

Net-Zero self-adaptive activation

of distributed self-resilient

augmented services

D4.1 Payload security per runtime, intelligent runtime selection and

attestation.r1

Lead beneficiary IMEC Lead author Merlijn Sebrechts

Reviewers Nasim Nezhadsistani (UZH), Joaquin Escudero (GRAD)

Type R Dissemination PU

Document version V1.0 Due date 31/03/2025

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 2 of 66

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 3 of 66

Project information

Project title Net-Zero self-adaptive activation of distributed self-resilient
augmented services

Project acronym NATWORK

Grant Agreement No 101139285

Type of action HORIZON JU Research and Innovation Actions

Call HORIZON-JU-SNS-2023

Topic HORIZON-JU-SNS-2023-STREAM-B-01-04
Reliable Services and Smart Security

Start date 01/01/2024

Duration 36months

Document information

Associated WP WP4

Associated task(s) T4.2

Main Author(s) Merlijn Sebrechts

Author(s) Vincent Lefebvre, Mark Angoustures (TSS), Tom Goethals (IMEC),
Nasim Nezhadsistani (UZH), Jordi Thijsman (IMEC), Shankha Gupta,
Mays Al-Naday, Sumeyya Birtane (UEssex), Ioanna Kapetanidou,
Sarantis Kalafatidis, Antonios Lalas, Anastasios Drosou (CERTH),
Joaquin Escudero (GRAD), Joachim Schmidt, Leonardo Padial, Eryk
Schiller (HES-SO)

Reviewers Nasim Nezhadsistani (UZH), Joaquin Escudero (GRAD)

Type R – Document, Report

Dissemination level PU – Public

Due date M15 (31/03/2025)

Submission date 31/03/2025

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 4 of 66

Document version history

Version Date Changes Contributor (s)
v0.1 6/11/2024 Template ready Merlijn Sebrechts (IMEC)

v0.2 20/11/2024 Initial table of contents Merlijn Sebrechts (IMEC)

v0.3 19/02/2025 Details for early sections,
elaborated content structure.
3.1/3.2/4.1 content. Basis for 2.2.
Raw content of 3.3/3.4.

Tom Goethals, Jordi Thijsman
(IMEC)

v0.4 04/03/2025 Raw content of 2.3 Ioanna Kapetanidou, Sarantis
Kalafatidis, Antonios Lalas,
Anastasios Drosou (CERTH)

v0.5 05/03/2025 Structuring supplied content,
intro sections

Tom Goethals (IMEC)
Vincent Lefebvre, Mark
Angoustures (TSS)

v0.6 10/03/2025 Integration before review Tom Goethals (IMEC)

v0.7 18/03/2025 Review and comments added Nasim Nezhadsistani (UZH),
Joaquin Escudero (GRAD)

v0.8 26/03/2025 Integration of changes after
review

Tom Goethals (IMEC)

v0.9 28/03/2025 Final Quality Assurance Joachim Schmidt. Leonardo
Padial, Eryk Schiller (HES-SO)

v0.95 30/03/2025 Final review and refinements Antonios Lalas (CERTH) and all
authors

v1.0 31/03/2025 Final version for submission Antonios Lalas (CERTH)

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 5 of 66

Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or 6G-SNS. Neither the European Union nor the granting
authority can be held responsible for them. The European Commission is not responsible for any use that may be
made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the NATWORK consortium make no warranty of any kind with regard to this material including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the NATWORK Consortium nor any of its members, their officers, employees, or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the NATWORK Consortium nor any of its

members, their officers, employees, or agents shall be liable for any direct or indirect or consequential loss or

damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© NATWORK Consortium. This deliverable contains original unpublished work except where clearly indicated

otherwise. Acknowledgement of previously published material and of the work of others has been made through

appropriate citation, quotation, or both. Reproduction is authorised provided the source is acknowledged.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 6 of 66

Contents
List of acronyms and abbreviations .. 8

List of figures ... 9

Executive summary ... 11

1. Introduction .. 12

1.1. Purpose and structure of the document .. 12

1.2. Intended Audience .. 13

1.3. Interrelations .. 13

2. Runtime overview & security .. 15

2.1. Virtual Machines ... 15

2.2. MicroVMs .. 17

2.2.1. Non-POSIX ... 18

2.2.2. POSIX ... 18

2.2.3. Image & payload security ... 20

2.3. Containers ... 20

2.4. WebAssembly ... 24

2.4.1. Origin and core design objectives ... 24

2.4.2. WASM security aspects ... 25

3. Intelligent runtime selection ... 27

3.1. Runtime unification .. 27

3.2. Network Unification .. 30

3.2.1. Container Networking ... 30

3.3. Network Resilience ... 34

3.4. Standardization ... 36

3.4.1. Kubernetes & Open Container Initiative .. 36

3.4.2. Open Application Model ... 37

3.5. Intent-based selection .. 38

3.6. Data collection methodology for ML Services .. 41

3.7. ML-based workload modeling & resource optimization .. 42

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 7 of 66

3.7.1. Data Engineering and Preprocessing .. 42

3.7.2. Model Building and Algorithm Selection .. 43

3.7.3. Federated Learning ... 43

3.7.4. Hyperparameter Tuning.. 44

4. Remote Attestation ... 45

4.1. TPM-based attestation ... 45

4.2. TEE-based attestation ... 47

4.3. WASM remote attestation .. 50

4.3.1. General. Development stages. .. 50

4.3.2. WASM authentication and remote attestation merits. .. 50

4.3.3. State of the art .. 51

4.3.4. Continuous attestation ... 51

4.3.5. WASM runtime integrity verification .. 52

4.4. WASM runtime remote attestation .. 57

4.4.1. NATWORK’s WASM runtime remote attestation ... 57

4.5. NATWORK full stack remote attestation schema for WASM technology 58

5. Conclusions ... 60

References .. 61

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 8 of 66

List of acronyms and abbreviations

Abbreviation Description
AI Artificial Intelligence

AMF Mobility Management Function

ASLR Address Space Layout Randomization

CLI Command Line Interface

CNI Container Network Interface

CRTM Core Root of Trust for Measurement

CTI Cyber Threat Intelligence

DCAP Data Center Attestation Primitives

DEP Data Execution Prevention

DoS Denial of Service

D-MUTRA DLT-based Mutual Remote Attestation solution

eBPF extended Berkeley Packet Filter

EDA Exploratory Data Analysis

HSM Hardware Security Module

KVM Kernel-based Virtual Machine

LSTM Long Short-Term Memory

OAM Open Application Modeling

OCI Open Container Initiative

PCR Platform Configuration Registers

RBAC Role Based Access Control

REST Representational State Transfer

SCTP Stream Control Transmission Protocol

SDN Software Defined Network(ing)

SECaaS Security as a Service

SEV Secure Encrypted Virtualization

SEV-SNP Secure Encrypted Virtualization Secure Nested Paging

SGX Software Guard Extensions

TCB Trusted Computing Base

TDX Intel Trust Domain Extensions

TEE Trusted Execution Environment

TPM Trusted Platform Module

UDP User Datagram Protocol

UE User Equipment

UPF User Plane Function

VM Virtual Machine

vNICs Virtual Network Interface Controller

WASI WebAssembly System Interface

WASM WebAssembly

vEth Virtual Ethernet Device

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 9 of 66

List of figures
Figure 1: conceptual comparison of several runtime options. Userspace is marked in green. While

gVisor is not discussed in the rest of the text due to lackluster performance, it presents an

interesting architecture using a custom system interface. .. 17

Figure 2: Containerized 5G topology .. 21

Figure 3: Resource consumption statistics per container .. 22

Figure 4: Packet sniffing using tcpdump ... 23

Figure 5: Number of active flows captured at runtime .. 23

Figure 6: Online attack detection & mitigation .. 23

Figure 7: General architecture of the Feather multi-runtime platform. 28

Figure 8: Example of deployment flows for different runtimes in Feather, in this case containers

and OSv unikernels. .. 29

Figure 9: Tradeoff between hardware requirements of containers vs OSv unikernels, to consider

along with security aspects. .. 30

Figure 10: Architecture overview of Feather’s multi-runtime networking solution. 31

Figure 11: Example of network devices and connections within and between multi-runtime pods.

... 32

Figure 12: Workload vs networking CPU impact for a video streaming application. 33

Figure 13: 5G infrastructure with DDoS attack detection mechanism. .. 34

Figure 14: Integration through an API .. 35

Figure 15: Overview of OAM and modifications required to provide intent-based orchestration

... 37

Figure 16: Overview of Flocky services for decentralized, intent-based orchestration 39

Figure 17: Data gathering & data sources for NATWORK .. 41

Figure 18: Federated learning over edge-cloud continuum ... 43

Figure 19: Architecture of the Keylime, abstracting away to complexity of TPM operations. 46

Figure 20: Architecture of the TrustEdge, with the centrol controller managing the trust state of

edge devices. ... 47

Figure 21: Trusted Computing Base comparison of process and VM based TEEs. Source:

https://www.decentriq.com/article/swiss-cheese-to-cheddar-securing-amd-sev-snp-early-boot

... 48

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 10 of 66

Figure 22. WASM module data structure ... 53

Figure 23. The memory structure of a loaded WASM application (and virtual machine) 54

Figure 24. NATWORK's WASMTIME added second thread .. 55

Figure 25. Simple representation of the NATWORK's WASM plug-in .. 56

Figure 26. Workflow for changing WASMTIME interpreter ... 56

Figure 27. NATWORK's full stack remote attestation ... 59

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 11 of 66

Executive summary
The deliverable D4.1 “Payload security per runtime, intelligent runtime selection and

attestation.r1” provides a comprehensive overview of the NATWORK aspects enabling secure,

flexible-runtime workloads. This is actually a report on the payload security per runtime, the

intelligent runtime selection as well as the remote attestation, that derive from NATWORK

innovations. The current deliverable (first version) derives from the work performed under the

Task 4.2 “AIaaSecS for software payload”.

While containerized software and virtual machines have been employed for years in software

orchestration, many security aspects of containers and security optimization through

orchestration have been neglected in research and frameworks. On the one hand, containers are

merely processes that are slightly isolated but not intrinsically secure. Alternative runtimes such

as microVMs and WebAssembly WASM System Interface (WASI) have become popular,

promising superior workload security and optimal performance. Still, their exact contributions

are unclear, and integrating them into container-based software orchestration is non-trivial. The

optimal runtime type should also be chosen for each payload based on security (and other)

requirements.

On the other hand, several hardware-based approaches, such as Trusted Execution Environments

(TEEs) and Trusted Platform Modules (TPMs), may be leveraged to secure deployed software

through remote attestation by certifying nodes to be secure and reliable for the execution of

sensitive workloads.

This document covers three aspects of enabling secure, flexible-runtime workloads. First, an

overview of the most promising execution formats and runtimes, including unikernels and

WASM, is provided. The second, intelligent runtime selection, involves selecting a suitable

runtime for a specific workload based on particular parameters and workload properties and

unifying network and orchestration aspects required for transparent, runtime-agnostic

operation. Finally, the third aspect provides the building blocks for a feasible, flexible remote

attestation framework. WASM payload security is discussed similarly to remote attestation and

beyond during the payload execution. We discuss the core merits of security technology and

emphasize bytecode tampering at runtime. The project covers this major weakness with a

modified WASM runtime and a whole stack integrated two-layer remote attestation schema

covering both the runtime and the payload.

It should be noted that this is the first version of the deliverable which will continue to evolve in

the second year of the project, and will be described in its final version by the D4.2 “Payload

security per runtime, intelligent runtime selection and attestation.r2” due to M24 and in

accordance to the project’s description of work.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 12 of 66

1. Introduction
Containerized software and virtual machines have been employed for years in software

orchestration in the cloud and edge. However, research and frameworks have neglected many

security aspects of both containers and security optimization through orchestration. This is a

significant shortcoming for 6G frameworks, as edge networks are more vulnerable to attack

vectors than physically and digitally secured data centers, and 6G inherently spans the entire

continuum from the cloud to the edge.

In security terms, containers are merely processes slightly isolated from the rest of the operating

system but not inherently secure. However, containers are not the only option for executing

workloads (i.e., “runtime”). Alternative runtimes such as microVMs and WebAssembly (WASM)

System Interface (WASI) have become popular, promising superior workload security and optimal

performance. Still, their exact contributions are unclear, and integrating them into container-

based software orchestration is non-trivial, while one has to define the optimal runtime for each

payload based on security (and other) requirements.

On the other hand, several hardware-based approaches, such as Trusted Execution Environments

(TEEs) and Trusted Platform Modules (TPMs), may be leveraged to secure deployed software

through remote attestation by certifying nodes to be secure and reliable for the execution of

sensitive workloads.

1.1. Purpose and structure of the document

This document covers the main aspects researched in T4.2 to enable secure, flexible-runtime

workloads. In summary, these are:

- An overview of the most promising execution formats and runtimes, including unikernels

and WASM. This includes state-of-the-art capabilities, resource use, and essential security

aspects.

- Intelligent runtime selection, which is split into “enabling runtime selection” and

“intelligent selection”. The former details how various runtimes can be integrated into a

uniform structure/API based on the most popular orchestration frameworks (e.g.,

Kubernetes) in preparation for intelligent intent-based selection. The latter considers

workload and runtime properties, determining the optimal workload for a specific task

and matching it to a suitable execution node.

- Building a remote attestation framework that ensures secure execution of the selected

workloads by leveraging node hardware capabilities such as TEE and TPM.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 13 of 66

The rest of the document is structured according to these three main aspects:

• Section 2 provides state-of-the-art security aspects of the most promising execution

formats and runtimes for deployable workloads. This includes execution and image

payload security for Virtual Machines (VMs), containers, microVMs, and WASM. The

inception of WASM technology is recalled in the context of security.

• Section 3 covers the intelligent, intent-based selection of a suitable runtime for a

specific workload based on particular parameters and workload properties, in

addition to standardization and unification efforts in terms of networking and

orchestration APIs. Finally, this section covers ML-based workload modeling in the

context of resource optimization.

• Section 4 describes TEE and TPM-based attestation methods as the building blocks for

a scalable, flexible attestation framework. Moreover, WASM payload remote

attestation is discussed, exploiting a novel runtime integrity verification scheme

through a modified WASM runtime.

1.2. Intended Audience

NATWORK’s D4.1 deliverable (Payload security per runtime, intelligent runtime selection, and

attestation) is devised for the internal use of the NATWORK consortium, comprising members,

project partners, and affiliated stakeholders. This document mainly focuses on the fundamental

security aspects of software runtimes and hardware attestation required for the project, thereby

serving as a referential tool throughout the project's lifespan.

This document contains sensitive context and is restricted exclusively to the consortium's

collective entities and European Commission (EC) representatives. Also, the document highlights

the project's strategic blueprint and collective vision, ensuring that all collaborative efforts are

harmonized and directed toward fulfilling the project's ambitions.

Dissemination or disclosure of the contents herein is limited to the internal circles of the

NATWORK consortium and the EC to maintain confidentiality and project integrity.

1.3. Interrelations

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and

resources from academia, industry, and research, focusing on user-centric service development,

robust economic and business models, cutting-edge cybersecurity, seamless interoperability, and

comprehensive on-demand services. The project integrates a collaboration of fifteen partners

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 14 of 66

from ten EU member states and associated countries (UK and CH), ensuring a broad

representation for addressing security requirements of emerging 6G Smart Networks and

Services in Europe and beyond.

NATWORK is categorized as a "Research Innovation Action – RIA" project and is methodically

segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple

activities across various WPs, the structure ensures clarity in responsibilities and optimizes

communication amongst the consortium's partners, boards, and committees. The interrelation

framework within NATWORK offers smooth operation and collaborative innovation across the

consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e.,

Research Institutes, Universities, SMEs, and large industries), enabling scientific, technological,

and security advancements in the realm of 6G. The D4.1 deliverable addresses all activities of the

NATWORK project related to T4.2 directly and as supporting activities for T3.1 (optimizing

selection and embedding of AI security services, i.c.w. UESSEX, CERTH, and ZHAW as main

stakeholders) and UC1 (Sustainability and reliability of 6G Slices and services i.c.w. UESSEX, ISRD

and TSS).

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 15 of 66

2. Runtime overview & security
This section covers a state-of-the-art overview of critical aspects of various runtimes related to

T4.2: security properties, relative resource use, ease of use, and compatibility with existing

systems and software.

2.1. Virtual Machines

In today’s digital landscape, ensuring robust runtime payload security in virtual machine (VM)

environments is critical. The increasing adoption of virtualization technologies across cloud,

edge, and data center infrastructures has introduced significant challenges in maintaining the

confidentiality, integrity, and availability of sensitive workloads. Modern security strategies rely

on an integrated approach that combines advanced hardware features, TEEs, and comprehensive

software-based defenses. This discussion covers the latest developments in VM security, focusing

on hardware-assisted virtualization, TEEs, network and storage protections, real-time

monitoring, and emerging trends such as the unikernel technology. Hardware-assisted

virtualization technologies like Intel Virtualization Technology for x86 (VT-x) and AMD

Virtualization (AMD-V) are at the foundation of VM security, which provide essential isolation

between guest VMs and the host system [1]. These technologies leverage hardware-level

features to enforce strict separation, ensuring that operations within one VM cannot interfere

with or compromise another. Recent advancements, such as the incorporation of nested page

tables and extended page table protections, have further strengthened these measures by

limiting the ability of malicious entities to exploit memory access flaws or execute cross-VM

attacks [2]. Such enhancements improve the fundamental security posture and serve as critical

enablers for implementing higher-level security mechanisms.

TEEs have emerged as a crucial technology for protecting sensitive payloads during runtime.

Technologies like Intel Software Guard Extensions (SGX), Intel Trust Domain Extensions (TDX),

and AMD Secure Encrypted Virtualization (SEV) create secure enclaves within the processor,

allowing data and code to be executed with enhanced confidentiality and integrity even in

scenarios where the broader operating environment might be compromised [3]. By enforcing

memory encryption and implementing rigorous attestation protocols, TEEs verify the integrity of

the executed code and protect against sophisticated threats, including side-channel attacks and

memory tampering. Although these techniques have proven effective, they introduce

performance overheads and implementation challenges that require careful balancing during

system design and deployment.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 16 of 66

Securing network communications inside virtualized environments is another critical aspect of

runtime payload security. Software-Defined Networking (SDN) technologies enable

administrators to implement fine-grained control over VM communication patterns, ensuring

that only authorized traffic crosses virtual boundaries [4]. In addition, virtual network interface

controllers (vNICs) equipped with hardware-assisted packet processing bolster security and

performance. Techniques such as micro-segmentation and dynamic access control policies

further limit the lateral movement of potential attackers, effectively containing breaches and

enhancing overall network security. Storage security for VM payloads has evolved in response to

emerging threats and compliance requirements. When combined with robust key management

systems, full disk encryption technologies ensure that sensitive data remains confidential even if

physical media are compromised [5]. Modern security practices increasingly integrate hardware

security modules (HSMs) to safeguard encryption keys and other critical configuration data,

helping to secure VM migration, backup operations, and adherence to industry regulations.

These measures are particularly vital in environments where data confidentiality and integrity

are critical, such as in regulated or sensitive information sectors.

Modern VM environments incorporate sophisticated runtime monitoring and threat detection

mechanisms to bolster security further. Advanced intrusion detection systems now combine

traditional signature-based methods with machine learning (ML)-driven behavioral analysis to

identify known and novel threats in real time [6]. The development of automated response

mechanisms has streamlined threat mitigation, enabling rapid system responses to potential

security incidents. Nonetheless, challenges remain in minimizing false positives while maintaining

high detection accuracy and overall system performance. Recent research into unikernel

technology and lightweight virtualization has introduced a promising new paradigm for

enhancing runtime payload security. Unikernels, which combine the essential functions of the

application and operating system into a single executable, significantly reduce the footprint of

code executed in privileged modes, thereby minimizing the attack surface. This streamlined

approach offers substantial security benefits, particularly in cloud-native environments, though

the operational complexity and compatibility challenges associated with unikernels continue to

be active research areas [7].

Integrating security features through APIs allows different VM software services, containers, and

other infrastructure components to dynamically interact and share threat intelligence. As

isolated security devices detect potential threats, such as Distributed Denial of Service (DDoS)

attacks, they can communicate this information to services running on virtual machines or across

containers via APIs. This integration enables the system to automatically isolate compromised

VMs, migrate critical services to secure environments, or trigger other countermeasures.

Additionally, the feedback generated from these defensive measures provides continuous data

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 17 of 66

to the entire network, allowing the system to refine its security protocols. This feedback loop

ensures that VM software and services align with the most up-to-date defense strategies,

enhancing the network’s resilience and allowing faster, more effective responses to emerging

threats (cf. Section 3.3).

2.2. MicroVMs

MicroVMs are a lightweight form of VM designed to run individual processes. As VMs, these can

leverage all the security benefits described in Section 2.1. As such, the rest of this section details

the specific properties of microVMs. Figure 1 illustrates the architectural differences between

various types of (micro)VMs and containers.

Figure 1: conceptual comparison of several runtime options. Userspace is marked in green. While gVisor is not discussed in the
rest of the text due to lackluster performance, it presents an interesting architecture using a custom system interface.

Several technologies enable the creation of microVMs, among which unikernels are a varied

group with excellent security and performance features [8],[9]. Specifically, unikernels are

specialized operating system libraries that compile an application with only the necessary system

components into a single executable, which runs inside a virtual machine. This reduces both the

image size and the attack surface.

Apart from the kernel- versus userspace designs, microVMs can be roughly classified into two

types: POSIX-compatible (Portable Operating System Interface [10]) ones that focus on existing

software, and those based on non-POSIX system interfaces which sacrifice compatibility for

smaller images and lower resource requirements. OSv [11] is a POSIX-compatible [10] unikernel

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 18 of 66

platform with wide compatibility for existing programs and programming language runtimes.

Although microVMs generally support a wide variety of hypervisors for their execution,

QEMU[12] with KVM (Kernel-based Virtual Machine [12], [13]) acceleration is a widely endorsed

option due to its Type I hypervisor capabilities and integration with Linux.

Given the diversity in microVM architectures and hypervisor support, evaluating their

performance and trade-offs across different virtualization technologies becomes crucial.

Therefore, various classes of virtualization technologies, including microVMs, have been

extensively compared and benchmarked [14], and their performance has been examined at the

kernel level [15].

2.2.1. Non-POSIX

This type of microVM is designed from the ground up around a single programming language,

generally a C dialect, providing a custom (not POSIX compatible) system interface. Unikernels

most often use this approach: at compile time, all the libraries and system calls the program uses

are compiled, together with the program itself, creating a single kernel that starts on boot.

Platforms of this type are generally incompatible with existing source code, often requiring

developers to rewrite applications entirely using platform-specific APIs. Such rewrites can

introduce security risks, especially if critical security features are omitted or reimplemented

incorrectly. These issues are particularly pronounced on ARM-based edge devices, where

limitations like missing system calls, lack of 64-bit support, or ELF format incompatibilities further

complicate development. Considering the still-evolving nature of existing platforms of this type,

it also often means dropping functionality that is not yet implementable [23]. On the other hand,

this type of microVM results in lower CPU and memory use and far smaller images than POSIX-

compatible ones [17]. Direct security benefits are usually limited to “security through obscurity”

and a reduced attack surface by modifying the kernel. IncludeOS1 [22] and MirageOS2 are good

examples of this approach.

2.2.2. POSIX

2.2.2.1. Runtimes

MicroVM runtimes, such as Firecracker3, are small hypervisors designed to minimize the footprint

and enhance the security of the virtualization layer. Unikernels reduce both the attack surface

1 https://www.includeos.org/ - IncludeOS - Run your application with zero overhead
2 https://mirage.io/ - A programming framework for building type-safe, modular systems
3 https://firecracker-microvm.github.io/ - Secure and fast microVMs for serverless computing

https://www.includeos.org/
https://mirage.io/
https://firecracker-microvm.github.io/

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 19 of 66

and the overhead of virtual machines by implementing only minimal virtual device drivers and

omitting all non-essential functionality. They can achieve performance close to that of native

processes, such as high Representational State Transfer (REST) API throughput under CPU load,

by leveraging para-virtualized devices like virtio [18] and hardware-assisted virtualization

technologies such as Intel VT-x and AMD-V [19] [73].

Guest operating systems often require minor changes to run in a minimal environment. The

smallest, most optimized unikernel platforms, such as UniK4 and Unikraft, provide custom system

interfaces and dedicated programming languages. The latter produces unikernels of only around

1 MB for essential web functions such as Nginx, SQLite, or Redis [8].

2.2.2.2. Image formats & platforms

In addition to runtimes, several specialized VM guests and image formats have emerged. These

fall into two categories: the first category runs existing software on a highly minified Linux kernel,

such as the default Firecracker kernel [20][20]. While this approach ensures near-perfect

compatibility with most Linux software and system calls, the need to support a broad set of Linux

APIs and architectures—combined with the typically straightforward “transpiling” of existing

libraries—limits how small these kernels can become. However, using custom kernels with

reduced API support is often possible, which can further minimize both the image size and the

attack surface. Unikernels represent the second category, in which the application is compiled

together with only the necessary operating system components into a monolithic binary that

runs entirely in kernel mode. This improves performance by removing context switches,

providing smaller images, and reducing the attack surface [21]. POSIX-compatible unikernels,

such as OSv5 , can integrate existing POSIX executables, such as Linux software, or compile

software in various programming languages into a unikernel from scratch without modification

(e.g., Rust, Go, C). However, compatibility and potential security issues depend highly on the

active community maintaining such kernels, and most initiatives still focus on compatibility rather

than specific security improvements. OSv, for example, has several significant issues that

supersede security concerns [14], many of which are shared by other platforms:

- Multithreading: multithreaded REST services, specifically configured with four handler

threads, result in up to 20% performance loss compared to single-threaded unikernels

rather than an expected (up to 300%) increase. While this issue has been known for years,

it remains unresolved.

4 https://github.com/solo-io/unik - A platform for automating unikernel & MicroVM compilation and deployment
5 https://github.com/cloudius-systems/osv - OSv, a new operating system for the cloud

https://github.com/solo-io/unik
https://github.com/cloudius-systems/osv

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 20 of 66

- Multicore operation: like multithreading, allowing a unikernel to use multiple cores

results in a significant performance hit rather than an improvement, indicating that it is

not merely a thread scheduling issue on single cores.

- Reliability: when performing essential REST server/client evaluations, some requests get

“stuck” while processing, resulting in extreme lag, which is orders of magnitude beyond

that of running the same services in containers. This is the case even with single-threaded

operations.

- Stability: After handling a certain (random) number of REST requests, unikernels often

crash, independent of the actual REST service they provide. This is inconvenient in

evaluation scenarios but unacceptable in production environments.

- Hardware platforms: ARM support may be seemingly random, especially for languages

such as Golang, which tend to change the specific syscalls they use on any platform,

depending on the language version.

- Resource use: memory and CPU requirements vary wildly depending on the scenario; a

Minecraft server with a large world uses 25% less memory than its containerized

equivalent but uses up to 30% more CPU. For REST services, this is inverted, with higher

request throughput at the cost of the virtualization layer using an order of magnitude

more memory than a containerized version.

2.2.3. Image & payload security

Apart from often quoted security benefits due to a reduced kernel attack surface and VM-based

process isolation, little research has investigated other security aspects of microVMs. However,

SEVeriFast [16] proposes a solution to run microVMs using AMD SEV with 86-93% performance

improvements, in terms of boot times, over the state-of-the-art. On the other hand, recent work

shows that to preserve kernel size, unikernels may skip important yet fundamental security

features such as Address Space Layout Randomization (ASLR), Data Execution Prevention (DEP),

and Non-eXecutable (NX) bits [23].

2.3. Containers

Containerized services are prevalent in 5G networks and are considered a key enabler in 6G

networks. Although they offer significant benefits such as portability, enhanced resource usage,

and scalability, they also introduce inherent vulnerabilities that raise new security issues [24].

Several security strategies to mitigate risks have been explored, including isolation mechanisms,

static image analysis and hardening, and network security policies. Even though these methods

enhance security in different ways, they each have inherent limitations.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 21 of 66

More specifically, isolation mechanisms, including namespaces and control groups (cgroups6),

ensure that each container operates in its restricted environment, minimizing the risk of cross-

container interference [25]. However, although effective isolation can provide security to some

extent, it is not sufficient to prevent DoS attacks that are executed by consuming excessive CPU

or memory [26].

In static image analysis, relevant tools inspect the container images to detect any potentially

exploitable misconfigurations, while in image hardening, unnecessary packages are removed to

strengthen the containers’ security posture. Nonetheless, static analysis methods are ineffective

against runtime nor zero-day attacks, whereas image hardening is subject to causing implications

on the service's normal execution. Finally, network security policies restrict attackers' access to

the service by enforcing access control rules, though they introduce additional execution

overhead. [27] provides a more thorough review of related works that explore various container

defense mechanisms.

Figure 2: Containerized 5G topology

A recent approach introduces AI-based runtime monitoring, anomaly detection, and mitigation.

This technique is more advanced and is suitable for mitigating container security threats at

runtime. Motivated by this, NATWORK is developing an AI-powered monitoring and mitigation

6 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 22 of 66

tool. This tool is built upon and extends previous works [28] to enable continuous analysis of

system behavior, detecting anomalies, and responding in real time to contain any potential

attacks efficiently and promptly. A 5G network topology is deployed for experimentation and

validation using open-source implementations such as free5GC7 and Open5GS8, which aim to

provide standards-compliant 5G core networks. To support standalone (SA) 5G core functions—

such as the Access and Mobility Management Function (AMF) and the User Plane Function

(UPF)—the projects mentioned above offer a microservices-based architecture, where each

network function operates in its container.

SDN controllers and switches—such as Floodlight9 or Container Network Interfaces (CNIs)10—

facilitate communication between the containers and simulated 5G User Equipment (UEs). Figure

2 illustrates one example of such a topology. The computing and network resources consumed

by each container are monitored in real-time, as shown in Figure 3.

Figure 3: Resource consumption statistics per container

This containerized architecture enables us to evaluate the tool's performance against various

types of Denial of Service (DoS) attacks, including User Datagram Protocol (UDP) Flooding attacks

on the UPF and Stream Control Transmission Protocol (SCTP) Flooding attacks on the AMF. Such

attacks aim to exhaust the target network resources. Considering the above, the AI-powered tool

operates as follows:

First, it utilizes packet sniffers (cf. Figure 4), such as tcpdump11 and Wireshark12To capture

network traffic of container interfaces in real-time across several transport layer protocols. UDP

and SCTP were selected because of their widespread use in 5G/B5G networks.

It also monitors all active flows and their traffic in the network setup. Different traffic patterns

are simulated using tools such as Apache JMeter13, to create realistic attack scenarios.

7 https://free5gc.org/
8 https://github.com/open5gs/open5gs
9 https://github.com/floodlight/floodlight
10 https://github.com/containernetworking/cni
11 https://www.tcpdump.org/
12 https://www.wireshark.org/
13 https://jmeter.apache.org/

https://free5gc.org/
https://github.com/open5gs/open5gs
https://github.com/floodlight/floodlight
https://github.com/containernetworking/cni
https://www.tcpdump.org/
https://www.wireshark.org/
https://jmeter.apache.org/

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 23 of 66

Figure 4: Packet sniffing using tcpdump

Based on the information collected on network traffic and flows, the tool performs online

anomaly detection using a moving average algorithm. An attack is detected when an unexpected

surge in traffic is generated by a particular flow, indicating the potential activity of a flooder. This

case is shown in Figure 5.

Figure 5: Number of active flows captured at runtime

Upon detection, the tool immediately identifies the IP of the attacking flow. Subsequently, a new

control rule is created to restrain incoming packets from the suspicious flow, thus effectively

mitigating the attack, as illustrated in Figure 6.

Figure 6: Online attack detection & mitigation

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 24 of 66

2.4. WebAssembly

2.4.1. Origin and core design objectives

WASM14 was created as a collaboration between major browser vendors, including Mozilla,

Google, Microsoft, and Apple, under the World Wide Web Consortium (W3C) WebAssembly

Working Group15. It was first announced in 2015 and became an official W3C standard in 201916.

The core reasons behind WASM’s creation were:

I. Performance: JavaScript 17 technology, while powerful, has inherent performance

limitations, particularly for compute-intensive tasks such as gaming, video processing,

and data visualization. WASM was designed to enable near-native execution speed by

using a binary format that is more efficient to parse and execute. This binary format

is structured on low-level instructions, which are closer to native instructions and,

therefore, faster to interpret.

II. Security: WASM was designed with a sandboxed execution model, ensuring that

WebAssembly code runs within the same security constraints as JavaScript in the

browser. This makes it harder for WASM code to escape and compromise a system.

Security derives from several memory designs:

o Contiguous (i.e., linear) memory allocation where each WASM payload is

allocated with its access-restricted memory map, preventing overwrite

beyond this area (e.g., overflow for escalation)

o No direct memory pointers (as enabled by native assembly), preventing direct

jump to read and write anywhere

o Control-flow integrity, enforced by the interpreters, prevents unvalidated

indirect calls and mitigates control-flow-based attacks such as Return-

Oriented Programming (ROP), self-modifying code, or attacks that exploit Just-

In-Time (JIT) compilation to inject malicious code dynamically.

III. Portability: WASM is not tied to JavaScript—it is a low-level bytecode format that can

be compiled from multiple languages (e.g., C, C++, Rust, Go), enabling developers to

run high-performance code on the web without relying on JavaScript. From the

outset, WASM was designed to be a polyglot platform. It can serve as a common

14 https://github.com/webassembly
15 https://www.w3.org/groups/wg/wasm/
16 https://www.w3.org/TR/wasm-core-2/
17 https://github.com/topics/javascript

https://github.com/webassembly
https://www.w3.org/groups/wg/wasm/
https://www.w3.org/TR/wasm-core-2/
https://github.com/topics/javascript

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 25 of 66

compilation target for many programming languages rather than being limited to a

single language or ecosystem.

IV. Interoperability: WASM was designed to work alongside JavaScript, not replace it.

This allows developers to use WASM modules within JavaScript applications,

leveraging its speed for performance-critical parts.

Although initially developed by browser vendors, WASM technology has expanded into other

domains, including telecom, where it is used in Function-as-a-Service (FaaS) platforms like

CloudFlare Workers18. These platforms enable serverless execution of code in WASM, allowing

lightweight, high-performance functions to run on demand in the cloud. WASM is also viewed as

a serious competitor against containers. WASM is also considered in gaming (e.g., Unity19),

blockchain (Ethereum 2.0 WASM smart contracts20), and AI (e.g., Pyodide21). Browser vendors

faced JavaScript's limitations in both security and performance. JavaScript high abstraction level

made it slow to run, easy to reverse, and tamper. As importantly, its high-speed engine (i.e., the

Just-In-Time compiler) was exploited, as demonstrated in a real-world attack [76]. The core

prototype inheritance structure (i.e., the backbone of JavaScript object-oriented programming)

was also an attack pathway, as illustrated in another real-world attack [77]. JIT spraying and

prototype pollution are the two main attack pathways taken by attackers on JavaScript and are

difficult to apprehend and prevent for developers.

While keeping the same level of portability as offered by JavaScript (i.e., through

virtualization/interpretation), the WASM conceptor team has developed a lower-level

interpreted language, more complex to reverse and faster to execute, also almost closing the

door to JIT compilation through a preferred ahead of time compilation mode, notably by browser

vendors, reluctant to use JIT for security reasons. JIT is, however, possibly activated (e.g.,

WASTIME runtime).

2.4.2. WASM security aspects

Several rich surveys of WASM security have flourished since 2020. In [29], the authors have sifted

through 121 works covering different security aspects, including vulnerabilities and interactions

with the operating system. In essence, primary emphasis is put on the opportunities and threats

of the sandbox.

18 https://github.com/cloudflare/workerd
19 https://unity.com/
20 https://ewasm.readthedocs.io/en/mkdocs/
21 https://pyodide.org/en/stable/

https://github.com/cloudflare/workerd
https://unity.com/
https://ewasm.readthedocs.io/en/mkdocs/
https://pyodide.org/en/stable/

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 26 of 66

The sandboxed payload isolation, a key promise of WASM, can be eroded by memory-unsafe

native language programs (before being compiled as a WASM payload), which, of course,

advocates eliminating C, C++, or other memory-unsafe language programs (e.g., Rust

programming). Side-channel attacks are potentially robust sandbox data extraction techniques,

as they operate within the domain of a trusted execution environment or Linux domain space.

On both fronts, side-channel attacks require technology vendors (e.g., CPU manufacturers for

TEEs) and software developers (e.g., those working on WASM or Linux distributions) to engage in

constant and proactive engineering to mitigate vulnerabilities and strengthen isolation

guarantees. While perfect security is unattainable, systems should be hardened to the point

where only highly skilled attackers can pose a threat. In practice, reverse engineering and

tampering remain common attack vectors, prompting developers to obfuscate most WASM

payloads—often at the cost of performance—to protect confidentiality. However, performance

is less relevant for attackers aiming to evade detection. In such cases, obfuscated WASM payloads

are frequently deployed for illicit use, particularly on the dark web and in crypto mining

operations where WASM thrives [30].

The strict memory management of WASM confers a high-security profile in contrast to native

programming, as do other interpreted languages (e.g., Java), but in a more advanced manner.

The relatively low abstraction level of WASM instructions only raises the bar for good reversers

but without attaining any level of certainty. With a significant impact on performance,

obfuscation is practiced preventing malware detection rather than intellectual property

preservation.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 27 of 66

3. Intelligent runtime selection
This section discusses some of the enablers of intelligent runtime selection. The most critical

aspects are runtime unification, which ensures that the selectable runtimes are easily

interchangeable; network unification, which provides a uniform network environment regardless

of the underlying runtime; and standardization, which extends existing standards, e.g., Open

Container Initiative (OCI), to other runtimes or applying more generic standards to a unified

platform. Finally, workload modeling and resource optimization are considered. Although this

work is currently limited to workload modeling, it can be easily extended to runtime-dependent

properties, as the same workload over different runtimes is likely to have varying resource usage

and optimization parameters.

3.1. Runtime unification

The current state of software orchestration in the network edge is fairly container-centric. Most

standards, networking solutions, and plugins are designed for container orchestration,

particularly platforms such as Kubernetes (K8s)22, K3s23, etc.

Several alternatives have been explored. For instance, one study leverages KubeVirt to deploy

and evaluate (micro)VM-based workloads on K8s clusters [31]. While KubeVirt 24 supports

virtualization within K8s, significant modifications to the cluster, including custom resources and

daemon sets, are required. Other solutions exist, such as Firecracker25 through Kata Containers26

or WASM/WASI27 workloads [32]. However, these approaches are typically designed to support

specific workload types rather than offering a unified integration model across diverse execution

environments. Throughout T3.1/T4.2, Feather was explicitly developed as a multi-runtime agent

for edge computing designed to replace the Kubelet28 in K8s clusters without requiring any

modifications to the cluster. Feather utilizes a Virtual Kubelet as its foundation, receiving

commands from Kubernetes through the REST interface. Workload platforms (e.g., container,

unikernel) are referred to as “backends,” which may be supported by different runtimes as

described in 2.2.2.1 (e.g., QEMU, VirtualBox). A high-level overview of the Feather architecture

is presented in Figure 7, where newly developed components are highlighted in dashed red

22 https://kubernetes.io/
23 https://k3s.io/
24 https://kubevirt.io/ - Building a virtualization API for Kubernetes
25 https://firecracker-microvm.github.io/
26 https://katacontainers.io/
27 https://www.spinkube.dev/ - Hyper-efficient serverless on Kubernetes, powered by WebAssembly.
28 https://virtual-kubelet.io/ - An open-source Kubernetes kubelet implementation that masquerades as a kubelet.

https://kubernetes.io/
https://k3s.io/
https://kubevirt.io/
https://firecracker-microvm.github.io/
https://katacontainers.io/
https://www.spinkube.dev/
https://virtual-kubelet.io/

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 28 of 66

rectangles. The Virtual Kubelet runs a REST API, which receives deployments from K8s; these are

forwarded to any registered providers to handle deployments at the K8s pod level. To separate

node and pod logic from atomic workloads (i.e., individual containers), Feather implements a

provider which takes care of all pod-level logic, leaving the workload-level (or instance) logic to

backends (e.g., containerd, OSv). This approach simplifies the complexity of additional backend

implementations. It enables mixing different runtimes in a single pod if security requirements

require, for example, when trusted execution is necessary for the primary payload but not for a

logger and web API clients in the same pod. The provider also interacts with a basic Resource

Monitor to report node status and determine if it has enough resources to execute a deployment.

For advanced monitoring outside the default K8s dashboard, a Prometheus Golang Exporter29

may be enabled in addition to the default process metrics. The OSv backend is implemented as a

proof of concept for unikernel microVMs, which are run on KVM-QEMU by default.

Figure 7: General architecture of the Feather multi-runtime platform.

Initial developments focused explicitly on enabling OSv unikernels within K8s, on edge devices,

through a standard Open Container Initiative (OCI) image30. To achieve this goal, a second tool

called Flint was developed, which can store microVM images inside an OCI image as a single layer,

adding metadata information to indicate the type of backend and runtime to be called by

Feather. Storing images unaltered inside an OCI image conserves any security mechanisms in

place (e.g., encryption), which backends may validate. It enables additional image layers required

for payload security protocols. Figure 8 shows the deployment flows for containers and unikernel

29 https://github.com/prometheus/exporter-toolkit
30 https://github.com/opencontainers/image-spec

https://github.com/prometheus/exporter-toolkit
https://github.com/opencontainers/image-spec

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 29 of 66

images packed as OCI images within Feather. Key differences are how images are stored locally

and loaded into their respective runtimes after unpacking:

- Container images are forwarded to the container runtime (e.g., containerd31), which

stores the layers on disk and loads them as required when starting an instance.

- Feather extracts OSv images from the OCI image, stored in the OSv cache, and KVM start

commands are constructed from deployment parameters to ensure expected

functionality (e.g., mounts, networking, environment variables).

There are a few limitations to the current implementation. More importantly, although it can

interact with most basic K8s resources (e.g., ConfigMaps32, Secrets33), due to virtio-fs34 and OSv

limitations, the current version of Feather only supports read-only mounts of local directories.

Figure 8: Example of deployment flows for different runtimes in Feather, in this case containers and OSv unikernels.

In addition to runtime security considerations, evaluations reveal notable hardware implications

for future alternatives. While OSv unikernels use significantly less memory than containers,

combining OSv images with QEMU/KVM introduces substantial processing overhead (cf. Figure

9).

31 https://containerd.io/
32 https://kubernetes.io/docs/concepts/configuration/configmap/
33 https://kubernetes.io/docs/concepts/configuration/secret/
34 https://virtio-fs.gitlab.io/

https://containerd.io/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://virtio-fs.gitlab.io/

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 30 of 66

Figure 9: Tradeoff between hardware requirements of containers vs OSv unikernels, to consider along with security aspects.

3.2. Network Unification

3.2.1. Container Networking

Integrating various runtimes into a single platform is non-trivial because orchestration software's

practices and standardization efforts have historically focused on containers35, which are typically

combined into pods consisting of multiple containers that form a logical unit of services. A single

pod's container normally shares a network namespace, enabling local communication.

Standardized pod networks handle network traffic between pods or Container Network Interface

(CNI) plugins [33] in the case of Kubernetes (K8s), with implementations focusing on various

aspects such as security, performance, and flexibility. Plugin design varies but is usually based on

Layer 3 Internet Protocol (IP) routing and/or extended Berkeley Packet Filter (eBPF) for

performance, with several alternatives evaluated by Koukis et al. [34] in the context of edge

computing. Non-container runtimes can be integrated using various methods; for example, shim

implementations such as the WebAssembly OCI-compliant runtime shim (CWASI) [35] may be

able to interface directly with a CNI plugin. Kata Containers [36] are implemented using a custom

runtime that embeds the containers of an entire pod within a microVM, and the microVM's

network interface is attached to the pod's network. MicroVM workloads may integrate with a

CNI to some degree. However, evaluations [37] (OSv, Firecracker, etc.) and guides (Nabla36) never

deploy more than a single workload per pod, nor do they explicitly discuss the (pod) networking

architecture. As a microVM uses a single IP address per machine, it is doubtful whether these

35 https://opencontainers.org/ - Open Container Initiative - an open governance structure for the express purpose
of creating open industry standards around container formats and runtimes
36 https://nabla-containers.github.io/2018/11/05/nabla-k8s/ - Nabla on Kubernetes

https://opencontainers.org/
https://nabla-containers.github.io/2018/11/05/nabla-k8s/

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 31 of 66

solutions support more than a single workload per pod from a networking perspective.

Furthermore, many microVM options are designed for FaaS operation in the cloud (e.g., OSv with

Firecracker37), which, by design, does not require pod networking.

To that end, a runtime-agnostic networking solution was devised to provide mixed workload pods

with all the standard behavioral features of pod networking. The core functionality of the

proposed solution is sub-pod networking, which sets up small, independent subnets for each pod,

rather than providing them with a single IP address. It is based on eBPF programs for efficient

and secure traffic processing. The networking solution is integrated into Feather as a

configuration option, in addition to IPv4/6 networking schemes and an additional REST API for

stand-alone operation (i.e., without the necessity for a Kubernetes cluster).

Figure 10: Architecture overview of Feather’s multi-runtime networking solution.

Figure 10 shows the high-level component overview of the proposed architecture integrated into

Feather. Existing components are indicated in yellow, while novel components are green. The

Pod Manager performs General pod management, which receives commands through the

Kubelet API. The Pod Manager examines workloads in every pod deployment to determine the

runtime providers that should execute them; the Containerd and OSv provider components

37 https://firecracker-microvm.github.io/

https://firecracker-microvm.github.io/

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 32 of 66

indicate these. However, these components only handle workload image management, resource

restrictions (e.g., cgroups), and basic runtime parameters.

Mixed-runtime pod networking is enabled at the pod level by interaction of the Pod Manager

with the PodNetwork Manager, which creates a dedicated bridge interface for each pod using

the pod IP address and a dedicated pod network namespace connected to the bridge through a

veth (Virtual Ethernet Device) pair 38 . Different implementations of this component exist,

depending on Feather configuration options. The pod network namespace supports any

workload process that can directly access the cni0 network interface inside it (e.g., containers)

and can be optionally disabled for performance reasons if no workloads within a pod require it.

Any pod workload that requires its interface, e.g., a TAP39 device for a QEMU VM, is attached to

the bridge instead of moving it into the pod network namespace. To support cross-runtime

networking, providers must call either a PodNetwork Manager function, which assigns a

workload to the pod network namespace, or a function that creates a sub-pod ready TAP device

for a workload to use; in Feather the Containerd provider adds containers to the pod network

namespace, while the OSv provider requests TAP devices. Feather provides a flexible interface to

integrate additional runtimes as providers (e.g., WASM/WASI).

Figure 11: Example of network devices and connections within and between multi-runtime pods.

As the PodNetwork Manager is workload agnostic, any network configuration required by the

runtimes is instead passed to them by Feather Providers. This allows for flexible network

38 https://man7.org/linux/man-pages/man4/veth.4.html
39 https://docs.kernel.org/networking/tuntap.html - Universal TUN/TAP device driver

https://man7.org/linux/man-pages/man4/veth.4.html
https://docs.kernel.org/networking/tuntap.html

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 33 of 66

implementations but has no measurable impact on performance compared to containers, i.e., a

small setup cost per workload to create a network interface and attach an eBPF program. In

addition to pod and workload level network initialization, the PodNetwork manager is

responsible for sub-pod networking. This concept uses custom eBPF traffic routing programs to

ensure optimal performance and disguise sub-pod networking from the point of view of other

pods and K8s nodes. The lifecycles and routing tables of these programs are handled by the

PodNetwork manager based on the interaction between the Feather Provider and the

PodAddress manager. Finally, the PodNetwork manager interacts with the PodWAN Manager to

route pod traffic to other nodes. In the example architecture, Warrens [38] is used for this

purpose. Still, configuration options also allow the PodWAN Manager to directly route traffic to

a suitable network interface for compatibility with Kubernetes clusters, expecting default CNI

behavior.

A concrete example of the networking components created by this architecture is shown in

Figure 11, in which two pods are deployed on a Feather-managed node; pod0 consists of a single

container, while pod1 consists of two containers and an OSv unikernel. Three types of network

traffic must be managed in this example; ``localhost", interpod, and internode traffic. eBPF

programs attached to the pod0/pod1 interfaces and eth0 and TAP devices manipulate pod traffic

at the packet level to achieve secure, high-performance pod-level networking between runtimes.

Figure 12: Workload vs networking CPU impact for a video streaming application.

Figure 12 illustrates the multi-runtime performance of a basic video streaming application serving

multiple clients from static files stored on disk, achieving a throughput between 3 Gbps and 4

Gbps. The different series denote how the streaming server is executed. The “multi-container”

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 34 of 66

and “multi-OSv” scenarios refer to pod compositions where the streaming server runs as a

container or microVM within a multi-workload pod. While performance scaling depends on the

composition of both source and target pods, in most cases, the overhead will be approximately

1% of a single CPU core (x86 @ ~3 GHz), and a latency of 10 µs to 20 µs is added compared to

standard processing. The erratic behavior of OSv-based pods is related to stability issues

described in Section 2.2.2.2.

3.3. Network Resilience

In parallel with runtime and network unification, ensuring a network’s resilience to external

threats is critical. The key objective is to identify attacks as close to their source. By deploying

multiple devices across the entry points of an extensive network, the system can establish a

unified strategy to block malicious traffic effectively. This collaborative approach has been shown

to enhance detection accuracy using techniques such as entropy and Deep Learning (DL) [70].

This approach enables a coordinated defense mechanism that works across different network

segments, mitigating potential threats early in the attack life cycle.

Figure 13: 5G infrastructure with DDoS attack detection mechanism.

The NATWORK solution (cf. Figure 13) is built to be easily integrated into existing infrastructure,

enhancing the overall security posture of the network without requiring a complete overhaul of

the system. To improve the security and resilience of 5G infrastructures, particularly in the

context of emerging threats targeting 6G networks, the NATWORK network resilience framework

has been defined. NATWORK introduces intelligent monitoring components throughout the

network to observe and analyze traffic behavior. Specifically, network probes are strategically

deployed within the RAN and the 5G Core, especially near the UPF, to capture traffic

characteristics from both control and user planes. These probes feed data into specialized

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 35 of 66

detection models designed to identify anomalous behaviors indicative of cyberattacks, such as

flooding, signaling storms, or protocol abuse. The models leverage machine learning techniques

to differentiate between benign and malicious patterns, including the ability to detect previously

unknown attack vectors. The classification of network traffic into “healthy” and “infected”

categories will be performed in real time and can be adapted to specific services or protocols

under analysis. In addition to anomaly detection, the framework will ensure data integrity

through traffic anonymization, format normalization, and source consistency checks. This

comprehensive approach allows the system to operate effectively at scale while preserving data

quality and privacy. Ultimately, integrating the NATWORK framework with the 5G architecture

supports a proactive security posture by enabling the early detection and mitigation of network

threats. It offers a scalable and adaptive solution aligned with the needs of future mobile network

generations. Studies have demonstrated that a distributed defense mechanism at the Internet

scale offers scalability and resilience across diverse network topologies [70], [71]. To improve

adaptability and flexibility, isolated security devices—such as DDoS detection systems—can be

integrated via REST APIs to share real-time threat data with the broader infrastructure,

contributing to a more comprehensive threat intelligence ecosystem (cf. Figure 14).

Figure 14: Integration through an API

When an attack is detected, the NATWORK system can trigger responses across the network,

such as isolating contaminated equipment or shifting services from compromised virtual

machines (VMs) to healthier, more secure locations. By leveraging API integration, the system

ensures that threat data is seamlessly shared between devices and services, enabling faster and

more coordinated responses to attacks. This integration also allows the network to dynamically

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 36 of 66

adjust by orchestrating services based on their health and security status. For example, VMs

showing signs of compromise can be automatically quarantined, while healthy services are

migrated to different network parts with minimal disruption. The result is a more resilient and

responsive network, where the defense mechanisms work in real time to isolate and mitigate the

impact of malicious activities.

Ultimately, the goal is to improve detection accuracy and response times, making the network

more resilient to attacks, e.g., DDoS. Through this distributed and proactive method, the system

ensures a more efficient defense strategy, reducing the impact of malicious flows on the

network’s resources and maintaining operational continuity. For example, recent work has also

highlighted how ensemble-based packet processing and bandwidth optimization significantly

improve DDoS attack detection and overall network resilience [71], [72].

3.4. Standardization

Standardization of the developments in T4.2 is key to long-term compatibility and extensibility.

To that end, efforts have been made to ensure Feather's compatibility with Kubernetes and Open

Container Initiative (OCI) standards. At the same time, the Open Application Model (OAM) is

being adopted as an independent model for intent-based application modeling.

3.4.1. Kubernetes & Open Container Initiative

Feather supports Kubernetes API data structures as required for Pod deployment, i.e., Pods,

Deployments, Containers, etc., as defined in the K8s v1 specification40. The API itself is compliant

with several OCI guidelines and standards, including container and image formats.

Non-container images are supported within the OCI image format specification by leveraging

freely defined metadata as described in Section 3.1; non-Feather Kubernetes nodes will ignore

this metadata and (attempt to) deploy images in a Deployment as a container.

Networking options (multi-runtime or otherwise) are directly integrated into Feather and do not

adhere to the principle of a CNI. However, they comply with all expected behavior of a container

network from the point of view of other nodes and the control plane (barring Services and certain

DNS features).

40 https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/#workloads-apis

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/#workloads-apis

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 37 of 66

3.4.2. Open Application Model

Figure 15: Overview of OAM and modifications required to provide intent-based orchestration

Open Application Model (OAM)41 adopts multi-runtime intent-based deployment in a larger

framework, Flocky, which is designed for decentralized intent-based node discovery and

orchestrator-agnostic workload deployment. Technically, the framework allows for translating

deployments to any platform, including K8s, although Feather was chosen for Flocky due to its

low resource requirements and mixed-runtime capabilities. The modifications to OAM are shown

in Figure 15, marked in light green. To summarize, the basis of OAM is the Application, which

primarily consists of metadata and several Components. Components are used during

deployment, referencing ComponentDefinition and Traits and Scopes. The ComponentDefinition

contains the entire schema and all required details for its deployment, including a reference to

its WorkloadType. Traits refer to TraitDefinitions, which are intended to apply specific behavior

or restrictions to Components. Scopes refer to ScopeDefinitions and are primarily used to link

components that need logical access to shared resources. Note that Figure 15 shortens these

concepts to Component-, Trait- and ScopeDefs.

The modifications made to OAM are for internal use (decentralized orchestration) only, and

consist of:

• The ComponentDefinition Schematic is the Flocky implementation of an unstructured

field in the OAM standard, containing a Kubernetes API Container description and

41 https://oam.dev

https://oam.dev/

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 38 of 66

parameter data. Importantly, Flocky is workload runtime-agnostic; v1.Container 42 is

merely used for convenience. ``BaseComponent'' allows several ComponentDefinition to

implement the same base component under a single reference.

• WorkloadType is reinterpreted to serve as an indication of which runtime a

ComponentDefinition requires. Basic workload types for OSv unikernels and Docker

containers are implemented.

• Several example Traits are defined, including GreenEnergy, SecureRuntime,

SoftDistanceLimit, Attestation, and NetworkEncryption. Some traits apply to

WorkloadType selection (e.g., a unikernel workload uses SecureRuntime), while others

apply to nodes (e.g., limiting QoE impact with SoftDistanceLimit, requiring a node with

attestation) or node properties (e.g., NetworkEncryption, GreenEnergy).

• NodeSummary and NodeCapabilities, respectively, are used to build a Metadata

Repository; these structures allow the Repository service to request the (available)

hardware resources, Traits, supported WorkloadTypes and running (Sub)Applications of

another node.

• To break down Applications into smaller deployable units for several nodes,

SubApplication is used to deploy subsets of an Application while retaining important

information such as specific ComponentDefinitions to be deployed for each component

and any Scopes that should be applied to its particular collection of Components.

3.5. Intent-based selection

Flocky was developed as a framework for decentralized intent-based metadata gathering and

orchestration. Its main goal is to allow any device to deploy an Application consisting of multiple

Components to multiple discovered target devices, depending on the requirements of each

Component and the target device's capabilities. Flocky is entirely decentralized, as indicated by

the distribution of identical Flocky services among different nodes, as illustrated in Figure 16.

The Discovery service (green rectangles and interactions) is responsible for discovering nearby

nodes running the Flocky framework, based on earlier work in SoSwirly [39]. The Discovery API

uses a “ping” operation, which periodically checks the existence of a remote node and its network

latency, and an operation, which requests the list of nodes known by a remote node. Through

these, the Discovery service maintains a cache of nodes within a configurable maximum network

latency by recursively contacting nodes and requesting their node lists. Network latency is chosen

as a basic metric at this level as the Discovery service is only interested in exploring the actual

network topology; advanced metrics are reserved for higher-level metadata and decisions. The

42 https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1Container.md

https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1Container.md

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 39 of 66

Discovery API also provides operations that allow subscribers to receive periodic updates on node

topology changes.

Figure 16: Overview of Flocky services for decentralized, intent-based orchestration

The Repository Service maintains the Metadata Repository (blue rectangles and interactions in

Figure 16), which subscribes to the Discovery service for node updates. The repository is not

updated on each node update; the service integrates all updates and only periodically contacts

known nodes for additional metadata through the Repository API.

Remote nodes provide one part of this metadata, such as a NodeSummary, which contains node

metadata, network interface information, capabilities, and any running applications deployed

through Flocky. Every node maintains its own NodeSummary through the Repository API, which

allows Capability Providers to register with it, as illustrated at the bottom of Figure 16. Registered

Capability Providers are periodically queried for any NodeCapabilities and NodeApplications they

provide, representing partial content of the ``Capabilities'' and ``Applications'' fields of the

NodeSummary. As indicated, providers may include a container engine, i.e., Feather, which

provides hardware resources, Flocky-deployed Applications, and supported WorkloadTypes

based on detected runtimes. Other providers may be container network-based, e.g., Warrens or

the presence of a VPN, enabling Traits such as NetworkEncryption. Other Traits may be similarly

provided through vendor-specific adapters that detect the presence of green energy or an

attestation agent.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 40 of 66

Apart from a NodeSummary, remote nodes are also queried for any ComponentDefinitions in

their repository, which are then merged with the local store, allowing new ComponentDefinitions

to propagate throughout an entire topology from just a few nodes.

The orchestration component of Flocky is split into two services, indicated by red components in

Figure 16: the Swirly service and the Deployment service. The Swirly service subscribes to the

Discovery and Repository services, receiving updates on newly discovered nodes and metadata

changes. When software on the local nodes requires the deployment of an OAM Application

through the Swirly API, the application is split into its Components, and ComponentDefinitions

fulfilling the required Traits for each Component are requested from the Repository API.

For each Component, the algorithm matches known nodes with the WorkloadTypes and resource

requirements of suitable ComponentDefinitions, along with Component Traits, resulting in a list

of candidate nodes. The first step of the matching algorithm considers nodes on which it already

has a suitable ComponentDefinition deployed; if found, these are contacted through the

Deployment API to determine whether they support another client. Suppose no existing

deployment (or available node) is found. In that case, the algorithm iterates the remaining nodes

to determine which is currently capable of deploying a suitable ComponentDefinition based on

resources and metadata. A QoE Evaluator then ranks all eligible nodes for a specific Component

based on hardware resources, Traits, WorkloadTypes, latency, and other relevant metadata.

Current implementations include the Legacy evaluator, which ranks by latency, and the Scored

evaluator, which extensively uses metadata using a static calculation. Other implementations

may include online learning evaluators and matching components and nodes based on elusive

user preferences, which are difficult to capture in a static model. By combining the flexibility of

Trait providers, Trait implementation logic, and the freedom of custom Evaluators to customize

Trait effects, Flocky provides potential support for a host of functional and non-functional intents,

user-driven or otherwise.

After ranking, each node is contacted through its Deployment API, i.e., the most desirable ones,

to determine whether it can currently deploy the required Component (specifically, a concrete

implementation or ComponentDefinition). If the list is exhausted before the

ComponentDefinition is deployed, the entire Application deployment fails and returns an error.

Due to the dependency of Components on Traits to ensure specific behavior or properties, a

single node (i.e., Swirly service) may be requested to deploy several instances of the same

Component with different non-compatible Traits, e.g., a database sidecar for a standard

application, and a highly secured version of that same sidecar for a critical application which

requires node attestation. In all cases, the algorithm will first attempt to reuse suitable

deployments, even if they operate under strictly needed tracks. If no existing Component

instance with the required Traits is found, another one will be deployed on a remote node.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 41 of 66

3.6. Data collection methodology for ML Services

The NATWORK framework aims to strengthen the resilience of upcoming 6G networks against

evolving attacks. Therefore, careful attention must be given to data collection, source reliability,

and quality. In such a way, NATWORK will support accurate problem analysis and the

development of well-defined models in various services as defined in D2.3. As new attacks

emerge continuously, the focus must go beyond existing threats to enable the detection and

mitigation of novel ones. Therefore, data will be gathered on a per-service basis. Given the

volume of data involved, considerations such as anonymization, format normalization, and

source consistency are essential.

The NATWORK project considers the two traditional sources of data:

• External databases. NATWORK uses an existing database that contains data traces.

• Internal databases. We generate the database from testbeds prepared in different

NATWORK research centers.

Figure 17: Data gathering & data sources for NATWORK

Figure 17 illustrates the data collection architecture within the NATWORK framework, integrating

external and internal data sources. Two primary components support data acquisition: Online

Databases and a Local Testbed. The online databases serve as repositories of pre-existing

network data, potentially encompassing known attack traces, standard network patterns, and

labeled datasets useful for training and validating anomaly detection models. In parallel, the local

testbed enables controlled, real-time data generation and collection. Within this testbed, data

originates from a source, is observed and analyzed by a probe, and then stored for further

processing. This modular chain (Source → Probe → Storage) facilitates the acquisition of rich,

context-aware traffic data under customizable conditions. The online and locally generated data

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 42 of 66

streams are funneled into the NATWORK services, the core processing and intelligence layer. This

architectural design supports comprehensive data fusion, enabling robust model development,

testing, and continuous learning in a dynamic network environment. Finally, model validation

requires data that was not used during training. A common practice is to use 70% of the collected

data for training and reserve the remaining 30% for validation, ensuring the model is tested on

previously unseen data.

3.7. ML-based workload modeling & resource optimization

Machine learning modeling is crucial in resource optimization by enabling intelligent workload

prediction and resource optimization. We are conducting benchmark analyses of machine

learning models to predict workload patterns and incorporate intelligence into resource

allocation strategies. Currently, we are working with Google workload traces [61]. This

methodology will be extended to synthetic datasets generated from attack simulations against

Cloud native functions (CNFs) and Fog-native deployments. Different traditional and gradient-

boosting ML models will be used to test and benchmark analysis of their performance, ensuring

the most effective models are selected for workload prediction. Federated learning (FL) is

integrated across the edge-to-cloud continuum to enhance workload modeling and resource

optimization further. This enables decentralized model training, aiming for data privacy while

reducing communication overhead. By allowing edge nodes to train models locally, FL supports

dynamic workload adaptation, proactive risk assessment, and efficient orchestration across the

infrastructure.

3.7.1. Data Engineering and Preprocessing

Data engineering and preprocessing are key steps in structuring workload traces for analysis.

Initially, the traces are processed to extract critical features for resource allocation. The data will

be structured chronologically, ensuring suitability for time-series modeling, and undergo feature

engineering, aggregation, and categorization to derive meaningful workload patterns. Our

approach adapts to evolving workload datasets, limiting both under- and over-provisioning

resources in cloud workload management. Before feeding the data into machine learning

models, exploratory data analysis (EDA) is performed to understand workload characteristics and

distributions. EDA helps identify patterns, detect anomalies, and assess correlations between

workload attributes.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 43 of 66

3.7.2. Model Building and Algorithm Selection

Various time-series forecasting models, including Long Short-Term Memory (LSTM) networks

[63] and statistical models like ARIMA 64], are implemented to capture workload behavior.

Additionally, gradient-boosting models such as XGBoost [65] are incorporated to enhance

prediction accuracy. The selected algorithms will be determined through benchmarking various

machine learning and statistical models to analyze and predict dynamic, non-linear data patterns.

This evaluation will compare the performance of traditional time-series models against more

advanced approaches, identifying the most effective methods for workload prediction. The

chosen model will be trained on historical Google workload traces and newly generated attack

datasets. The models will be validated against unseen data to ensure robustness and predictive

accuracy, assessing its generalization to future workload behaviors and security threats.

3.7.3. Federated Learning

Federated learning (FL) is introduced as the next step. FL enables decentralized learning by

allowing edge nodes to train models locally on their data. Each trained model is sent to an

aggregation point within its cluster, merging with other locally trained models to form a more

generalized aggregate model, as depicted in Figure 18.

 Figure 18: Federated learning over edge-cloud continuum

This aggregated model is then exchanged between clusters, further refining with insights from

different network slices and workloads. The updated global model is redistributed to the edge

nodes, which continue to be refined in iterative learning cycles until convergence [74]. Attack

datasets generated from CNF deployments are utilized in this step to improve anomaly detection.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 44 of 66

Historical data is leveraged to forecast potential security risks in the form of denial-of-

sustainability (DoSt) attacks [75]. FL agents train models on attack-induced anomalies and

exchange learned patterns with other nodes through aggregation. This ensures that models

capture variations in network behavior across different infrastructure components, allowing for

continuous adaptation.

3.7.4. Hyperparameter Tuning

In this step, the hyperparameters of the chosen algorithms are optimized using Bayesian

optimization [66], grid search [67], or other systematic techniques to explore the parameter

space and determine the best configurations efficiently. We differentiate our specific

orchestration needs from the outcomes of Bayesian optimization to ensure the resulting

configurations align with real-world requirements and constraints. The objective is to minimize

prediction errors and ensure that the models perform well across different workload scenarios,

including sudden spikes or drops in resource usage.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 45 of 66

4. Remote Attestation

4.1. TPM-based attestation

A Trusted Platform Module is a secure cryptographic coprocessor. One of its most important

functionalities is its ability to measure digests into so-called platform configuration registers

(PCRs) [40]. The core idea of these PCRs is built around two basic operations: extend and reset.

The extend operation performs an XOR operation with the current PCR state and the new digest

as operands and saves the hash of the result as the new PCR value. The reset operations set a

PCR to zero.

Proving that a device is running trusted software is a very complex process, stretching all the way

from the lowest levels of the boot sequence to the kernel, the operating system, and the

applications it runs. These components form a chain, relying on a lower level to tie the next to a

trusted state by measuring the next binary into a TPM platform configuration register in a

measured boot process. The lowest level of the chain is the so-called core root of trust for

measurement (CRTM) [41], which anchors the entire chain to a piece of immutable CPU code. If

a system lacks proper measurement for any part of this chain, it could compromise its ability to

protect workloads, as many container isolation mechanisms rely on security features provided

by the Linux kernel (such as cgroups and namespaces).

TPMs are often used in edge research to provide hardware-based trust. It is, however, essential

to acknowledge a critical oversight regularly present in such implementations. These designs are

often implemented on devices lacking a CRTM (e.g., Raspberry Pi). Without a CRTM, the chain of

trust, crucial for ensuring the system's integrity, lacks a solid anchor [42]. Consequently, reliance

on a potentially compromised kernel to transmit measurements to the TPM can render the entire

attestation process unreliable. Simply plugging a TPM into an edge device and trusting it is not

enough. This oversight highlights the importance of ensuring that the foundational elements,

such as a complete boot attestation anchored in the CRTM, are present.

An issue with TPM-based attestation is its complexity. Interacting with a TPM requires an

excellent understanding of the complex architecture [43] and is generally done by transmitting

low-level binary commands [44] to the device. In recent years, the Trusted Computing Group

(TCG) [45] has put a lot of effort into developing and standardizing higher-level APIs [46] to

interact with the TPM, resulting in a toolset called tpm2-tools43. These tools allow for higher-level

interactions with the TPM using the CLI. While the low-level code complexity has been reduced

significantly, a deep knowledge of a TPM's inner workings and mechanisms is still required to use

43 https://github.com/tpm2-software/tpm2-tools

https://github.com/tpm2-software/tpm2-tools

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 46 of 66

it actively in an application. Research projects like Keylime44 could help alleviate this complexity

issue.

Figure 19: Architecture of the Keylime, abstracting away to complexity of TPM operations.

Keylime is an open-source CNCF project initially developed by MIT's Lincoln Laboratory [47]. It

has since seen increased adoption with the support of RedHat, which is actively developing it for

RHEL and OpenShift. Keylime provides an additional abstraction layer for TPM attestation on top

of the existing tpm2-tools, allowing developers to integrate boot and runtime attestation into

their architectures easily. Keylime consists of cloud components written in Python (verifier,

registrar, and tenant) and a Rust agent running on the machine to be attested.

The Keylime architecture, as depicted in Figure 19, is controlled by the tenant CLI application,

which enables a system administrator to enroll a device and configure it for TPM-based boot and

runtime attestation using specific golden values for each device. These values contain known

good states of the system and serve as a reference for future attestation. The tenant interacts

with the other cloud components to deliver a secure payload to an agent. This agent is the

device's connection point to the Keylime cloud components. It provides an API over HTTPS,

allowing an abstract interaction with the device's TPM.

44 https://keylime.dev/

https://keylime.dev/

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 47 of 66

Efforts are underway to develop a cloud operator to manage TPM-enabled nodes in a K8s-

compatible environment [48]. This operator is designed to simplify the deployment of Keylime in

cloud Kubernetes environments, providing node attestation.

In T4.2, TrustEdge was developed [49], and its architecture is shown in Figure 20. TrustEdge uses

Keylime to automate the enrollment of trusted TPM-enabled edge devices into a heterogeneous

Kubernetes cluster. It ties into K8s’ Role-Based Access Control (RBAC) and dynamically adjusts a

node’s permissions based on its trust status. A sysadmin can register an edge device as a custom

resource (CR), which the attestation controller monitors. As soon as the edge device comes

online, it contacts the registrar, which updates the CR. The controller interacts with the K8s API

to generate an identity and permissions for the edge device, which are distributed through the

tenant and verifier to the edge device after successful attestation. The verifier monitors the

attestation state of the edge device and updates the CR as necessary, potentially triggering a

controller response that adjusts permissions for the edge device’s identity.

Figure 20: Architecture of the TrustEdge, with the centrol controller managing the trust state of edge devices.

4.2. TEE-based attestation

Remote attestation is a crucial mechanism in trusted execution environments (TEEs) that allows

external parties to verify whether a system's hardware and software components are genuine

and not tampered with [52]. This functionality is especially relevant in confidential computing

scenarios, as organizations rely on TEEs in cloud or multi-tenant settings to protect sensitive data

from potentially malicious privileged entities, including system administrators and hypervisors.

Three prominent implementations of TEEs that incorporate attestation are Intel Software Guard

Extensions (SGX) [51], AMD Secure Encrypted Virtualization Secure Nested Paging (SEV-SNP) [50],

and Intel Trust Domain Extensions (TDX) [55]. There are also implementations for RISC-V [56] and

ARM CPUs [57], which are less mature.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 48 of 66

Figure 21: Trusted Computing Base comparison of process and VM based TEEs. Source:
https://www.decentriq.com/article/swiss-cheese-to-cheddar-securing-amd-sev-snp-early-boot

SGX operates at the process level, creating small, isolated enclaves that protect code and data

from access by the operating system, hypervisor, or other processes. Because SGX enclaves sit

within a host process, they have a relatively tight trust boundary that excludes most system

software. At the same time, enclaves must manage a restricted memory footprint, and

applications that rely on SGX require substantial refactoring to partition sensitive code within

enclaves. Remote attestation in SGX is facilitated by a hardware-based key provisioned on each

SGX-enabled processor. An enclave produces a measurement reflecting its initial code and data,

signs this measurement using a platform-specific key, and then delivers the signed quote to a

relying party for verification. In practice, this verification commonly involves a trusted Intel

attestation service [57] that checks the signature and the enclave’s identity, confirming the

enclave is running on genuine Intel hardware and its contents have not been modified. Recently,

Intel announced the retirement of the Attestation Service [53] and the move to DCAP [54]. DCAP

is more focused on cloud providers and allows them to cache Intel’s cryptographic material,

making verification of attestation reports possible without sending the reports to Intel.

AMD SEV-SNP differs from SGX in that it focuses on virtualization-based isolation. Instead of

enclaves, SEV-SNP protects entire virtual machines, making it more straightforward to integrate

with existing software stacks that are already virtualized. A VM under SEV-SNP runs with its

memory encrypted and protected by AMD’s secure processor, effectively preventing both

passive attacks, for example, unauthorized snooping or reading of memory contents, and active

attacks, such as inserting malicious code or modifying data in memory, which can originate from

a compromised hypervisor or host firmware. Remote attestation for SEV-SNP entails the VM

obtaining a hardware-signed report that includes information about its initial state, the version

and policy configuration of the secure processor, and a cryptographic measurement of its

memory. By default, SEV-SNP only measures the first component it loads during boot (for

instance, the firmware). Additional measures must be taken to ensure the integrity of the full

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 49 of 66

system, including the static boot chain and userspace. These components must also be measured

and verified, adding complexity to the attestation process. AMD offers an online service [58] that

allows a remote party to fetch the required cryptographic material to independently verify the

integrity of the attestation report, like Intel’s DCAP.

Intel TDX is similar in principle to SEV-SNP, but it was developed for Intel platforms and designed

to support confidential VMs (termed Trust Domains). Like SEV-SNP, TDX encrypts VM memory to

ensure that neither the hypervisor nor other system software can read or modify the guest’s

data. Remote attestation in TDX is achieved by measuring the trust domain’s contents and

configuration, which is then signed by Intel’s hardware-rooted attestation key. The verifying

party can use Intel’s infrastructure to confirm the authenticity and verify the trust domain’s

integrity or use DCAP similarly to SGX.

A significant distinction between SGX, SEV-SNP, and TDX is the size and composition of the

Trusted Computing Base (TCB) as indicated in Figure 21. SGX enclaves reside within a process

boundary and place minimal trust in operating system and hypervisor layers. This effectively

restricts the TCB to the enclave code and the CPU microcode handling enclaves. This narrow TCB

can be advantageous for reducing the potential attack surface. However, SGX enclaves demand

more specialized development practices to split code between trusted enclave sections and

untrusted host sections. By contrast, VM-based TEEs like SEV-SNP and TDX rely on a larger TCB

that includes the VM components. In return, SEV-SNP and TDX typically require less invasive

application changes since most workloads can run inside a protected VM without extensive

changes.

Additionally, the increased TCB size of a VM-based TEE results in a much more complex

attestation procedure. While both process and VM-based solutions must evaluate the platform

(genuine CPU, genuine CPU microcode), the user-defined part is much larger than VM-based

ones. SGX only requires measuring a single statically compiled binary file, while SEV-SNP requires

evaluating the full boot stack (virtual firmware, kernel, OS, applications).

Like TPM-based attestations, TEE ones can be very complicated. While each platform technically

achieves the same goal, the verification steps vary widely, making it difficult for developers. An

active research domain is the development of abstraction layers for these technologies. Software

like Enarx [59] and Trust Monitor [60] attempt to provide a generalized interface for attestation

across multiple technologies.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 50 of 66

4.3. WASM remote attestation

4.3.1. General. Development stages.

What is described below is the current state of progress of NATWORK’s WASM runtime integrity

verifier and its integration into D-MUTRA. At the current stage, we have gone through the stages

of:

o WASM payload runtime integrity verification: Feasibility study, blueprint design,

implementation of a proof of concept.

o WASM payload runtime integrity verification integration into D-MUTRA (blockchain

based mutual remote attestation): Feasibility study, blueprint design.

o Full stack WASM remote attestation (i.e., including the runtime and payload): Feasibility

study, blueprint design.

4.3.2. WASM authentication and remote attestation merits.

The state of the art provides all means to authenticate a WASM payload, whether used client-

side (i.e., interpreted by web browser) or server-side (i.e., interpreted by runtimes such as

WASMTIME45, WASMER 46, WAMR47). A plethora of implementations (e.g., OAUTH48, mutual

TLS49, JWT, session tokens) validate the origin and integrity of the WASM payload by turning on

the classical signed hash technique. As a reminder, authentication enables a local verification of

a payload and requires that the public key (i.e., identifying the signer) be recognized/accepted by

the recipient. This security assurance is needed for those who control or own the execution

environment. Typically, authentication is used to check before installing a piece of code, and this

check-in is made at the code recipient site. Based on the same core maths (i.e., cryptographic

hash function (CHF) and the Rivest–Shamir–Adleman (RSA) encryption), authentication delivers

security assurance different from that of remote attestation.

In networking, payloads are operated with low control in off-premises execution environments.

In these conditions, there is a need to verify that what is deployed remotely is integrated, and

this goes through remote attestation. The ETSI network function security working group50 highly

recommends remote attestation as a strong foundation of networking service security[78].

However, as stated, remote attestation comes with heavy management and workflow

45 https://github.com/bytecodealliance/wasmtime
46 WASMER, available at: https://wasmer.io/
47WAMR (Web Assembly Micro Runtime), available at : https://github.com/bytecodealliance/wasm-micro-runtime
48 https://oauth.net/2/
49 https://en.wikipedia.org/wiki/Mutual_authentication
50 https://docbox.etsi.org/ISG/NFV/Open/other/Tutorials/201805-Tutorials-
NFV_World_Congress_San_Jose/NFV%20Security%20Layer123%20april%202018%20v3.pdf

https://github.com/bytecodealliance/wasmtime
https://docbox.etsi.org/ISG/NFV/Open/other/Tutorials/201805-Tutorials-NFV_World_Congress_San_Jose/NFV%20Security%20Layer123%20april%202018%20v3.pdf
https://docbox.etsi.org/ISG/NFV/Open/other/Tutorials/201805-Tutorials-NFV_World_Congress_San_Jose/NFV%20Security%20Layer123%20april%202018%20v3.pdf

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 51 of 66

considerations on signature management (creation, sharing, and revocation) and payload

deployment dependencies (e.g., TPM). Ideally, novel remote attestation solutions should

eliminate these two significant drawbacks.

4.3.3. State of the art

The state of the art does not offer today a remote attestation of WASM module per se, but

close-by security attributes or existing bricks:

• TEEs-enabled remote attestation can attest that the WASM interpreter (i.e., piece of

native code) runs inside a verified trusted environment and, hence, is integrated. The

WASM payload (i.e., a piece of data as bytecode) is not verified remotely. Several TEE-

enabled frameworks offer this security assurance (e.g., Occulm51, Enarx52, Gramine53). To

the best of our knowledge, these frameworks do not check the authenticity of a WASM

payload before running it through the TEE-sheltered (i.e., integrated) interpreter. It is

worth noting that these solutions imply a dependency on the deployment of the

interpreter, being the presence of such a type of TEE on the host. It is also worth noting

that without authentication produced inside the TEE, the WASM payload, though

interpreted inside a TEE, can be tampered with before entering the TEE.

• The WASM-sign54 or equivalent tools (e.g., WebAssembly Binary Tool WABT55, LUCET56)

tool produces signatures of WASM modules and, hence, could be used as a “prover” of a

remote attestation implementation if installed on the host. It is worth noting that what is

measured here is the WASM module before execution, hence using the hash of the WASM

module file (i.e., carrying the .wasm extension). To our knowledge, a remote attestation

schema integrating WASM-sign with RSA encryption, which is necessary for signing and

authentication verification, does not exist. As the prevalence of WASM in networking

increases, with no specific technical difficulties encumbering it, a WASM remote

attestation framework will emerge, utilizing direct .wasm file hashing and signing.

4.3.4. Continuous attestation

Continuous attestation is the novel trend the EU Agency for Cybersecurity (ENISA) recommends

[68] and calls for permanent and constant service monitoring. Continuous attestation enables

51 https://occlum.io/
52 https://enarx.dev/
53 https://gramineproject.io/
54 https://github.com/frehberg/wasm-sign
55 https://github.com/WebAssembly/wabt
56 https://github.com/bytecodealliance/lucet

https://github.com/frehberg/wasm-sign
https://github.com/WebAssembly/wabt
https://github.com/bytecodealliance/lucet

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 52 of 66

execution metrics or integrity verification when the service is executed. Static measurements

cannot grasp the evolution of the threat level. Where integrity is concerned, it simply means that

the verification shall be performed with a running payload without interruption. Technically, it

relies on the runtime integrity verification technique, the first enabler we would need for WASM.

4.3.5. WASM runtime integrity verification

Runtime integrity verification is the technique that enables the integrity of software to be

attested when it executes. Combined with the means for remote verification, this property

enables runtime remote attestation.

WASM's primary security pitfall, often perceived as its downside, is the vulnerability to module

tampering, which can manipulate the data structure during interpretation. Easy tampering can

be viewed as the counterpart of WASM's easy portability. As for all interpreted languages, the

processor treats WASM bytecode as a data frame. Bytecode tampering is a common rule for all

interpreted languages (e.g., no runtime integrity verification for Java payloads). Currently, WASM

module integrity can only be proven when the module resides in a TEE, leveraging TEE-based

remote attestation. However, this comes with the workflow and operational drawbacks

associated with workflow considerations for TEE. As stated in [62], TEEs incur performance and

memory consumption penalties, as well as new TEE-associated security threats (e.g., DoS attacks

through raw hammering and covertly spawned malicious payloads). Another significant side

effect of TEE is its heterogeneity, which restricts deployment to specific processors—a major

workflow issue in cloud or hybrid service deployment. Typically, this conflicts with the portability

and mobility of WASM payloads, and NATWORK's contribution is to seamlessly bring WASM

payload runtime integrity. This is achieved through runtime integrity, which detects tampering

(i.e., when the attacker fails to reset the memory states to their original state at the time of

measurement).

Setting integrity verification requires (i) getting a good understanding of the WASM code

structure and how the different segments are processed during the module interpretation, (ii)

identifying the invariant sections, and (iii) devising a routine that processes a measurement

(i.e., hash) and signature on these sections.

4.3.5.1. Understanding the WASM module structure at runtime

Before its loading and interpretation, a .wasm file contains a header and several sections

referring to imports, exports, global variables, data, and code. The latter includes the WASM

bytecode instructions. Figure 22 maps the different data sections of the .WASM module.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 53 of 66

Figure 22. WASM module data structure

4.3.5.2. Understanding the created memory maps at runtime

To better understand the parsing and memory structure of the module at execution, we have

studied the WASMTIME interpreter (i.e., an open-source interpreter)57. WASTIME interpreter

parses the different sections to construct three core memory areas needed for the interpretation,

as shown in Figure 23. These areas are:

• The instantiated stack for the module (which dynamically changes)

• Linear Memory, which contains data and offsets (static)

• The WASM instructions (static bytecode)

57 https://github.com/bytecodealliance/wasmtime

https://github.com/bytecodealliance/wasmtime

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 54 of 66

Figure 23. The memory structure of a loaded WASM application (and virtual machine)

4.3.5.3. Getting access to the WASM instruction memory mapping

Once the payload is executed (i.e., interpreted), the memory space of the WASM application is

restricted to the Linear Memory, with no access to the WASM instructions, which are only

accessible inside the interpreter, referred to as the “Virtual Machine” in Figure 23. The Linear

Memory shall be viewed as a script of memory addresses (i.e., offset) to functions loaded inside

the VM and residing in the WASM instruction area. Obtaining these offsets is insufficient for

elaborating a memory map integrity verification, as one cannot map the physical memory from

these offsets. Only the interpreter sitting in the memory map of the functions and WASM

instructions can scrutinize the memory area of WASM instructions. The interpreter “sees” linear

memory, but the reverse is untrue (i.e., the linear memory cannot map the interpreter). Last, for

the search for exhaustivity, a measurement shall cover both WASM instructions and the Linear

memory to guarantee the integrity of the WASM payload.

4.3.5.4. WASMTIME payload integrity verification, through the ELF generation.

WASMTIME offers different execution paths (i.e., interpretation, compilation) after parsing and

unfolding the contents of the WASM file sections. Our analysis of this interpreter leads us to

create a second thread, executed separately from the interpreter's main thread, enabling us to

build an ELF-formatted payload through the WASMTIME “serialize” function. From this step

onward, we calculate a hash, e.g., Secure Hash Algorithm (SHA)-256, of the ELF’s text section,

which contains the instructions. The new partial interpreter block diagram, integrating the added

second thread, is shown in Figure 24.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 55 of 66

Figure 24. NATWORK's WASMTIME added second thread

4.3.5.5. Unavoidable and trustworthy interpreter change

For the above reasons, measurements shall be made at the interpreter level. There is no

alternative to produce changes on the interpreter to produce the payload measurements as the

latter, once loaded, has no insight into the memory map allocated for its unrolling.

Hence, there is a need for changes to be produced on the interpreter (i.e., as is currently carried

out) or for a future plug-in embedding of the functionality. These changes result in creating a

quote of the ELF-compiled payload, leveraging an existing Measure routine that can (i) map the

text section once duly loaded by the system in memory and (ii) produce a hash with its content.

These functions can be implemented as part of a plug-in, as shown in Figure 25, which resides

aside the original WASMTIME interpreter, or by adding these functions directly inside the

interpreter's source code, as shown in Figure 26. Noticeably, our current progression has gone

down the second path, but a closer look shall be put on the plug-in alternative, which may stand

as less intrusive and lead to higher scalability. Additionally, and as shown in Figure 25, in addition

to the Measure function, Verification and Distributed Ledger Technology (DLT) routines can also

be added, enabling the blockchain-enabled mutual attestation mode as offered by D-MUTRA, as

discussed in Sect. 4.4.1.1.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 56 of 66

Figure 25. Simple representation of the NATWORK's WASM plug-in

Figure 26. Workflow for changing WASMTIME interpreter

Trustworthy interpreter change: Supported by the above-mentioned “runtimes” attestation

discussed in Section 4, it is engineered and progressed in NATWORK, ensuring the runtime is

genuine and integrated. Hence, we can modify the runtime (i.e., the WASM interpreter) or add a

plug-in and then run the “runtime” attestation, checking the set made of the novel potentially

modified interpreter and the plug-in. In other words, the security foundation, as stated above,

from the deep-rooted CRTM to the “runtime,” ensures that the complete software stack is valid,

and this includes our modified or plugged-in WASM interpreter. Compared to the TPM, which

makes the memory measurement through direct memory access in an impenetrable

environment, the modified or plugged interpreter is the binary code exposed to malicious

introspection and tampering, which calls for regular remote attestation.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 57 of 66

4.4. WASM runtime remote attestation

4.4.1. NATWORK’s WASM runtime remote attestation

Leveraging our ability to verify the integrity of a WASM payload during its execution, as stated

in Section 4.3 above, we can construct an integrated runtime remote attestation orchestrated

in three different steps:

• Step 1: SECaaS reference measurement generation. NATWORK implements a SECaaS

server, producing the reference measurement (i.e., a hash of the payload once

instantiated by WASMTIME interpreter) used timely at the verification stage. The SECaaS

consumes wasm payloads and hosts a WASMTIME interpreter, our developed ad hoc

measurement plug-in. With these elements in hand, the SECaaS constructs the ELF file

artefact and produces its hash. Concurrently, the SECaaS appends an RSA key pair inside

the original .wasm module, enabling its future unambiguous identification of the payload

using the public key and the authentication verification of the quote (i.e., RSA private key

encrypted hash) by the verifier, using the private key.

• Step 2: Prover quote generation. On deployed instances with the same instance of

WASMTIME interpreter and plug-in, the same measurement operation can be worked out

by the prove module in a 1:1 replicated fashion as in step 1. This measurement is signed

using the RSA private key to form the quote. The quote is transmitted with the public key.

• Step 3: Quote verification. Quote from step 2 is transmitted to a verifier, provisioned

additionally by the reference measurement of Step 1. With both blobs (i.e., large integers)

in hands and the public key, the verifier can:

• Verify the origin of the quote using the public key

• Decrypt the quote and compare it to the reference measurement. A positive check

means that the WASM payload is integrated once instantiated, loaded, and

running.

4.4.1.1. Future work

Design: The current modus operandi in modifying the WASMTIME interpreter can be perceived

as intrusive. First, We will challenge that a more easily accepted plug-in can be designed

alternatively.

Performance: The core consideration of NATWORK to reconcile security and performance (i.e.,

eternal rivals) is typically valid for runtime integrity verification, which shall be carefully

conceived to preclude heavy performance penalties. For that sake, we will consider different

techniques that turn on restricted resource allocation to the measuring function (e.g., Linux’s

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 58 of 66

cgroups58, Docker’s CPU shares59), multi-threading typically using SharedArrayBuffer, and finally,

idle time technique applied on the measuring thread. All these techniques must be analyzed in

the context of WASM payloads and may not be practicable in this specific context, though a final

penalty-friendly solution shall emerge.

Integration: The integration of WASM runtime integrity verification to D-MUTRA is the main

progress to be made. A strong consideration of NATWORK is to develop platform-agnostic

security for easy payload migration. D-MUTRA (i.e., DLT-based Mutual Remote Attestation)

solution does not depend on hardware or kernel level routine. Moreover, the solution relaxes a

strong blocker to remote attestation signature management. Being zero-touch, the signatures

are automatically generated and provisioned where they are used (i.e., at the smart contract-

elected verifier). Leveraging the power of blockchain and magnifying the concept of distributed

security, D-MUTRA removes a single point of attack on a single verifier implementation, exposed

to DoS by flooding sockets and distributing the verification to any nodes. D-MUTRA distributes

the Measure and Verification function at each software node, able to prove themselves and verify

peers through the blockchain. It also innovates with a pure software-based root of trust, which

consists of electing the “freshest” node as the verifier for the next remote attestation job. The

most recently verified node is the next verifier of D-MUTRA distributed remote attestation

schema. It is worth noting that D-MUTRA relaxes both potent operational blockers of complex

signature management and deployment dependencies. The signatures are automatically

generated by the SECaaS and provisioned at the right end, being the elected verifier.

Confidentiality preservation: In addition to runtime integrity, we will investigate the relevance

and practicality of confidentiality preservation by modifying the plug-in. We are not inclined to

consider obfuscation for the associated performance penalty as discussed in 2.4.2, but instead

consider encryption, preventing the reverse engineering of the WASM module. In this respect,

we will analyze the inner mechanisms enforced in [69] but without leveraging TEE as considered

by the authors.

4.5. NATWORK full stack remote attestation schema for WASM

technology

NATWORK’s work on remote attestation by IMEC and Solidshield provides a full stack integrity

guarantee. As shown in Figure 27, IMEC first works (i.e., step 1) on the system and runtimes

integrity, ensuring that the execution environment is correct, including the WASM’s runtime (i.e.,

58 https://en.wikipedia.org/wiki/Cgroups
59 https://docs.docker.com/engine/containers/resource_constraints/

https://en.wikipedia.org/wiki/Cgroups
https://docs.docker.com/engine/containers/resource_constraints/

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 59 of 66

interpreter), while Solidshield deals with the WASM payload itself in step 2. This association is

nothing but needed and operates at two different time scales. At first, IMEC’s WASM runtime

verification integrates the interpreter and Solidshield’s plug-in, guaranteeing that the plug-in is

integrated and providing correct measures. Thereafter, the WASM module remote attestation

using the runtime plug-in can take place, delivering reliable attestations.

Figure 27. NATWORK's full stack remote attestation

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 60 of 66

5. Conclusions
The deliverable D4.1 “Payload security per runtime, intelligent runtime selection and

attestation.r1” presented a comprehensive overview of the NATWORK aspects enabling secure,

flexible-runtime workloads. This is actually a report on the payload security per runtime, the

intelligent runtime selection as well as the remote attestation, that derive from NATWORK

innovations.

While containerized software and virtual machines have been employed for years in software

orchestration, many security aspects of containers and security optimization through

orchestration have been neglected in research and frameworks. This document highlights the

neglected factors, summarizing the work performed in each of them.

From the security perspective, relevant runtimes are presented, including VMs, microVMs,

unikernels, containers, and WebAssembly. Each of these is examined in detail, providing an

overview of essential security advantages and disadvantages compared to native processes

and/or containers. Additional security features and measures are presented through relevant

state-of-the-art research and activities performed within T4.2 “AIaaSecS for software payload”.

This overview provides the groundwork for the rest of T4.2 and various other tasks within

NATWORK concerning runtime choices.

Network and runtime API standardization provides a uniform way of selecting and deploying

workloads independently of the runtime executing it. This paves the way for intelligent runtime

selection, consisting of intent-based metadata gathering and deployment, which can be

combined with an in-progress ML-based approach for workload modeling for optimal

orchestration. These efforts feed into the “optimizing selection” part of T3.1 “Secure-by-design

federated slice orchestration and management”, along with UC1, for sustainable and reliable 6G

services.

The progress concerning remote attestation is presented based on TPM and TEE, which are

capable of securing workloads at runtime and may be integrated as a feature within intelligent

runtime/node selection at deployment time, aiding with the reliability aspect of UC1.

Finally, the second and final version of the NATWORK payload security per runtime, intelligent

runtime selection as well as remote attestation aspects will be described by the D4.2 “Payload

security per runtime, intelligent runtime selection and attestation.r2” due to M24 along with

detailed capability maps, algorithms and effectiveness of the derived solutions.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 61 of 66

References
[1] Singh, A., & Shrivastava, M. (2019). "Security in Hardware Assisted Virtualization for Cloud

Computing - State of the Art Issues and Challenges." International Journal of Computer

Sciences and Engineering, 7(1), 1-8.

[2] Blenk, A., Basta, A., Reisslein, M., & Kellerer, W. (2015). "Survey on network virtualization

hypervisors for software-defined networking." IEEE Communications Surveys & Tutorials,

18(1), 655-685.

[3] Costan, V., & Devadas, S. (2016). "Intel SGX Explained." IACR Cryptology ePrint Archive,

2016(086), 1-118.

[4] NIST Special Publication 800-125B. (2019). "Security Recommendations for Server-based

Hypervisor Platforms." National Institute of Standards and Technology. Retrieved from

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf

[5] Sabt, M., Achemlal, M., & Bouabdallah, A. (2015). "Trusted execution environment: What

it is, and what it is not." In 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 57-64. IEEE.

[6] Choi, J. S., Renom, L. G., Yun, K., Casellas, R., Martínez, R., Vilalta, R., & Munoz, R. (2024).

"Microsegmentation of a Microservice-Based Transport Control Plane for Multitenant

Optical Virtual Networks." IEEE Network.

[7] Rehman, A., Alqahtani, S., Altameem, A., & Saba, T. (2014). "Virtual machine security

challenges: case studies." International Journal of Machine Learning and Cybernetics, 5,

729-742.

[8] Kuenzer, S., Bădoiu, V.-A., Lefeuvre, H., Santhanam, S., Jung, A., Gain, G., … Huici, F. (2021,

April). Unikraft. Proceedings of the Sixteenth European Conference on Computer Systems.

doi:10.1145/3447786.3456248

[9] Abeni, L. (2023). Real-Time Unikernels: A First Look. In Lecture Notes in Computer Science

(pp. 121–133). doi:10.1007/978-3-031-40843-4_10

[10] Walli, S. R. (1995). The POSIX family of standards. StandardView, 3(1), 11–17.

[11] Kivity, A., Laor, D., Costa, G., Enberg, P., Har’El, N., Marti, D., & Zolotarov, V. (2014). OSv—

Optimizing the Operating System for Virtual Machines. 2014 Usenix Annual Technical

Conference (Usenix Atc 14), 61–72.

[12] Bellard, F. (2005). QEMU, a fast and portable dynamic translator. USENIX Annual Technical

Conference, FREENIX Track, 41, 46. Califor-nia, USA.

[13] Habib, I. (2008). Virtualization with KVM. Linux Journal, 2008(166), 8.

[14] Goethals, T., Sebrechts, M., Al-Naday, M., Volckaert, B., & Turck, F. D. (2022, July). A

Functional and Performance Benchmark of Lightweight Virtualization Platforms for Edge

Computing. 2022 IEEE International Conference on Edge Computing and Communications

(EDGE). doi:10.1109/edge55608.2022.00020

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 62 of 66

[15] Anjali, Caraza-Harter, T., & Swift, M. M. (2020, March). Blending containers and virtual

machines. Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments. doi:10.1145/3381052.3381315

[16] Holmes, B., Waterman, J., & Williams, D. (2024). Severifast: Minimizing the root of trust for

fast startup of sev microvms. Proceedings of the 29th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, Volume 2,

1045–1060.

[17] Madhavapeddy, A., Leonard, T., Skjegstad, M., Gazagnaire, T., Sheets, D., Scott, D., …

Lesli.e., I. (2015, May). Jitsu: Just-In-Time Summoning of Unikernels. 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 15), 559–573.

[18] Russell, R. (2008). virtio: towards a de-facto standard for virtual I/O devices. ACM SIGOPS

Operating Systems Review, 42(5), 95–103.

[19] Lee, H. (2014). Virtualization basics: Understanding techniques and fundamentals. School

of Informatics and Computing Indiana University, 815.

[20] Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R., Piwonka, P., & Popa, D.-

M. (2020). Firecracker: Lightweight virtualization for serverless applications. 17th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 20), 419–434.

[21] Talbot, J., Pikula, P., Sweetmore, C., Rowe, S., Hindy, H., Tachtatzis, C., … Bellekens, X.

(2020). A security perspective on Unikernels. 2020 International Conference on Cyber

Security and Protection of Digital Services (Cyber Security), 1–7. IEEE.

[22] Bratterud, A., Walla, A.-A., Haugerud, H., Engelstad, P. E., & Begnum, K. (2015). IncludeOS:

A minimal, resource efficient unikernel for cloud services. 2015 IEEE 7th International

Conference on Cloud Computing Technology and Science (Cloudcom), 250–257. IEEE.

[23] Wollman, A., & Hastings, J. (2024, October). A Survey of Unikernel Security: Insights and

Trends from a Quantitative Analysis. In 2024 Cyber Awareness and Research Symposium

(CARS) (pp. 1-9). IEEE.

[24] Jarkas, Omar, et al. "A Container Security Survey: Exploits, Attacks, and Defenses." ACM

Computing Surveys (2025).

[25] Sultan, S., Ahmad, I., & Dimitriou, T. (2019). Container security: Issues, challenges, and the

road ahead. IEEE access, 7, 52976-52996. Jarkas, Omar, et al. "A Container Security Survey:

Exploits, Attacks, and Defenses." ACM Computing Surveys (2025).

[26] Chen, J., Feng, Z., Wen, J. Y., Liu, B., & Sha, L. (2019, March). A container-based DoS attack-

resilient control framework for real-time UAV systems. In 2019 Design, Automation & Test

in Europe Conference & Exhibition (DATE) (pp. 1222-1227). IEEE.

[27] Haq, M. S., Nguyen, T. D., Tosun, A. Ş., Vollmer, F., Korkmaz, T., & Sadeghi, A. R. (2024,

May). SoK: A comprehensive analysis and evaluation of docker container attack and

defense mechanisms. In 2024 IEEE Symposium on Security and Privacy (SP) (pp. 4573-

4590). IEEE.

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 63 of 66

[28] Kalafatidis, Sarantis, et al. "Experiments with Digital Security Processes over SDN-Based

Cloud-Native 5G Core Networks." 2024 27th Conference on Innovation in Clouds, Internet

and Networks (ICIN). IEEE, 2024.

[29] Perrone, G., & Romano, S. P. (2025). WebAssembly and Security: a review. Computer

Science Review, 56, 100728.

[30] Bhansali, S., Aris, A., Acar, A., Oz, H., & Uluagac, A. S. (2022, May). A first look at code

obfuscation for webassembly. In Proceedings of the 15th ACM conference on security and

privacy in wireless and mobile networks (pp. 140-145).

[31] Mavridis, I., & Karatza, H. (2021). Orchestrated sandboxed containers, unikernels, and

virtual machines for isolation-enhanced multitenant workloads and serverless computing

in cloud. Concurrency and Computation: Practice and Experience, 35(11).

doi:10.1002/cpe.6365

[32] Kjorveziroski, V., & Filiposka, S. (2023). Webassembly orchestration in the context of

serverless computing. Journal of Network and Systems Management, 31(3), 62.

[33] Qi, S., Kulkarni, S. G., & Ramakrishnan, K. K. (2020). Understanding container network

interface plugins: design considerations and performance. 2020 IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN, 1–6. IEEE.

[34] Koukis, G., Skaperas, S., Kapetanidou, I. A., Mamatas, L., & Tsaoussidis, V. (2024).

Performance Evaluation of Kubernetes Networking Approaches across Constraint Edge

Environments. arXiv [Cs.NI]. doi:10.48550/ARXIV.2401.07674

[35] Marcelino, C., & Nastic, S. (2023). CWASI: A WebAssembly Runtime Shim for Inter-Function

Communication in the Serverless Edge-Cloud Continuum. 2023 IEEE/ACM Symposium on

Edge Computing (SEC), 158–170. IEEE.

[36] Randazzo, A., & Tinnirello, I. (2019). Kata containers: An emerging architecture for enabling

mec services in fast and secure way. 2019 Sixth International Conference on Internet of

Things: Systems, Management and Security (IOTSMS), 209–214. IEEE.

[37] Mavridis, I., & Karatza, H. (2023). Orchestrated sandboxed containers, unikernels, and

virtual machines for isolation-enhanced multitenant workloads and serverless computing

in cloud. Concurrency and Computation: Practice and Experience, 35(11), e6365.

[38] Goethals, T., Al-Naday, M., Volckaert, B., & De Turck, F. (2024). Warrens: Decentralized

Connectionless Tunnels for Edge Container Networks. IEEE Transactions on Network and

Service Management, 21(4), 4282–4296. doi:10.1109/tnsm.2024.3417703

[39] Goethals, T., De Turck, F., & Volckaert, B. (2021). Self-organizing Fog Support Services for

Responsive Edge Computing. Journal of Network and Systems Management, 29(2).

doi:10.1007/s10922-020-09581-6

[40] Kinney, S. (2006). 6 - Platform Configuration Registers. Trusted Platform Module Basics, 53–

64. Newnes. DOI: 10.1016/B978-075067960-2/50007-5.

https://doi.org/10.1016/B978-075067960-2/50007-5

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 64 of 66

[41] Cooper, D., Polk, W., Regenscheid, A., & Souppaya, M. (2011). Special Publication 800-147:

BIOS Protection Guidelines. NIST. Gaithersburg.

[42] Arthur, W., Challener, D., & Goldman, K. (2015). A Practical Guide to TPM 2.0. Apress. DOI:

10.1007/978-1-4302-6584-9.

[43] Trusted Computing Group. (2019). Trusted Platform Module Library Part 1: Architecture.

[44] Trusted Computing Group. (2019). Trusted Platform Module Library Part 3: Commands.

[45] Trusted Computing Group. (n.d.). Trusted Computing Group. Retrieved from

https://trustedcomputinggroup.org/.

[46] TPM2-Software. (n.d.). Developer community for those implementing APIs and

infrastructure from the TCG TSS2 specifications. Retrieved from https://github.com/tpm2-

software.

[47] Schear, N., Cable, P. T., Moyer, T. M., Richard, B., & Rudd, R. (2016). Bootstrapping and

maintaining trust in the cloud. Proceedings of the 32nd Annual Conference on Computer

Security Applications, 65–77. ACM. DOI: 10.1145/2991079.2991104.

[48] Keylime Project. (n.d.). Keylime/Attestation-Operator: Keylime easily deployable on

Kubernetes/OpenShift. Retrieved from https://github.com/keylime/attestation-operator.

[49] Thijsman, J., Sebrechts, M., De Turck, F., & Volckaert, B. (2024). Trusting the Cloud-Native

Edge: Remotely Attested Kubernetes Workers. 2024 33rd International Conference on

Computer Communications and Networks (ICCCN), 1–6.

https://doi.org/10.1109/ICCCN61486.2024.10637515

[50] AMD. (2020). AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and

More. AMD. https://www.amd.com/content/dam/amd/en/documents/epyc-business-

docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-

more.pdf

[51] Anati, I., Gueron, S., Johnson, S., & Scarlata, V. (2013). Innovative Technology for CPU Based

Attestation and Sealing. https://www.semanticscholar.org/paper/Innovative-Technology-

for-CPU-Based-Attestation-and-Anati-

Gueron/708a3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2

[52] Birkholz, H., Thaler, D., Richardson, M., Smith, N., & Pan, W. (2023). Remote ATtestation

procedureS (RATS) Architecture (RFC No. 9334). Internet Engineering Task Force (IETF).

https://www.rfc-editor.org/rfc/rfc9334

[53] IAS End of Life Announcement. (2023, November 20).

https://community.intel.com/t5/Intel-Software-Guard-Extensions/IAS-End-of-Life-

Announcement/m-p/1545831#M6018

[54] Intel Corporation. (2023a). Intel® Trust Domain Extensions Data Center Attestation

Primitives (Intel® TDX DCAP): Quote Generation Library and Quote Verification Library (No.

0.9). Intel Corporation. https://download.01.org/intel-sgx/latest/dcap-

latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf

https://doi.org/10.1007/978-1-4302-6584-9
https://doi.org/10.1007/978-1-4302-6584-9
https://trustedcomputinggroup.org/
https://github.com/tpm2-software
https://github.com/tpm2-software
https://doi.org/10.1145/2991079.2991104
https://github.com/keylime/attestation-operator
https://doi.org/10.1109/ICCCN61486.2024.10637515
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.semanticscholar.org/paper/Innovative-Technology-for-CPU-Based-Attestation-and-Anati-Gueron/708a3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2
https://www.semanticscholar.org/paper/Innovative-Technology-for-CPU-Based-Attestation-and-Anati-Gueron/708a3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2
https://www.semanticscholar.org/paper/Innovative-Technology-for-CPU-Based-Attestation-and-Anati-Gueron/708a3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2
https://www.rfc-editor.org/rfc/rfc9334
https://community.intel.com/t5/Intel-Software-Guard-Extensions/IAS-End-of-Life-Announcement/m-p/1545831#M6018
https://community.intel.com/t5/Intel-Software-Guard-Extensions/IAS-End-of-Life-Announcement/m-p/1545831#M6018
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 65 of 66

[55] Intel Corporation. (2023b). Intel® Trust Domain Extensions (Intel® TDX). Intel Corporation.

https://cdrdv2.intel.com/v1/dl/getContent/690419

[56] Keystone-enclave/keystone. (2025). [C]. Keystone Enclave. https://github.com/keystone-

enclave/keystone (Original work published 2018)

[57] Intel Corporation. (2025). Attestation Service for Intel® Software Guard Extensions: API

Documentation (Technical Report No. 7.2). Intel Corporation.

https://www.intel.com/content/www/us/en/developer/articles/technical/software-

security-guidance/resources/sgx-ias-using-epid-eol-timeline.html

[58] Advanced Micro Devices, Inc. (2025). Versioned Chip Endorsement Key (VCEK) Certificate

and KDS Interface Specification (No. 57230; Version 1.00). Advanced Micro Devices, Inc.

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-

docs/specifications/57230.pdf

[59] Enarx/enarx. (2025). [Rust]. Enarx. https://github.com/enarx/enarx (Original work

published 2019)

[60] Bravi, E., Berbecaru, D. G., & Lioy, A. (2023). A Flexible Trust Manager for Remote

Attestation in Heterogeneous Critical Infrastructures. 2023 IEEE International Conference

on Cloud Computing Technology and Science (CloudCom), 91–98. https://doi.or-

g/10.1109/CloudCom59040.2023.00027

[61] Tirmazi, M., Barker, A., Deng, N., Haque, M. E., Qin, Z. G., Hand, S., ... & Wilkes, J. (2020,

April). Borg: the next generation. In Proceedings of the fifteenth European conference on

computer systems (pp. 1-14).

[62] M.Lacoste, V.Lefebvre, Trusted Execution Environments for Telecoms: Strengths,

Weaknesses, Opportunities, and Threats, IEEE security and privacy Journal, 2023.

[63] Abbasimehr, H., & Paki, R. (2022). Improving time series forecasting using LSTM and

attention models. Journal of Ambient Intelligence and Humanized Computing, 13(1), 673-

691.

[64] Shumway, R. H., Stoffer, D. S., Shumway, R. H., & Stoffer, D. S. (2017). ARIMA models. Time

series analysis and its applications: with R examples, 75-163.

[65] Zhang, L., Bian, W., Qu, W., Tuo, L., & Wang, Y. (2021, April). Time series forecast of sales

volume based on XGBoost. In Journal of Physics: Conference Series (Vol. 1873, No. 1, p.

012067). IOP Publishing.

[66] Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H. (2019). Hyperparameter

optimization for machine learning models based on Bayesian optimization. Journal of

Electronic Science and Technology, 17(1), 26-40.

[67] Belete, D. M., & Huchaiah, M. D. (2022). Grid search in hyperparameter optimization of

machine learning models for prediction of HIV/AIDS test results. International Journal of

Computers and Applications, 44(9), 875-886.

https://cdrdv2.intel.com/v1/dl/getContent/690419
https://github.com/keystone-enclave/keystone
https://github.com/keystone-enclave/keystone
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/sgx-ias-using-epid-eol-timeline.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/sgx-ias-using-epid-eol-timeline.html
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/57230.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/57230.pdf
https://github.com/enarx/enarx
https://doi.or-g/10.1109/CloudCom59040.2023.00027
https://doi.or-g/10.1109/CloudCom59040.2023.00027

 D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Page 66 of 66

[68] ENISA: Cyber risk management implementating guidance (Oct 2023):

https://www.enisa.europa.eu/sites/default/files/2024-

11/Implementation%20guidance%20on%20security%20measures_FOR%20PUBLIC%20CO

NSULTATION.pdf

[69] Sun, J. et al SELWasm: A Code Protection Mechanism for WebAssembly. December 2019

Computer Science IEEE Intl Conference

[70] Bai, Y., Li, B., & Zhang, W. (2020). A collaborative approach to detecting DDoS attacks in

SDN using entropy and deep learning. Journal of Telecommunications and Information

Technology.

[71] Gao, C., Wang, Z., & Yu, H. (2020). Distributed DDoS defense: A collaborative approach at

Internet scale. IEEE Xplore.

[72] Zhang, X., Zhao, C., & Chen, Y. (2020). Enhancing DDoS attack detection and network

resilience through ensemble-based packet processing and bandwidth optimization.

ResearchGate.

[73] Briggs, I., Day, M., Guo, Y., Marheine, P., & Eide, E. (2014). A performance evaluation of

unikernels. In Technical Report.

[74] Li, L., Fan, Y., Tse, M., & Lin, K. Y. (2020). A review of applications in federated learning.

Computers & Industrial Engineering, 149, 106854.

[75] Aldhyani, T. H., & Alkahtani, H. (2022). Artificial intelligence algorithm-based economic

denial of sustainability attack detection systems: Cloud computing environments. Sensors,

22(13), 4685.

[76] National Vulnerability Database - CVE-2014-0515 Detail -

https://nvd.nist.gov/vuln/detail/CVE-2014-0515

[77] National Vulnerability Database - CVE-2021-20087 Detail -

https://nvd.nist.gov/vuln/detail/CVE-2021-20087

[78] ETSI NFV Security WG: ETSI GR NFV-SEC 007 V1.2.1 (2024-11), report of Attestation

Technologies and Practices (2024-11)

https://www.jtit.pl/jtit/article/view/1609
https://www.jtit.pl/jtit/article/view/1609
https://ieeexplore.ieee.org/document/9110300
https://ieeexplore.ieee.org/document/9110300
https://www.researchgate.net/publication/380014414_Enhancing_DDoS_Attack_Detection_and_Network_Resilience_Through_Ensemble-Based_Packet_Processing_and_Bandwidth_Optimization
https://www.researchgate.net/publication/380014414_Enhancing_DDoS_Attack_Detection_and_Network_Resilience_Through_Ensemble-Based_Packet_Processing_and_Bandwidth_Optimization
https://nvd.nist.gov/vuln/detail/CVE-2014-0515
https://nvd.nist.gov/vuln/detail/CVE-2021-20087

