to O-RAN E2

Standard O-RAN Interface E2

Description The E2 interface is an open interface between two end points, i.e., the near-
RT RIC and the so-called E2 nodes, i.e., DUs and CUs in 5G. E2 allows the
near-RT RIC to control procedures and functionalities of the E2 nodes [13].

Input Performance Measurement: CPU usage.

Output Subscribe to Performance Measurement: CPU usage.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 63 of 96

Table 9: Interface to RIC

RIC APIs (Standard O-RAN Interface)
Description The Near-RT RIC APIs are a collection of interfaces providing Near-RT RIC

platform services to xApps [16].

Input Reporting parameters from anti-DDoS xApp.

Output Change parameters of anti-DDoS xApp.

4.5. Blockchain Based Trust Establishment

Current 5G authentication mechanisms involve main core network functions such as AMF and

AUSF for trust establishment, which, while secure, are not designed for repeated or federated

end-to-end validation. This becomes problematic in scenarios where devices interact with

multiple external service providers, as the centralized approach introduces delays and potential

bottlenecks. These challenges are particularly evident in trust-sensitive IoT applications such as

smart manufacturing and smart cities. To address this, the NATWORK system integrates

blockchain technology with the 5G authentication process, enabling a decentralized and

transparent trust establishment. This service allows devices to authenticate directly with service

providers after initial authentication and registration in the core, reducing reliance on the 5G

core and supporting scalable, trustless access control in distributed IoT environments.

4.5.1. Technical Description

The NATWORK system combines standard 5G components with blockchain elements to support

blockchain-based trust establishment. It operates on the existing 5G core architecture,

preserving its functions while introducing blockchain for enhanced trust. Key components include

the User Equipment (UE), which registers with the 5G network and records a pseudonym on the

blockchain, and the gNodeB node, which handles the connections. The AMF manages device

registration and triggers the blockchain-based process, while the AUSF and UDM perform identity

checks. External services in the Data Network (DN) interact with blockchain mechanisms for

further authentication, ensuring secure and efficient service access. The service involves five key

components and their based technologies working together to establish the trust between the

UE and the service provider.

• 5G Core: Utilizing Open5GS, it provides central network control, including

functions such as AMF, AUSF, and UDM, which are responsible for authentication

and mobility management for IoT devices.

• UPF and DN: The User Plane Function (UPF) also uses Open5GS and connects to

the Data Network (DN), facilitating data routing between IoT devices and service

providers.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 64 of 96

• UE: Emulating the User Equipment (UE) functionality, a Raspberry Pi with

UERANSIM is used in the physical testbed to simulate an IoT node.

• gNB: The gNB acts as the RAN node, utilizing UERANSIM to establish radio access

and communication between the UE and 5G Core.

• Blockchain: Implemented by Foundry, the blockchain serves as the distributed

ledger that integrates smart contracts to handle various parts of the end-to-end

trust establishment process.

4.5.2. Dependencies

This module represents the main component in S3-S-C2: End-to-End Security Management in

NATWORK. It requires the following:

• Blockchain: Part of the authorization database is replaced with an Ethereum-

compatible permissioned blockchain. This provides a decentralized, transparent,

and integrity-safeguarded mechanism for device authentication management. It

consists of a permissioned Ethereum Blockchain and a smart contract.

• Bridge: It is a vital component which acts as a communication bridge between the

5G core network and the blockchain. The main function of this bridge is to listen

to the log of the AMF function inside the 5G core, derive the pseudonym

associated with the registration, and to write authentication and access control

status to the blockchain via Web3 interfaces.

4.5.3. Functionalities Provided

As a combination of T3.1 and T4.3 in NATWORK, this module provides the following

functionalities:

• Decentralized Authentication: It securely verifies both users and devices across

IoT environments using end-to-end authentication. This reduces the chances of

unauthorized access by ensuring each identity is trusted and verified.

• Access Control Management: It applies strict security policies to manage the UEs

that can access specific services in the system that are provided by various service

providers. Only authenticated UEs are granted the right level of access to services.

• Privacy-preserving Identity Management: It generates secure, privacy-preserving

tokens that represent UE anonymized identities and their access policies. These

tokens help maintain anonymity while enabling trusted interactions, minimizing

the exposure of sensitive identity data.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 65 of 96

4.5.4. Algorithms & Workflow

The Service Provider which simulates external applications, leverages the blockchain for

offloading identity verification. It handles authentication requests, verifies pseudonyms via a

smart contract, and uses cryptographic signatures for challenge-response interactions. This

module issues short-term tokens for low-latency access without the need for repeated

authentication. By utilizing a permissioned blockchain to manage device credentials and access

control policies, NATWORK ensures verifiable, immutable identity assertions with reduced

reliance on centralized systems. Additionally, the Bridge facilitates seamless interaction between

the core and the blockchain, ensuring compatibility while maintaining privacy through

pseudonym-based identification. This approach aligns with zero-trust principles, improving

security, decentralization, and latency in IoT services.

4.5.5. Interfaces and Protocols

The following interfaces are provided by this service.

Table 10: Interface to Distributed Insertion

DistributedInsertion
Description Registers the UE by storing its pseudonym and associated access policy in the

blockchain.

Input Identifier, request payload (possibly in JSON format).

Output Acknowledgement of success/fail regarding the performed insertion
(registration).

Table 11: Interface to Distributed Query

DistributedQuery
Description Authenticates a UE against a service provider using token-based verification.

Input Identifier, request payload contains the token issued for the UE and service
provider details. (possibly in JSON format).

Output Acknowledgement of success/ unauthorized access attempt regarding the
performed query (authentication).

Table 12: Interface to Token Verification

TokenVerification
Description Verifies a service token issued to the UE and validates access using

blockchain.

Input Identifier, request payload contains the token to be verified and the
associated UE details (possibly in JSON format).

Output Acknowledgement of success/ Invalid token or UE pseudonym regarding the
performed action (verification).

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 66 of 96

5. Implementation

5.1. Orchestration at the Extreme Edge (Feather)

In Feather, Providers are implemented for both Containerd (Containers) and OSv (unikernels on

KVM). This distinction is made based on metadata fields compliant with the OCI specfication,

which are ignored by non-Feather agents, specifically feather.backend (container, OSv) and

feather.runtime (containerd, KVM). This allows runtimes to support multiple image formats, and

for image formats to run on different runtimes if possible.

Non-container images are created by including the workload VMdisk/image as a container layer,

and setting the required metadata. This mechanism is not like the Docker approach of multi-

platform images, and requires different image names per runtime, which is solved at a higher

level by Flocky. Some features may be limited depending on the chosen runtime, for example

due to limitations with OSv/KVM, only local read-only mounts are supported for unikernels at

this point. Kubernetes secrets and mounts are handled by boot scripts added to an OCI

(unikernel) image through a custom tool “Flint”.

Multi-runtime networking in Feather is supported in both Kubernetes clusters and in standalone

mode, although in Kubernetes Feather defaults to “legacy” network operation, which assigns

unique addresses to each container (instead of per pod) and assumes only a single container per

pod. Additionally, both IPv4 and IPv6 addressing schemes are developed.

For Flocky, Capability providers are implemented by Feather (hardware resources, running

applications, runtime features) and Warrens or a suitable VPN (network security features).

Remote attestation may also be registered as a separate Capability provider if present. Various

intents (Traits) are defined to allow workloads to request deployment with (among others) Green

energy, QoE limits, specific (secure) runtimes, attestation-capable nodes and specific resource

limits.

QoE calculation is open to implementation; currently implemented methods involve static

calculation based on node metadata properties and soft node-to-workload matching. Planned

ML-based calculation allows online learning of QoE properties from user preferences based on

gathered metadata.

Feather repository:

- Main repository: https://github.com/togoetha/feather-multiruntimenetwork

- Documentation: README.md in repository

- License: Apache 2.0 (open source)

https://github.com/togoetha/feather-multiruntimenetwork

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 67 of 96

- Important setup scripts: in repository

- Publication: in review, preprint 10.13140/RG.2.2.13816.35847

Flocky repository:

- Main repository: https://github.com/togoetha/flocky

- Documentation: README.md in repository

- License: Apache 2.0 (open source)

- Important setup scripts: in repository

- Publication: in review

5.2. Orchestration at the CRAN

The core network functions are based on OAI and deployed as microservices within Docker

containers. These functions include fundamental 5G core components such as the AMF,

Authentication Server Function (AUSF), Session Management Function (SMF), Unified Data

Repository (UDR), Unified Data Management (UDM), and multiple User Plane Functions (UPFs),

each configured with distinct Single Network Slice Selection Assistance Information (S-NSSAI)

values. An S-NSSAI configuration consists of a Slice Service Type (SST) and a Slice Differentiator

(SD), enabling an end-to-end slicing mechanism where a User Equipment (UE) can access multiple

slices through the same gNB. Each slice binds to a specific service type, adhering to predefined

Service Level Agreements (SLAs).

Since UE traffic passes through GTP tunnels within the UPFs, these functions play a crucial role in

detecting abnormal behaviours and analysing user demands. Recognizing the significance of

traffic data, 3GPP has introduced the Network Data Analytics Function (NWDAF) to collect and

analyze core network statistics. However, the O-RAN architecture does not yet integrate NWDAF.

To address this gap, we propose positioning NWDAF within the non-RT RIC, allowing it to process

core network data via the O1 interface when deployed within a Service Management and

Orchestration framework. NWDAF could subsequently apply traffic policies and send analytical

summaries to the RT RIC via the A1 interface, enabling real-time control through xApps that

manage RAN resources dynamically.

As an open-source implementation of NWDAF is currently unavailable, we developed a custom

solution named the Anomaly Traffic Detector (ATD). This network function monitors UPF traffic

and analyzes packets using Scapy [1], effectively serving as an NWDAF substitute. The ATD is

integrated with the FlexRIC-based RT RIC, chosen for its minimal computational overhead and

compliance with O-RAN specifications [17]. FlexRIC provides an E2 agent, near-RT RIC, and an

xApp development framework. In our setup, OAI’s gNB acts as the E2-Agent, while the xApp we

developed utilizes FlexRIC’s SDK to infer RAN functionalities from the E2-Agent, with a primary

http://dx.doi.org/10.13140/RG.2.2.13816.35847
https://github.com/togoetha/flocky

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 68 of 96

focus on the RAN Control (RC) SM. The ATD continuously monitors traffic at the UPF, classifying

UEs based on their IP addresses and associated S-NSSAI values. It intercepts packets in real time,

extracting the necessary features for classification. After collecting an initial set of N packets, the

ATD preprocesses the data and feeds it into the trained Random Forest model. The model

employs a sliding window mechanism, analyzing batches of 30 packets at a time to ensure near

real-time classification while mitigating false positives.

Beyond traffic analysis, the ATD incorporates a machine learning (ML) module to differentiate

between benign and malicious traffic. The ML model was trained using the KDDCUP'99 dataset,

a widely recognized benchmark for network intrusion detection systems [18]. This dataset

comprises over 4 million training instances and approximately 311,029 test samples, containing

a diverse range of features related to network connections, including packet header details and

content-based attributes.

For our classification model, we selected five critical features:

• Protocol Type (e.g., TCP, SCTP, UDP)

• Service Type (e.g., HTTP, FTP, SSH)

• Connection Status Flag (e.g., SF for normal, REJ for rejected, RST for reset)

• Source and Destination Byte Counts

These features were chosen for their significance in distinguishing between normal and malicious

traffic and their compatibility with real-time packet analysis via Scapy. Additionally, the dataset

includes four types of attack labels: Probing Attack, Remote-to-Local Attack, Denial of Service

(DoS) Attack, and User-to-Root Attack. The preprocessing pipeline included:

• Label Conversion: Transforming multi-class labels into a binary classification—1 for

attacks, 0 for normal traffic.

• Flag Standardization: Converting dataset-specific flag values to formats recognized by

Scapy.

• Feature Selection: Extracting packet-level features relevant to real-time classification.

• Encoding and Scaling: Applying OneHotEncoder for categorical variables and

MinMaxScaler for numerical values to normalize data.

Following preprocessing, we trained multiple ML models using TensorFlow, including Random

Forest, One-Class SVM, Local Outlier Factor, K-Nearest Neighbors (KNN), and Autoencoders.

Performance evaluations led us to select Random Forest due to its superior accuracy and efficient

training/inference times. Upon detecting anomalies, the ATD reports the per-UE anomaly

percentage to the xApp, which then executes RAN control countermeasures. It processes

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 69 of 96

incoming messages from ATD clients, extracting UE identifiers, S-NSSAI values, and the associated

anomaly ratios.

The detailed operation of our framework is illustrated in Figure 28. The ATD unit utilizing Scapy,

continuously monitors UPF traffic and classifies clients based on their IP and S-NSSAI values. It

manipulates each packet in real-time, extracting the necessary features that our ML model was

trained on. After collecting the first N packets, the ATD preprocesses these features and feeds

them into the Random Forest classifier. Then the Random Forest by applying a sliding window

mechanism processes N=30 packets at a time, classifying the traffic as benign or malicious. The

reason we selected 30 packets-window is to reduce infer/prediction times as close to real-time

and avoid false outliers in the classification with a larger input range. Finally, the ATD sends the

anomaly percentage per UE to the xApp for the RAN Control and countermeasures.

Figure 28: Detailed Architecture of the AI-Driven Network Intrusion Detection System

Code repository:

− Main repository: https://github.com/teo-tsou/oai-anomaly-detection/

− Documentation: README.md in repository

− License: Apache 2.0 (open source)

− Publication: https://doi.org/10.1145/3636534.3697311

5.3. Orchestration at the Core

The SCOUT system is implemented as a container-based architecture composed of 4 main

components: Vulnerability operator, CTI agent, CTI broker and a MongoDB database. It has a

backend API and frontend UI. The backend is developed in Python using the Flask framework,

and it handles the ingestion, processing, and transformation of vulnerability reports into STIX 2.1

format, which are then published to a TAXII 2.1 server. The frontend is built with React and

TypeScript, styled using the Mantine UI framework, and served using Vite.

https://github.com/teo-tsou/oai-anomaly-detection/
https://github.com/teo-tsou/oai-anomaly-detection/blob/main/README.md
https://doi.org/10.1145/3636534.3697311

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 70 of 96

FORK system is also implemented as a container-based architecture. It deploys its dependency

operator and orchestration and connection components to ensure cluster connectivity and

application dependency. Both components are containerized and deployed in Kubernetes for

ease of deployment and scalability. Communication between the UI and API is handled via

RESTful HTTP endpoints. The system can be deployed either manually using Github repo

implementation steps in Kubernetes with kubectl or using automated scripts.

SCOUT Code repository (CTI framework):

− Main repository: https://github.com/NetworkConvergenceLab/scout

− Documentation: README.md in repository

− License: Apache 2.0

− Publication: in submission

sFORK Code repository:

− Main repository: https://github.com/NetworkConvergenceLab/fork

− Documentation: README.md in repository

− License: Apache 2.0 (open source)

− Publication: https://doi.org/10.1109/ICIN60470.2024.10494435

5.4. WAI/DFE

The software implementing WAI and DFE at the DPU and P4 switches is based on the backend

features of the hardware platform. In the case of the DPU, a DOCA Flow VNF has been

implemented in C++ to realize the DDoS mitigator offloading program, based on DOCA libraries

version 2.9. In the case of P4, a baseline P4 program featuring a cascade of flow tables has been

employed to test the P4 capabilities in terms of stateful memory and SRAM/TCAM requirements,

utilizing the P4 Insight and the P4 Studio SDE 9.7 tools provided along with the APS Tofino switch

available at the CNIT laboratories.

Currently, the only available open-source software repository is the P4 DNN Distillation method

implementation and assessment software: The software repositories (DOCA programs, P4

programs) have not been released as open source. The plan is to release them on the next

deliverables.

Code repository:

− Main repository: https://github.com/emiliopaolini/P4NN_journal

− License: Apache 2.0 (open source)

− Publication: https://doi.org/10.1109/OJCOMS.2024.3411071

https://github.com/NetworkConvergenceLab/scout
https://github.com/NetworkConvergenceLab/scout/blob/main/README.md
https://github.com/NetworkConvergenceLab/fork
https://github.com/NetworkConvergenceLab/fork/blob/main/INSTALLATION.md
https://doi.org/10.1109/ICIN60470.2024.10494435
https://github.com/emiliopaolini/P4NN_journal
https://doi.org/10.1109/OJCOMS.2024.3411071

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 71 of 96

5.5. Security Performance Balancer

The Security Performance Balancer is implemented as an O-RAN compliant xApp and shipped

with ISRD Liquid RAN and Liquid Near-RT RIC as a commercial product package. The product is

provided to our customers on a per-license basis and as such there is no public repository

available.

5.6. In-network ML

Our In-network ML repository is structured around a flexible development and simulation

environment. It includes tools for compiling and deploying P4 programs for both eBPF and Intel

Tofino targets. It supports launching a Mininet-based testbed, simulating traffic using PCAP files,

and orchestrating various components such as controllers, oracles, and coordinators. Key

components include a Docker setup for managing dependencies, Python scripts for model

coordination and evaluation, and a shared library for synchronizing constants between P4 and

Python. The design emphasizes modularity and experimentation, making it easy for prototyping

secure and scalable in-network ML systems.

− Main repository: https://github.com/P4ELTE/Natwork-DataPlaneML

− Documentation: README.md in repository

− License: Apache 2.0 (open source)

− Publication: submitted to IEEE Globecom 2025, under review

5.7. MTD Controller

The MTD controller operates the parallel live migration (LiMi) of containers and microservices as

an MTD operation to enhance the security of an NFV orchestration platform, specifically

Kubernetes orchestration for CNFs, dynamically changing the attack surface of the cloud native

systems both in the edge and core domains. Within MTD, container migration can serve as one

of the approaches to achieving this dynamic shift by relocating workloads and disrupting

potential attack vectors. Additionally, such migration can be useful for isolating an infected

container by moving it to a secure cluster, allowing deeper analysis when an unknown attack

occurs. This isolation helps contain the breach, preventing the infection of other applications,

unauthorized access, and exfiltration of data.

The proposed migration approach leverages Kubernetes orchestration, the CRIU library, a

network file system (NFS), and a local container image registry. CRIU (Checkpoint/Restore In

Userspace) is a Linux-based software tool capable of freezing a running process, container, or

application and creating a checkpoint of its current state, saving it to the disk. This checkpoint

https://github.com/P4ELTE/Natwork-DataPlaneML

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 72 of 96

can then be transferred to and restored on any host, allowing the application to resume its work

as when it was frozen on the source host. The Kubelet checkpoint API of the Kubernetes

orchestrator provides the mechanism for creating these checkpoints. This API allows its users to

initiate a checkpoint, which captures the complete state of a container, including its memory,

process information, and file system data. The resulting checkpoint can later be used to restore

the container to its exact previous state. Triggering the kubelet API initiates checkpoint creation

through the container runtime in use. The runtime forwards this request to its lower-level

components, which, upon receipt, utilize CRIU to carry out the checkpointing process [19]. During

this process, CRIU performs various steps as shown in Figure 29.

Figure 29: CRIU steps

During the checkpoint process CRIU injects a “parasite code” into the container to collect process

IDs (PID), task resources, file descriptors, including open files and sockets, registers, and other

essential task parameters. The checkpoint can then be found as an archive file on the source

node. CRIU then removes the parasite code and detaches itself from the container’s process.

In contrast to checkpointing, restoring a container is currently not possible via the Kubelet API.

Thus, the MTD controller uses the algorithm and phases defined in Section 6.4. to restore the

container on the destination cluster while keeping the high-level Kubernetes orchestration aware

of the changes.

Benchmarking CNFs have been developed to test the MTD controller’s performance using various

containers, each specialized to handle resource-intensive tasks. They are designed to evaluate

migration performance under different service requirements, as detailed below:

1. CPU: The CPU benchmarking application is a program that simulates state transitions via

a series of states. In each of its four states, a CPU-intensive computation is performed,

beginning in State 1 (S1). By calculating 2 to the power of 256 10 million times in a loop,

a sustained high CPU load is created for an extended period. Once the task is completed

in a given state, the program transitions to the next state, repeating the process. When

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 73 of 96

the task in the last state is finished, it transitions to S1 again, thus continuously repeating

the workload while tracking the number of completed cycles and current state.

2. Memory: To perform migrations of applications that are running memory-intensive tasks,

a local redis in-memory cache is deployed. For comparison, three instances with three

different amounts of entries are migrated. 10'000, 100'000 and 1'000'000 key-value pairs

are written into the database.

3. Disk: To explore the impact of disk usage on the proposed migration, a MongoDB instance

is used, storing its data in BSON documents, a binary representation of JSON files.

Code Repository

− Main repository: https://github.com/RinchenKolo/ContMigration

− Documentation: README.md in repository

− License: Apache 2.0 (open source)

− Publication: in review

5.8. Blockchain Based Trust Establishment

The implementation provides a general guide in setting up and validating a 5G testbed

environment designed to demonstrate blockchain based trust establishment between IoT

devices and service providers. The setup leverages components such as Open5GS (5G

core), HTTPS Server (service provider network), UERANSIM (radio simulation), Raspberry

Pi (IoT UE), and Foundry (blockchain):

Testbed Initialization

Install and configure Open5GS, UERANSIM, and blockchain tools.

Set up UE, and gNB and 5G Core interaction.

Software Stack Setup

Deploy core NFs: AMF, AUSF, UDM, SMF, UPF.

Configure blockchain (via Foundry) and smart contract for trust attestation.

UE Registration Flow

UE initiates first-time network registration through gNB.

AMF/AUSF authenticate and record pseudonym/trust info to blockchain.

Blockchain Verification

IoT service provider queries blockchain using pseudonym.

On successful attestation, mutual authentication is completed.

 Validation Criteria

Establishment of trust without further core network involvement.

Successful cryptographic verification and secure channel setup.

 Code Repository

https://github.com/RinchenKolo/ContMigration

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 74 of 96

− Main repository: https://github.com/elte-cybersec/E2E-5G-Trust

− Documentation: README.md in repository

− License: Apache 2.0 (open source)

− Publication: under review

https://github.com/elte-cybersec/E2E-5G-Trust
https://github.com/elte-cybersec/E2E-5G-Trust

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 75 of 96

6. Strategies and Optimisation Algorithms

6.1. Orchestration at the Extreme Edge (Feather)

6.1.1.1. Strategies adopted

Orchestration in the edge is divided into two main aspects: flexibility, to support non-container

workloads and highly heterogeneous device topologies, and decentralization, which requires a

level of node and workload modeling not supported by common APIs such as Kubernetes. The

solution is presented in terms of Feather, which uses eBPF and backend detection to support

multi-runtime pods (networking) and to advertise its capabilities, and Flocky, which uses Open

Application Model (OAM) to enable decentralized metadata discovery and orchestration.

6.1.1.2. Problem Definition

Two critical aspects must be solved to enable effective orchestration in the edge:

− Device specifications and user/service requirements are far more varied than in the cloud.

This presents an opportunity to support various types of workloads other than containers

depending on device capabilities but also requires suitable capability modelling for

optimal orchestration.

− A decentralized solution is more suitable for edge orchestration; therefore, a suitable

framework should be constructed that supersedes existing solutions such as the

Kubernetes API, allowing devices and workloads to be modeled at a high level for

decentralized metadata discovery and exchange.

6.1.1.3. Developed Solution

Feather leverages Virtual Kubelets, combined with eBPF traffic routing and extensible backend

(i.e. containerd, OSv) implementations to support various types of workloads in a single

orchestrator agent for Kubernetes/OAM deployments.

Flocky extends OAM and the Swirly [20] discovery mechanism to enable decentralized node

metadata discovery, including supported runtimes and available applications. With a pluggable

orchestration system allowing for different preferences and algorithms per node. The

deployment algorithm for an application is summarized as follows:

• Split into components (individual workloads)

• For each component
o Find suitable implementations in Metadata repository based on Traits (intents)
o (Optionally) rank implementations by preference
o For each implementation

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 76 of 96

▪ Check if a suitable one (same or higher Traits) is already deployed on a
remote node

• Use if found
▪ Find acceptable nodes using Metadata repository
▪ Rank acceptable nodes by Quality of Experience (QoE) according to

chosen definition/implementation (QoE evaluator)
▪ In order of ascending QoE, attempt deployment of the component

implementation on each node until successful

The “Find acceptable nodes” and “Rank by QoE” stages can be extended by implementing a “QoE

evaluator” interface and configuring a specific Flocky instance to use that implementation.

6.2. Orchestration at the CRAN

6.2.1. Strategies adopted

To effectively manage the CRAN, we leverage containerized network functions and intelligent
control mechanisms, ensuring optimal resource allocation and user management. The strategies
involve utilizing OAI core and RAN network components, deploying them as microservices using
Docker. Also, by using FlexRIC for the Real-Time RIC and integrating AI-based anomaly detection
xApp to enhance network security and performance.

6.2.1.1. Problem Definition

Sophisticated attacks compromise data integrity, user privacy, and overall network functionality.
In our experimental setup we demonstrate that a DoS attack can disrupt key 5G core components
such as the UPF, leading to failures within the RAN causing permanent bufferfloats. Beyond
network disruptions, these security threats result in inefficient resource utilization, higher
operational costs, and increased recovery efforts.

6.2.1.2. Developed Solution

To counter these challenges, we propose a solution that integrates real-time anomaly detection,
adaptive resource management, and user traffic monitoring. The xApp leverages AI/ML models
trained on real-world datasets to classify network traffic and dynamically allocate resources and
suppress malicious users. It detects malicious behaviour, triggering RRC connection terminations
to protect the network while prioritizing legitimate users via end-to-end slicing. This
implementation, built within the OAI platform, utilizes standardized O-RAN interfaces and Service
Models from FlexRIC. The functionality of the xApp is described below:

Algorithm: xApp Functionality

1. Initialization:

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 77 of 96

 Establish a connection with RT-RIC and subscribe to the RC SM.

 Accept incoming ATD client connections.

 Initialize data structures for tracking UE activity.
2. Monitoring and Data Processing:

 Receive and parse ATD messages.

 Extract UE ID, S-NSSAI values, and anomaly ratios.

 Continuously update UE-related records.
3. Dynamic Resource Allocation:

 Calculate PRB assignments based on anomaly scores.

 Apply scaling mechanisms to maintain fair resource distribution.
4. Threat Mitigation and Countermeasures:

 Identify and classify UEs exhibiting malicious behavior.

 Reduce PRB allocation for flagged users and redistribute resources.

 If a UE reaches 100% anomaly ratio, trigger RRC connection release.

6.3. Orchestration at the Core

6.3.1. CTI Cross-Domain selective Sharing

Sharing CTI data requires caution, as it must include relevant threat details without exposing

sensitive or confidential information. If not properly filtered, such data could reveal system-

sensitive information and lead to security risks. The Selective CTI sharing mechanism applies CTI

policy to examine each vulnerability data obtained through the security scanner. These policies

determine which metadata can be included in the CTI package. It filters the vulnerability

metadata using data anonymisation and exclusion. After this process, the CTI agent generates

the CTI data with the selected vulnerability metadata and complies with the STIX data

serialisation standard. The CTI component in each cluster/domain assesses cluster hygiene

scores and shares the CTI data. Reconfiguration actions are triggered by signals generated from

the CTI component's analysis of real-time hygiene score. These insights guide reconfiguration

processes, enabling the continuity of dynamic policy enforcement. The CTI component

communicates findings to the orchestration components in local clusters and control planes,

which can prevent deployments that fail hygiene score requirements or security checks. It alerts

the orchestrator when cluster hygiene scores fall below acceptable thresholds. It facilitates real-

time monitoring, workload adjustments, and security compliance while optimising the overall

performance and reliability of the network.

6.3.1.1. Problem Definition: Sensitivity vs. Necessity

In CTI sharing, organisations face a trade-off between protecting sensitive information and

ensuring the utility of shared data. CTI data often includes sensitive information that makes

organisations hesitate to share and collaborate. If exposed, highly sensitive indicators may pose

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 78 of 96

privacy, reputational, or security risks. However, omitting such details can significantly reduce

the usefulness and actionability of the threat intelligence. The challenge lies in determining which

information is essential (necessary) for the receiving party, while minimising the exposure of

sensitive data. This tension between sensitivity and necessity forms a core problem in secure and

effective CTI exchange.

6.3.1.2. Developed Solution

To address this challenge, we designed a dynamic and adaptive mapping framework that assigns

a sensitivity score and a necessity score to each data field within the shared intelligence. Each

vulnerability is assessed individually; vulnerability metadata is utilised to assign relative scores.

This dual-scoring system enables granular control over what is shared, allowing CTI Agents to

prioritise data that is critical for defence while withholding or anonymising overly sensitive fields.

These scores are used in the decision-making algorithm to determine the appropriate sharing

policy for each piece of information. This ensures a balanced, policy-driven exchange of CTI that

supports collaboration without compromising security or privacy.

6.3.2. Workload Prediction for Scheduling

6.3.2.1. Problem Definition: workload prediction including anomalous

In large-scale distributed networks, efficient workload scheduling becomes increasingly complex.

Traditional schedulers might often react to immediate resource usage without anticipating

upcoming demands. This can lead to poor performance, especially when there are sudden spikes

in traffic or abnormal activity. Without the ability to predict workloads, the system may either

over-allocate resources (wasting energy) or under-allocate (SLA loss). The key challenge is to

forecast future load and adjust scheduling decisions in advance while also handling unpredictable

behaviour like Denial of Sustainability (DoST) attacks or traffic bursts.

6.3.2.2. Developed Solution: AI prediction

To address this challenge, we designed a lightweight, AI-driven workload prediction component

as a microservice that can be integrated into the orchestration and scheduling layer. This

component exposes a standardized API, allowing the orchestrator to query predictions on key

workload indicators—such as node-level usage trends or traffic surges—based on historical

telemetry or CTI events. It receives telemetry data inputs (e.g., CPU and memory metrics) and

returns short-term forecasts for resource demand across nodes. These forecasts assist the

orchestrator in taking preemptive actions— scaling workloads or adjusting placements to energy-

efficient zones—before overload or performance degradation occurs. The prediction service also

supports scenarios involving anomalous patterns, helping distinguish between typical usage

fluctuations and potential DoSt-like anomalies. This ensures better performance, lower energy

usage, and improved resilience in dynamic network environments.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 79 of 96

6.4. Moving Target Defence (MTD)

The proposed Moving Target Defence (MTD) framework introduces two algorithms designed to

optimize stateful live migration (LiMi) performance for CNFs:

I. Container Restore Algorithm for Kubernetes-aware Orchestration: This ensures seamless

state restoration during migration while maintaining Kubernetes cluster constraints.

II. Parallel LiMi Scheduling Using ML-based Time Prediction: this leverages ML to predict and

optimize migration timing across multiple concurrent instances.

Each of the following subsections outlines the problem being addressed and the corresponding

algorithm developed to solve it.

6.4.1. Container Restore Algorithm for Kubernetes-aware Orchestration

As previously described in Section 5.7, the CRIU library is partially integrated to Kubernetes, with

kubelet API allowing the creation of a checkpoint of a running container but missing an API

request to equivalently restore the container from the checkpoint on the destination cluster.

To solve this issue, the MTD controller defines a process/algorithm for the restore phase of a

stateful container live migration (LiMi) performed as an MTD operation. A live migration in this

context refers to the process of transferring a stateful containerized application running in a

Kubernetes pod from one cluster to another with the goal of minimal downtime (i.e., the time an

application is unavailable), while preserving the application's state. Thus, the restore process

starts with having a container checkpoint and is summarized as follows:

1. Create a checkpoint using the kubelet API.

2. Change the permissions of checkpoint files to enable non-root users to restore the

container.

3. Convert the checkpoint into a container image.

4. Push the new image to a local or remote registry (e.g., Dockerhub).

5. Apply a prepared YAML file that pulls the new image.

This above-described algorithm is implemented as a shell script. The first part of the script

searches for a pod name, which must be given as an argument when running the program. Once

the existence of the pod is confirmed, a checkpoint is created by using the kubelet API's POST

command. The checkpoint file is then saved to the NFS. As the file is saved with permissions

allowing modifications only by root users, the next part of the algorithm changes the permissions

of the above-mentioned file. Once non-root users can change the file, buildah is used to convert

the checkpoint file into an image and push it to the local registry. Once the image is successfully

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 80 of 96

pushed, the new image is pulled by Kubernetes via a YAML file, which contains the necessary

information using the pod's original name.

At the end of the migration script, the remote migration controller applies a predefined YAML

file to launch the previously checkpointed container. Kubernetes is then instructed to wait for

the pod to be ready, and once it is, let it run for five seconds. After that, the StatefulSet and its

corresponding pod are deleted, and the execution cycle starts over again.

6.4.2. Parallel LiMi Scheduling Using ML-based Time Prediction

Due to the interdependency of components (e.g. the back-end part may need to have a persistent

connection with the DB instance), it is crucial to determine the order of migration for each

component, so that the migration time would be minimized. Furthermore, the workload of each

component also affects the migration process, requiring a careful estimation of how long it will

take for each container to be migrated and functional in the destination location. The problem in

this case is to develop an accurate estimation method for the migration time of each component

and consequently, a proper scheduler to prioritize the migration of certain components for the

least service disruption.

As depicted in Figure 30, the first part of the solution, the Container Migration Optimizer,

develops an ML-based classifier selecting the best migration method per container to minimize

the migration time and service downtime of the container, based on its workload type. To this

end, a tool for collecting metrics of a running container is required to be connected to the MTD

framework, providing the resource utilization of the corresponding container and feeding it to

the ML classifier or heuristic model (formed from statistical analysis of the dataset used for

training the classifier). Once the migration method is selected, the second part of the solution,

the Migration Scheduler, considers the estimated migration time for each container, based on a

developed regressor estimating the total migration time. The solution, then, provides a schedule

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 81 of 96

plan for the microservice-based application, presenting the time to start the migration for each

component, aiming to minimize the total migration time.

Figure 30: ML Classifier + regressor to optimize the live migration of microservice-based applications

6.5. DFE/WAI offloading

This subsection provides the technical details, from the algorithmic point of view, of the DFE

and WAI offloading solutions presented in Section 3.2.

6.5.1. WAI and DFE for P4 switch DNN

6.5.1.1. Problem definition

Current programmable switches face two key limitations: (1) restricted parallelization and (2)

hardware backends that lack full P4 language support, leading to suboptimal latency

performance. For example, software-based P4 DNN implementations achieve intra-switch

latencies nearly an order of magnitude higher than standard pipelines like forwarding and

steering. This stems from hardware vendors prioritizing fast memory access for lookup tables

over computational resources like ALUs. While fully in-network ML processing is conceptually

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 82 of 96

possible, conventional methods struggle to deploy DNNs within the data plane. DNNs rely on

multiply-accumulate operations and nonlinear functions, but programmable ASICs in commercial

P4 switches lack both floating-point and integer arithmetic support. Although DNNs can tolerate

low-precision inputs when trained appropriately, the inability to perform even integer-based

multiply-accumulate operations prevents their direct deployment. While feature extraction can

be efficiently implemented on a programmable ASIC backend, adapting the DNN function

requires a complete remapping to bypass ALU-dependent operations.

6.5.1.2. Developed solution

To enable DNN deployment in hardware pipelines lacking arithmetic capabilities, we propose

distilling a trained, integer-quantized DNN into a lookup table (LUT). This approach transforms

inference into a match-action operation by encoding integer inputs as LUT addresses and storing

precomputed outputs for all possible input combinations. As illustrated in Figure 31, a network

with two inputs of n and m bits forms a compound address of n+m bits, generating 2m+n LUT

entries. This method extends to multi-input networks by concatenating all inputs into a single

key. The process is lossless and preserves model accuracy. Compared to existing table-based

quantization strategies available in the literature, our approach embeds the entire DNN within a

LUT rather than merely accelerating operations. However, it presents challenges: (i) memory

usage grows exponentially with input bit-width, (ii) inputs must be integer-encoded (with

floating-point representation restricted to hidden layers), and (iii) the LUT scales linearly with the

number of output variables. Memory constraints affect key size and the number of entries that

can be defined, impacting scalability.

Figure 31: DNN to lookup distillation method

Despite these limitations, this method enables DNN deployment in P4 switches without

restrictions on model complexity or type. It generalizes to other ML algorithms if inputs and

outputs are quantized accordingly. In networking scenarios, where data types are less complex

than images, quantization constraints are more manageable. Additionally, larger DNNs can be

trained to enhance accuracy without affecting inference speed, as lookup time remains constant.

Retraining is also feasible—updated models can be distilled and deployed by simply refreshing

the LUT entries.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 83 of 96

Transforming neural networks into lookup tables (LUTs) presents a significant challenge due to

the precision and wide range of 32-bit floating point numbers. This large input-output space

makes it impractical to create LUTs directly, as the memory and computational requirements

become infeasible. Quantization addresses this issue by reducing the precision of inputs and

outputs, mapping continuous values to a smaller, discrete set. This significantly reduces the LUT

size and makes LUT-based computation more viable, especially in resource-constrained

environments such as embedded systems or programmable network devices.

To maintain accuracy under limited precision, we adopt Quantization -Aware Training (QAT),

where the impact of quantization is accounted for during training. In this approach, inputs are

quantized using a dedicated quantizer q_input, while weights remain in full precision. The

quantized layer computes the activation 𝑦 as follows: 𝑦 = 𝜎(𝑓(𝑤, 𝑞_𝑖𝑛𝑝𝑢𝑡(𝑥)) + 𝑏)

where w represents the weights, x is the input, f is the layer operation, σ is the activation function,

and b is the bias. We employ DoReFa quantizers for their flexibility in specifying bit-widths,

making them well-suited for hardware-efficient implementations of neural networks.

6.5.2. DFE and WAI in DPU-based mitigation

6.5.2.1. Problem definition

A prevalent method used in Distributed Denial-of-Service (DDoS) attacks is the TCP SYN flood

attack. In this type of attack, the target server is overwhelmed with many TCP SYN (synchronize)

packets. The server, following the standard TCP handshake process, allocates resources and

responds with SYN-ACK (synchronize-acknowledgment) packets. However, the attackers

deliberately do not send the final ACK packet, preventing the connection from being completed.

As a result, the server’s TCP session table becomes exhausted, rendering it unable to process

legitimate connection requests and effectively denying service to authorized users.

To address DDoS attacks, various detection and mitigation techniques have been proposed,

including rule-based, signature-based, commercial solutions, Machine Learning (ML), anomaly-

based, and flow-based approaches. Despite their effectiveness, these methods often introduce

non-negligible latency in detecting and responding to attacks. This delay can be particularly

problematic when attack rates are high, as a substantial portion of the attack traffic may remain

unmitigated for a critical period, worsening the impact on the target system.

A first DFE/WAI design and implementation fully offloaded in a DPU using DOCA libraries faces

the complexity of minimizing the number of ARM core processing calls (which are relatively slow),

while maximizing the number of operations that can be done using hardware accelerators (high

speed).

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 84 of 96

6.5.2.2. Developed solution

To manage the stateless nature of hardware pipes, a stateful control logic is deployed on the

ARM cores. Written in C, it dynamically orchestrates and updates hardware pipes by inserting,

modifying, and removing entries as needed. This approach ensures that attack detection remains

adaptive while leveraging hardware acceleration to minimize latency. Metadata tagging is used

to track packet flow, enabling real-time decision-making regarding traffic handling.

The DDoS mitigator logic is deployed on the ARM cores and written in C programming language,

including all the available C libraries to properly fill, update, query, and finally remove entries in

the pipes. This distribution of tasks between the main two components of the fully offloaded

system, namely the ARM cores and the offloading hardware, is explicitly described in Figure 32.

Figure 32: DOCA-based offloaded DDoS mitigator

Packets entering the DPU through port P0 are first processed by SF1 and the root pipe, which

filters out non-IPv4 traffic. The blacklist pipe immediately drops packets from known malicious

sources. The control pipe evaluates remaining traffic, directing TCP packets to the appropriate

processing path. Non-TCP packets are forwarded to SF2 to reach the host.

If a packet has the SYN flag set and remains under the rate limiter threshold, it is processed in

the SYN pipe. Otherwise, it is sent to the SYN_MISS pipe for further analysis. The TCP_COUNT

pipe updates per-source statistics, tracking the number of legitimate TCP packets. If no matching

entry is found, the packet is dropped to prevent unauthorized access. The system employs a rate

limiter to regulate the number of SYN packets sent to the host, preventing CPU overload.

Additionally, all outgoing traffic from the host is forwarded through a dedicated hardware pipe

from SF2 to SF1, reducing processing overhead and ensuring efficient data flow.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 85 of 96

A multi-threaded application on the ARM cores handles real-time SYN flood detection and

mitigation. The pseudo-code of the application is detailed in Figure 33. Each thread polls assigned

RX queues via DPDK libraries, processing only packets requiring in-depth inspection. If a packet

comes from a previously unmonitored source, an IP record is created to track SYN counts and

register the entry ID in the TCP_COUNT and SYN pipes. Metadata values are updated to facilitate

efficient lookup and tracking.

For already monitored sources, the system retrieves statistics and recalculates the SYN-to-TCP

ratio. If the ratio exceeds a predefined threshold, the source is blacklisted, ensuring subsequent

packets are dropped at the hardware level without involving the CPU. The system continuously

updates and removes outdated entries to free resources for new traffic.

By efficiently distributing tasks between hardware pipes and ARM cores, this architecture

maintains high throughput and low latency, effectively mitigating large-scale SYN flood attacks in

real time.

Figure 33: Offloaded DDoS mitigator algorithm

6.6. Data plane ML

Our proposed model employs as-soon-as-possible in-network inference and online learning to

enable accurate, low-latency network attack detection. Additionally, data plane program

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 86 of 96

disaggregation is used to ensure that switches retain sufficient resources for other essential tasks,

such as packet routing.

6.6.1. Feature Extraction

6.6.1.1. Problem definition

The classification of network flows—determining whether they represent an attack or benign

traffic—is based on various features derived from individual packets within the flows. These

features include parameters such as current and maximum packet length, the number of times

different TCP flags were set, and the source and destination ports.

To compute some of these features, the system requires persistent storage of flow-specific data.

6.6.1.2. Developed solution

This persistence is implemented using registers indexed by the hash of the flow’s identifier (5-

tuple). However, this approach introduces the risk of hash collisions, so that different flows can

inadvertently share the same register locations, resulting in data corruption.

To mitigate this risk, we implemented flow timeouts: flows that have been inactive for at least

30 seconds are considered terminated, allowing their register slots to be reset when a new flow

is assigned.

6.6.2. Model Training and Online Learning

6.6.2.1. Problem definition

Pre-trained models and pre-initialized datasets often present significant challenges in the context

of programmable network hardware. Large models require significant memory and

computational resources, which exceed the capabilities of network hardware. Conversely,

smaller or more compact models may lack the necessary accuracy to provide reliable results,

making them ineffective for critical tasks such as security applications or traffic optimization.

This creates a trade-off between resource efficiency and classification precision, with neither

extreme providing a fully viable solution for real-time, high-performance network operations.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 87 of 96

6.6.2.2. Developed solution

Our proposed model operates entirely through online learning, eliminating the need for pre-

trained models or pre-initialized datasets. The control plane is responsible for training models

using sampled features received from programmable switches.

These switches randomly select a fraction of their flows for monitoring and forwarding the

extracted features—and classification results, if available—to the control plane. Flow selection is

based on a combination of the flow identifier and a random number initialized at switch startup.

To support real-time inference, flow features must be collected after each received packet. This

ensures that separate classifier models can be trained for different flow lengths.

The controller caches flow features and classification results received from the switches for a few

minutes. These features are then forwarded in batches to an external Intrusion Detection System

(IDS), which provides highly accurate flow labels. The external IDS performs network attack

detection with high accuracy, though at the cost of reduced throughput and increased latency

compared to in-network approaches. The labels provided by the IDS serve as the ground truth,

while the in-network classification results act as predicted labels. These true and predicted labels

are used to assess the accuracy or F1-score of the in-network classifier.

The controller regularly trains new random forest models using the sampled features and true

labels. The training approach follows a methodology, where a separate random forest is trained

for each subflow (i.e., the first N packets of a flow). A decision from a random forest is only

accepted if its certainty exceeds a predefined threshold, and only sufficiently accurate random

forests are incorporated into the final model. This approach enables early classification for some

flows after just a few packets, while others may require more packets to achieve the necessary

confidence level. Once a new model is trained, it undergoes an evaluation phase, where it

classifies the collected features and its predictions are compared to the true labels. If the new

model surpasses the performance of the currently deployed in-network model by a predefined

threshold (e.g., a 1% improvement in accuracy), it is deployed to the switches, replacing the

previous model. Model Encoding for Match-Action Tables

6.6.2.3. Problem definition

The P4 data plane programming language supports multiple types of programmable switches.

We tested our model on two different P4 targets: CPU-based eBPF switches and Intel Tofino

hardware switches. These targets have distinct limitations, requiring different approaches to

embedding machine learning models.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 88 of 96

The match-action tables of eBPF-based switches do not currently support range matching (i.e.,

mapping actions to numerical value intervals).

6.6.2.4. Developed solution

Therefore, we used a model encoding method, where each depth level of each decision tree

corresponds to a separate match-action table. The table entries represent decision tree nodes,

while the table actions compare feature values to thresholds, determine verdicts, or forward

processing to the next match-action table.

In contrast, Tofino switches support range match keys but do not allow long sequences of match-

action tables where earlier results are required before executing subsequent tables.

Consequently, we applied the encoding method from prior research, where each decision tree is

embedded into a single match-action table. Each feature is assigned a range match key, and each

decision tree leaf corresponds to a table entry that specifies the required feature ranges for

classification. However, this approach limits the number of features that can be used, as Tofino

switches only support a limited number of range match keys per table.

Since our approach relies on as-soon-as-possible inference, separate random forests must be

trained and encoded for different flow lengths. To facilitate this, each match-action table includes

an additional key that identifies which random forest to use. This identifier is determined using

a separate table that maps the flow’s packet count to the corresponding random forest identifier.

6.6.3. Model Disaggregation

6.6.3.1. Problem definition

The accuracy of network attack detection can be improved by increasing the number of decision

trees within each random forest or by extending the depth of decision trees. However, both

approaches increase the model’s resource requirements, such as memory. Since switches must

also allocate resources for other tasks like packet forwarding, it is crucial to limit the resource

consumption of in-network attack detection.

6.6.3.2. Developed solution

If flows traverse multiple switches within the internal network, the per-switch resource

requirements can be reduced by partitioning the P4 program and distributing its components

across multiple switches. In our random forest-based approach, this means embedding different

decision trees of the forest in different switches. However, certain components must be present

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 89 of 96

in all switches—particularly those at the network edge—so that flow features can be computed

or received from upstream switches.

Determining which decision trees should be deployed on which switches is beyond the scope of

this work. While decision trees within a random forest can operate independently, edge switches

need access to the verdicts of all decision trees to compute the final classification result. To

facilitate this, an extra header is added to packets upon entering the internal network and

removed when exiting. This header stores information about pending decision trees and already

computed verdicts.

6.7. RAN security-performance balancer

The core idea of our approach to security is to balance the performance of radio and edge

elements and the security added to the radio for the constant availability of the radio resources.

The balancer will consider, on the one hand, the risks that appeared in the radio interface and,

on the other hand, the performance requirements posed to the radio software/hardware due to

increased traffic. The main task of the balancer is to understand when the increased performance

required is due to an attack in progress or due to regular peak traffic.

6.7.1. Problem definition

Modern radio access networks (RANs) face the dual challenge of maintaining high performance

under dynamic traffic conditions while also ensuring robust security against evolving threats such

as DDoS attacks. Traditional static security configurations can either underperform during

legitimate traffic peaks or overburden the system when reacting to benign conditions. This

creates a critical need for a dynamic mechanism that can intelligently distinguish between

increased traffic caused by legitimate usage and that triggered by malicious activities.

The core problem addressed in this work is the need to balance the performance of radio and

edge elements with the security mechanisms applied to the radio interface, in order to ensure

the constant availability of radio resources.

6.7.2. Developed Solution

We will consider an observed data set with n data samples, where each sample contains the

measurements of m features observed during a given time interval. Then, the balancer will

classify each sample in known classes of interest. In the moment that the radio increases the

consumption of resources, the balancer will apply inference (e.g., Naïve Bayesian) for deciding

when an unobserved sample Xn+1 may be instantiated to one of the classes. Normally, Bayesian

classifier design tries to make the classification process “balanced” as if all classes were

represented by a non-zero number of samples in training set X. Our approach will consist of

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 90 of 96

adjusting the threshold for the Bayesian classifier to classify the sample in one of the classes. The

balancer will inform the agents when they should apply deeper packet inspection or when the

security controls can be reduced.

6.8. LLM-based IDS

In recent developments within deep learning, self-supervised learning (SSL) has gained

prominence as a powerful alternative to traditional supervised approaches, particularly through

the adoption of Transformer-based architectures and large language models (LLMs). These

models demonstrate strong capabilities in extracting rich and generalizable representations from

unlabeled data, thereby reducing reliance on extensive manually annotated datasets. In this

context, we introduce an IDS built upon the BERT architecture, a bidirectional Transformer model

originally tailored for natural language understanding tasks. The BERT model’s encoder-centric

design, coupled with its bidirectional self-attention mechanism, enables it to capture complex

contextual relationships within structured, sequential inputs, making it especially well-suited for

traffic classification tasks in network security. Unlike generative LLMs such as GPT, which are

optimized for text generation, BERT’s architecture inherently supports discriminative learning

objectives, offering a more suitable foundation for accurate and efficient real-time threat

detection.

6.8.1. Packet-token embedding optimization

6.8.1.1. Problem Definition

LLMs and Transformer-based models in general are powerful tools for processing sequential

data. However, as the number of tokens in a sequence increases, so does the training and

inference time, as transformer attention computation time scales quadratically with the number

of tokens. Treating each packet header or the raw bytes of the packet as individual tokens can

quickly increase the number of tokens that need to be processed.

6.8.1.2. Developed Solution

Τo optimise the processing time of our model we employed the packet-token based embedding

procedure described in Section 3.5 which significantly reduces the number of tokens that our

LLM-based IDS has to process. In addition to this, we implement a time limit as well as a limit to

the number of packets to 32 for each flow to keep the packet sequences short. This does not

impact the performance of our model.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 91 of 96

6.8.2. Contrastive learning and flow augmentation process

6.8.2.1. Problem Definition

As the digital landscape becomes more interconnected, the frequency and severity of zero-day

attacks have significantly increased, leading to an urgent need for innovative IDS. Machine

Learning-based IDS that learn from the network traffic characteristics and can discern attack

patterns from benign traffic offer an advanced solution to traditional signature-based IDS.

However, they heavily rely on labeled datasets, and their ability to generalize when encountering

unseen traffic patterns remains a challenge. To provide a generalizable baseline model for

intrusion detection we devised a self-supervised contrastive learning process on unlabelled raw

packet sequences, as a pretraining task for the encoder stack of the LLM.

Figure 34: Overview of the contrastive learning and augmentation process

6.8.2.2. Developed Solution

The objective of the contrastive learning task is to learn meaningful representations by bringing

the representations of similar flows closer to each other in the embedding space while at the

same time pushing apart flow representations that are dissimilar. To achieve this, we have to

generate flow samples that are relatively similar to each other for the contrastive learning

process. We call these artificially generated samples augmented views of an original flow. To

create these augmented views, we devised a simple procedure which is illustrated in Figure 34.

To create similar pairs of flow packet sequences we create a new packet sequence by mixing up

the packets of an original flow sequence with those of a randomly chosen flow that has the same

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 92 of 96

length as the original one. From the original flow sample, we select a random patch of continuous

packets and replace them with the packets that are in the same positions from the randomly

chosen flow. The original sample and the augmented view are then forwarded to our LLM-IDS to

generate the representation for each sequence in the output of the CLS’ token. Finally, the CLS’

token is forwarded to a projection head which in our case is a simple 2-layer MLP, which is used

to train our model on the contrastive loss objective function, by attracting the views of the

original sample and the augmented view, while repelling the representation of the original flow

with all other flows in a mini-batch. After the pretraining procedure, the projection head is

discarded and replaced with the classification module as noted in Section 3.5.

6.8.3. Security policy enforcement

6.8.3.1. Problem Definition

In order to enforce appropriate security policies on potentially malicious traffic, it is essential to

accurately track and identify packet flows. This requires maintaining stateful information related

to the origin and characteristics of each flow. Specifically, flow identifiers such as the 5-tuple

(source IP, destination IP, source port, destination port, and protocol) must be extracted and

monitored in real time. Without such contextual information, it becomes challenging to reliably

associate traffic with specific entities or apply precise mitigation strategies, especially in

environments where threats may be dynamic, stealthy, or distributed.

6.8.3.2. Developed Solution

To mitigate security threats, the proposed solution introduces a modular, ML-assisted traffic

analysis pipeline integrated with an IDS. This pipeline leverages a traffic classifier, trained using

publicly available datasets such as CIC-IDS 2017 [21] and UNSW-NB15 [22], to identify and flag

malicious or anomalous flows in real time. The IDS acts as the enforcement component, which

cross-references the provided metadata with ongoing traffic patterns and applies predefined

security policies.

These policies may include:

I. Blocking incoming or outgoing traffic from the identified malicious IPs.

II. Rate limiting traffic to prevent potential DoS attacks.

III. Generating alerts or logs for further forensic analysis.

The classifier is designed to be lightweight and extensible, enabling real-time inference. To

handle possible attacks when the classifier identifies a flow as malicious it proceeds to inform the

IDS that monitors network traffic, with the 5-tuple that is associated with the flow, so that the

IDS can act against the malicious IPs by implementing a security policy. This solution provides a

coordinated and context-aware approach to detecting and mitigating threats, offering better

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 93 of 96

performance, reduced false positives, and greater adaptability to emerging network attack

patterns.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 94 of 96

7. Conclusions
The deliverable D3.1 “Secure-by-design orchestration and management & Data plane

computation offloading” presented the first integrated view of NATWORK’s secure orchestration

and programmable data plane capabilities, outlining both software architecture and initial

implementation results. As 6G architectures grow increasingly complex, dynamic, and

performance-critical, NATWORK proposes a cohesive solution that bridges orchestration,

security, and intelligent automation across all layers of the network—from extreme edge to core.

Collectively, these technologies form a holistic, modular, and interoperable foundation for

secure, sustainable, and scalable 6G network orchestration and management. This work not only

addresses today’s limitations in network security, efficiency, and responsiveness but also sets the

stage for future extensions through federated intelligence and continuous optimization. The

services and solutions described above will continue to develop in the upcoming months of the

project, according to the provisional workplan, to reach their projected technology readiness

level. This will enable them to be validated through real-world use cases and testbeds in the next

phases of the NATWORK project, meeting their expected KPIs, providing technical maturity,

integration feasibility and impact across diverse 6G verticals.

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 95 of 96

8. References
[1] Rohith Raj S, Rohith R, Minal Moharir, and Shobha G., “SCAPY - A powerful interactive

packet manipulation program.” In 2018 International Conference on Networking,

Embedded and Wireless Systems (ICNEWS), pages 1–5, 2018.

[2] M. AL-Naday, V. Karagiannis, T. De Block and B. Volckaert, "Federated Scheduling of Fog-

Native Applications Over Multi-Domain Edge-to-Cloud Ecosystem," 2023 19th International

Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada, 2023,

pp. 1-7, doi: 10.23919/CNSM59352.2023.10327839.

[3] S. Ejaz and M. Al-Naday, "FORK: A Kubernetes-Compatible Federated Orchestrator of Fog-

Native Applications Over Multi-Domain Edge-to-Cloud Ecosystems," 2024 27th Conference

on Innovation in Clouds, Internet and Networks (ICIN), Paris, France, 2024, pp. 57-64, doi:

10.1109/ICIN60470.2024.10494435.

[4] E. Paolini, L. de Marinis, D. Scano and F. Paolucci, "In-Line Any-Depth Deep Neural Networks

Using P4 Switches," in IEEE Open Journal of the Communications Society, vol. 5, pp. 3556-

3567, 2024

[5] S. Hinic, R. A. Bakar, A. Marotta and F. Paolucci, "Wire-speed DDoS Attack Mitigation using

Hardware Acceleration of Programmable DPUs," GLOBECOM 2024 - 2024 IEEE Global

Communications Conference, Cape Town, South Africa, 2024, pp. 1197-1202, doi:

10.1109/GLOBECOM52923.2024.10901169.

[6] Free5GC, Open Source Core Network Implementation. Online: https://free5gc.org

(Accessed 2025/06/25)

[7] 5G; NR; Radio Resource Control (RRC); Protocol specification (3GPP TS 38.331 version

18.3.0 Release 18) Online:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specific

ationId=3197 (Accessed 2024/12/27).

[8] LTE; 5G; Evolved Universal Terrestrial Radio Access (E-UTRA) and NR; Service Data

Adaptation Protocol (SDAP) specification (3GPP TS 37.324 version 18.0.0 Release 18)

Online:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specific

ationId=3282 (Accessed 2024/12/27).

[9] 5G; NR; Packet Data Convergence Protocol (PDCP) specification (3GPP TS 38.323 version

18.3.0 Release 18) Online:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specific

ationId=3196 (Accessed 2024/12/27).

[10] 5G; NR; Radio Link Control (RLC) protocol specification (3GPP TS 38.322 version 18.1.0

Release 18)Online:

https://free5gc.org/
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3282
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3282
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3196
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3196

D3.1
Secure-by-design orchestration and management & Data plane computation

offloading.r1

Page 96 of 96

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specific

ationId=3195 (Accessed: 2024/12/27).5G; NR; Radio Link Control (RLC) protocol

specification (3GPP TS 38.322 version 18.1.0 Release 18)Online:

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specific

ationId=3195 (Accessed: 2024/12/27).

[11] 5G; NR; Medium Access Control (MAC) protocol specification 3GPP TS 38.321 V18.4.0

(2024, December).

[12] O-RAN WG4: O-RAN Control, User and Synchronization Plane Specification. (2024,

October). Online: https://specifications.o-ran.org/download?id=738 (Accessed

2024/12/24).

[13] O-RAN E2 General Aspects and Principles (E2GAP) 6.0, O-RAN.WG3.E2GAP-R004-v06.00

(2024, October).

[14] O-RAN WG1: O-RAN Decoupled SMO Architecture 3.0. (2024, October). Online:

https://specifications.o-ran.org/download?id=716 (Accessed: 2024/12/23).

[15] O-RAN A1 Interface: Application Protocol 4.03, O-RAN.WG2.A1AP-R004-v04.03 (Accessed:

2025/05/20).

[16] O-RAN WG3: O-RAN Near-RT RIC APIs specification 2.0. (2024, June). Online:

https://specifications.o-ran.org/download?id=659. (Accessed: 2025/05/20).

[17] Robert Schmidt, Mikel Irazabal, and Navid Nikaein (2021). FlexRIC: an SDK for next-

generation SD-RANs. In Proceedings of the 17th International Conference on emerging

Networking EXperiments and Technologies (CoNEXT '21). Association for Computing

Machinery, New York, NY, USA, pp. 411–425.

[18] Ibrahim Obeidat, Nabhan Hamadneh, Mouhammd Al-kasassbeh, and Mohammad

Almseidin. Intensive Preprocessing of KDD Cup 99 for Network Intrusion Classification Using

Machine Learning Techniques, 2018.

[19] H. Schmidt, Z. Rejiba, R. Eidenbenz, and K.-T. Förster, “Transparent fault tolerance or

stateful applications in Kubernetes with checkpoint/restore,” in 2023 42nd international

Symposium on Reliable Distributed Systems (SRDS), pp. 129–139, 2023.

[20] Goethals, T., De Turck, F. & Volckaert, B. Near real-time optimization of fog service

placement for responsive edge computing. J Cloud Comp 9, 34 (2020).

https://doi.org/10.1186/s13677-020-00180-z

[21] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani et al., “Toward generating a new intrusion

detection dataset and intrusion traffic characterization.” ICISSp, vol. 1, pp. 108–116, 2018.

[22] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion

detection systems (UNSW-NB15 network data set),” in 2015 military communications and

information systems conference (MilCIS). IEEE, 2015, pp. 1–6.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3195
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3195
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3195
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3195
https://specifications.o-ran.org/download?id=738
https://doi.org/10.1186/s13677-020-00180-z

