NIQT .

///

W-‘R*RK

Net-Zero self-adaptive activation

of distributed self-resilient
augmented services

D4.1 Payload security per runtime, intelligent runtime selection and
attestation.rl

Lead beneficiary [LYIde Lead author \ Merlijn Sebrechts

Reviewers Nasim Nezhadsistani (UZH), Joaquin Escudero (GRAD)

Type R Dissemination \ PU

Document version RN Due date \ 31/03/2025

ST Co-funded by
LA the European Union

Project funded by

Schweizerische Eidgenossenschaft Federal Department of Ecanomic Affairs, U K R h

0 Confédération suisse Education an d Researc h EAER esearc
Confederaziane Svizzera State Secretariat for Education, -
Confederaziun svizra Research and Innovation SERI an d I n novatlon

Swiss Confederation

Nan"f‘,@'*

W . N:RK D4.1 Payload security per runtime intelligent runtime selection and attestation.r1

Prcjec funded by
Co-funded by 6 o R (@ UK Research Page 2 of 66
the European Union : =4 B and Innovation

NNT * 5k
W R:RK

Project information

D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

Project title

Net-Zero self-adaptive activation of distributed self-resilient
augmented services

Project acronym

NATWORK

Grant Agreement No

101139285

Type of action

HORIZON JU Research and Innovation Actions

Call

HORIZON-JU-SNS-2023

Topic

HORIZON-JU-SNS-2023-STREAM-B-01-04
Reliable Services and Smart Security

Start date

01/01/2024

Duration

36months

Document information

Associated WP

WP4

Associated task(s)

T4.2

Main Author(s)

Merlijn Sebrechts

Author(s)

Vincent Lefebvre, Mark Angoustures (TSS), Tom Goethals (IMEC),
Nasim Nezhadsistani (UZH), Jordi Thijsman (IMEC), Shankha Gupta,
Mays Al-Naday, Sumeyya Birtane (UEssex), loanna Kapetanidou,
Sarantis Kalafatidis, Antonios Lalas, Anastasios Drosou (CERTH),
Joaquin Escudero (GRAD), Joachim Schmidt, Leonardo Padial, Eryk
Schiller (HES-SO)

Reviewers

Nasim Nezhadsistani (UZH), Joaquin Escudero (GRAD)

Type

R — Document, Report

Dissemination level

PU — Public

Due date

M15 (31/03/2025)

Submission date

31/03/2025

Co-funded by
the European Union

« R4 UKResearch Page 3 of 66
=4 B and Innovation

NRT:.-.
W.R:RK

D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

Document version history

Version | Date Contributor (s)
v0.1 6/11/2024 Template ready Merlijn Sebrechts (IMEC)
v0.2 20/11/2024 Initial table of contents Merlijn Sebrechts (IMEC)
v0.3 19/02/2025 Details for early sections, | Tom Goethals, Jordi Thijsman
elaborated content structure. | (IMEC)
3.1/3.2/4.1 content. Basis for 2.2.
Raw content of 3.3/3.4.
v0.4 04/03/2025 Raw content of 2.3 loanna Kapetanidou, Sarantis
Kalafatidis, Antonios Lalas,
Anastasios Drosou (CERTH)
v0.5 05/03/2025 Structuring supplied content, | Tom Goethals (IMEC)
intro sections Vincent Lefebvre, Mark
Angoustures (TSS)
v0.6 10/03/2025 Integration before review Tom Goethals (IMEC)
v0.7 18/03/2025 Review and comments added Nasim Nezhadsistani (UZH),
Joaquin Escudero (GRAD)
v0.8 26/03/2025 Integration of changes after | Tom Goethals (IMEC)
review
v0.9 28/03/2025 Final Quality Assurance Joachim Schmidt. Leonardo
Padial, Eryk Schiller (HES-SO)
v0.95 30/03/2025 Final review and refinements Antonios Lalas (CERTH) and all
authors
v1.0 31/03/2025 Final version for submission Antonios Lalas (CERTH)

Co-funded by

the European Union

BGSNS o =

Project funded by
UK Research
and Innovation

WS
o

Page 4 of 66

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or 6G-SNS. Neither the European Union nor the granting
authority can be held responsible for them. The European Commission is not responsible for any use that may be
made of the information it contains.

While the information contained in the documents is believed to be accurate, the authors(s) or any other
participant in the NATWORK consortium make no warranty of any kind with regard to this material including, but
not limited to the implied warranties of merchantability and fitness for a particular purpose.

Neither the NATWORK Consortium nor any of its members, their officers, employees, or agents shall be
responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

Without derogating from the generality of the foregoing neither the NATWORK Consortium nor any of its
members, their officers, employees, or agents shall be liable for any direct or indirect or consequential loss or
damage caused by or arising from any information advice or inaccuracy or omission herein.

Copyright message

© NATWORK Consortium. This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation, or both. Reproduction is authorised provided the source is acknowledged.

Project funded by

Co-funded by © mmmmrenen
the European Union Cotebmin e :

L9, .4 UK Research Page 5 of 66
=4 B and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
Contents
List of acronyms and abbreviationsuiiiiiiiieicec e 8
(I o) 8 =V SR 9
EXECUTIVE SUMMIAIY ..t ss s sssssssssasssssnsnsnnas 11
Lo INErOQUCTION Lo s s 12
1.1. Purpose and structure of the dOCUMENTccuviiiiiiiiiii e 12
1.2, Intended AUIENCE.ccoouiiiiiiecee e e s 13
1.3, INEEITEIATIONS ettt et 13
2. RUNTIME OVEIVIEW & SECUMITY .ccieiiiiieiiie i e s s s e s e s e s e s e s e s e s e s e s e s e s e e e e s s e e eas 15
2.1, Virtual MacChines ..ottt s 15
2.2, IMHCTOVIMIS ittt e s s e e e s ba e e s 17
2.2.1. NON-POSIX ...ttt ettt ettt ettt e sbe e et e e bt e st e e sbeeenbeesaeesnsaens 18
2.2.2. POSIX ettt sttt b e st h e et bt e sb e e s hneebeenneesneen 18
2.2.3. IMage & Payload SECUNILY ...uiiiiiieeeciiiee e 20
2.3, CONTAINEIS ottt 20
D YV o7 XYY =T o 1 o] LV AP URPRRRPP 24
2.4.1. Origin and core design ODJECTIVES.......vueeeiieiieiiciieeeeee e e e e 24
2.4.2. WASM SECUNITY @SPECES...iiiiiiiiiiiiiiiii e 25
3. Intelligent runtime SEIECTION. . ..cciiie it e e e e rareeeeees 27
3.1, RUNtIME UNIFICAtION eeiiiiiiiee e e 27
3.2, Network UnifiCation.......ooiiiiieiiceceeee e e 30
3.2.1. Container NEtWOIKING......uuvieiieii et r e e e e e e e re e e e e e e e e enanes 30
3.3, NetWOrk RESIHIENCE ...ccveiiiiiiierieeee e e 34
3.4, StaNdardizationcooueioiiieeee e s 36
34.1. Kubernetes & Open Container INItiativeveeeeeeeiieiciiiiiieeeee e 36
3.4.2. Open Application MOEl ... e e e e e e 37
3.5, Intent-based SEIECTIONcooiiiiiiieeeee e e 38
3.6. Data collection methodology for ML SErviCes.......cccceeeieiccciiieeeee et 41
3.7. MlLl-based workload modeling & resource optimizationccccceeeveeciineeeeeeeeeeiinnnee, 42

P

roject funded by
Co-funded by O s eeen poo RO (@ UK Research Page 6 of 66
the European Union i fralrutry =4 B and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
3.7.1. Data Engineering and PreproCessingcccvvveeeeeeiieccciiieeee e eeceenree e e e e 42
3.7.2. Model Building and Algorithm Selectionccccvveiviiieiiniiee e, 43
3.7.3. Federated LEarningcccceei oo et e e e e e e e e s erare e e e e e e e nnnnnees 43
3.7.4. Hyperparameter TUNING. e 44

4. Remote AtEestation ...ttt 45
4.1, TPM-based attestationccocuiiiiiiiiiiieiee ettt 45
4.2. TEE-based attestation ..ot 47
4.3. WASM remote attestation......cccuviiiiiiiiiiii e 50
4.3.1. General. Development StAgES.cicuiii i 50
4.3.2. WASM authentication and remote attestation merits.......c..ccccovveerviieiiieeinneenne 50
4.3.3. StAte OFf The At ..ee e s 51
4.3.4. Continuous attestationccceviiiiiiiiiiiii 51
4.3.5. WASM runtime integrity verification.........cccoccvveeiiiciiei e 52

4.4. WASM runtime remote attestation.........cccoociiiiiiiiiiiiiiiii 57
44.1. NATWORK’s WASM runtime remote attestationc..ccceevveernieeiniee e 57

4.5. NATWORK full stack remote attestation schema for WASM technology 58
TR €] 4T [V 1Y [T o [P R PSP PR PR 60
REFEIENCES ...ttt e s e e et e e e s esnne e snee s 61

P

roject funded by
Co-funded by O s eeen poo RO (@ UK Research Page 7 of 66
the European Union i fralrutry =4 B and Innovation

NRT:..
W.R:RK

List of acronyms and abbreviations

D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

Abbreviation | Description
Al Artificial Intelligence
AMF Mobility Management Function
ASLR Address Space Layout Randomization
CLI Command Line Interface
CNI Container Network Interface
CRTM Core Root of Trust for Measurement
CTI Cyber Threat Intelligence
DCAP Data Center Attestation Primitives
DEP Data Execution Prevention
DoS Denial of Service
D-MUTRA DLT-based Mutual Remote Attestation solution
eBPF extended Berkeley Packet Filter
EDA Exploratory Data Analysis
HSM Hardware Security Module
KVM Kernel-based Virtual Machine
LSTM Long Short-Term Memory
OAM Open Application Modeling
odci Open Container Initiative
PCR Platform Configuration Registers
RBAC Role Based Access Control
REST Representational State Transfer
SCTP Stream Control Transmission Protocol
SDN Software Defined Network(ing)
SECaaS Security as a Service
SEV Secure Encrypted Virtualization
SEV-SNP Secure Encrypted Virtualization Secure Nested Paging
SGX Software Guard Extensions
TCB Trusted Computing Base
TDX Intel Trust Domain Extensions
TEE Trusted Execution Environment
TPM Trusted Platform Module
UDP User Datagram Protocol
UE User Equipment
UPF User Plane Function
VM Virtual Machine
vNICs Virtual Network Interface Controller
WASI WebAssembly System Interface
WASM WebAssembly
vEth Virtual Ethernet Device

- Co-funded by

the European Union

Project unded by
O S gemeon e e RO 4 UK Research
= ety =4 N and Innovation

Page 8 of 66

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

List of figures

Figure 1: conceptual comparison of several runtime options. Userspace is marked in green. While
gVisor is not discussed in the rest of the text due to lackluster performance, it presents an

interesting architecture using a custom system interface.ccccocovveieeiiiie e, 17
Figure 2: Containerized 5G tOPOIOBY ...ueiiiriiiiiiiiiieierieee ettt e e s s e e e s 21
Figure 3: Resource consumption statistics per CONtAINEruvvvvviiiiiiiiiiiiiiiiiia, 22
Figure 4: Packet sniffing USING tCPAUMPvviiiiiiiiee e 23
Figure 5: Number of active flows captured at runtimecceeevieeecciee e, 23
Figure 6: Online attack detection & Mitigationcccveiiiviiiiiiiiiiiiee e 23
Figure 7: General architecture of the Feather multi-runtime platform.ccccoceiiiiinn. 28

Figure 8: Example of deployment flows for different runtimes in Feather, in this case containers
AN OSV UNTKEINEIS. ...ttt e e e e e e e e e e e e e e e s e e arbaeeeeeeeeeesantrsaeaeeeeeeenannssrens 29

Figure 9: Tradeoff between hardware requirements of containers vs OSv unikernels, to consider
AlONG With SECUITY @SPECLS. ..vviiiiiiiiie ettt e e e e e e et e e e sabeeeessabeeeeessseeeeenns 30

Figure 10: Architecture overview of Feather’s multi-runtime networking solution. 31

Figure 11: Example of network devices and connections within and between multi-runtime pods.

... 32
Figure 12: Workload vs networking CPU impact for a video streaming application................... 33
Figure 13: 5G infrastructure with DDoS attack detection mechanism.........cccovvveeeeeiieiicinrrenennenn. 34
Figure 14: Integration through an APleeiiii e e e 35
Figure 15: Overview of OAM and modifications required to provide intent-based orchestration
... 37
Figure 16: Overview of Flocky services for decentralized, intent-based orchestration............... 39
Figure 17: Data gathering & data sources for NATWORKcccciiiiiiiei e, 41
Figure 18: Federated learning over edge-cloud continUumccccvveeveeieiiiiiiiieeeeeee e, 43
Figure 19: Architecture of the Keylime, abstracting away to complexity of TPM operations. 46

Figure 20: Architecture of the TrustEdge, with the centrol controller managing the trust state of
EUEE UEVICES. . uttreiiiiie i ittt et et et e e e tee bbb e et e eeeesessabbaaeeeeeseesaasssbaaseeeeessesasstrasaaeeeseesansssraens 47

Figure 21: Trusted Computing Base comparison of process and VM based TEEs. Source:
https://www.decentriqg.com/article/swiss-cheese-to-cheddar-securing-amd-sev-snp-early-boot

Prcjec funded by
Co-funded by O s reon poo RO (@ UK Research Page 9 of 66
the European Union P — =4 B and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
Figure 22. WASM module data StrUCLUIEoviiii ittt e e e e earne e e e e 53
Figure 23. The memory structure of a loaded WASM application (and virtual machine) 54
Figure 24. NATWORK's WASMTIME added second threadccccceeeeiieeeicciiee e 55
Figure 25. Simple representation of the NATWORK's WASM plug-in......cccoecvveeivviieeeiniieeeeennnne 56
Figure 26. Workflow for changing WASMTIME iNterpreter ... ecccveee e 56
Figure 27. NATWORK's full stack remote attestation........cccceeeiiviiieeiiiiiiiec e 59

P

rojctfundec by
Co-funded by O S gemeon e e RO (@ UK Research Page 10 of 66
e ety =4 N and Innovation

the European Union

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

Executive summary

The deliverable D4.1 “Payload security per runtime, intelligent runtime selection and
attestation.rl” provides a comprehensive overview of the NATWORK aspects enabling secure,
flexible-runtime workloads. This is actually a report on the payload security per runtime, the
intelligent runtime selection as well as the remote attestation, that derive from NATWORK
innovations. The current deliverable (first version) derives from the work performed under the
Task 4.2 “AlaaSecS for software payload”.

While containerized software and virtual machines have been employed for years in software
orchestration, many security aspects of containers and security optimization through
orchestration have been neglected in research and frameworks. On the one hand, containers are
merely processes that are slightly isolated but not intrinsically secure. Alternative runtimes such
as microVMs and WebAssembly WASM System Interface (WASI) have become popular,
promising superior workload security and optimal performance. Still, their exact contributions
are unclear, and integrating them into container-based software orchestration is non-trivial. The
optimal runtime type should also be chosen for each payload based on security (and other)
requirements.

On the other hand, several hardware-based approaches, such as Trusted Execution Environments
(TEEs) and Trusted Platform Modules (TPMs), may be leveraged to secure deployed software
through remote attestation by certifying nodes to be secure and reliable for the execution of
sensitive workloads.

This document covers three aspects of enabling secure, flexible-runtime workloads. First, an
overview of the most promising execution formats and runtimes, including unikernels and
WASM, is provided. The second, intelligent runtime selection, involves selecting a suitable
runtime for a specific workload based on particular parameters and workload properties and
unifying network and orchestration aspects required for transparent, runtime-agnostic
operation. Finally, the third aspect provides the building blocks for a feasible, flexible remote
attestation framework. WASM payload security is discussed similarly to remote attestation and
beyond during the payload execution. We discuss the core merits of security technology and
emphasize bytecode tampering at runtime. The project covers this major weakness with a
modified WASM runtime and a whole stack integrated two-layer remote attestation schema
covering both the runtime and the payload.

It should be noted that this is the first version of the deliverable which will continue to evolve in
the second year of the project, and will be described in its final version by the D4.2 “Payload
security per runtime, intelligent runtime selection and attestation.r2” due to M24 and in
accordance to the project’s description of work.

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 11 of 66
the European Union et ety =4 N and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

1. Introduction

Containerized software and virtual machines have been employed for years in software
orchestration in the cloud and edge. However, research and frameworks have neglected many
security aspects of both containers and security optimization through orchestration. This is a
significant shortcoming for 6G frameworks, as edge networks are more vulnerable to attack
vectors than physically and digitally secured data centers, and 6G inherently spans the entire
continuum from the cloud to the edge.

In security terms, containers are merely processes slightly isolated from the rest of the operating
system but not inherently secure. However, containers are not the only option for executing
workloads (i.e., “runtime”). Alternative runtimes such as microvVMs and WebAssembly (WASM)
System Interface (WASI) have become popular, promising superior workload security and optimal
performance. Still, their exact contributions are unclear, and integrating them into container-
based software orchestration is non-trivial, while one has to define the optimal runtime for each
payload based on security (and other) requirements.

On the other hand, several hardware-based approaches, such as Trusted Execution Environments
(TEEs) and Trusted Platform Modules (TPMs), may be leveraged to secure deployed software
through remote attestation by certifying nodes to be secure and reliable for the execution of
sensitive workloads.

1.1. Purpose and structure of the document

This document covers the main aspects researched in T4.2 to enable secure, flexible-runtime
workloads. In summary, these are:

- An overview of the most promising execution formats and runtimes, including unikernels
and WASM. This includes state-of-the-art capabilities, resource use, and essential security
aspects.

- Intelligent runtime selection, which is split into “enabling runtime selection” and
“intelligent selection”. The former details how various runtimes can be integrated into a
uniform structure/API based on the most popular orchestration frameworks (e.g.,
Kubernetes) in preparation for intelligent intent-based selection. The latter considers
workload and runtime properties, determining the optimal workload for a specific task
and matching it to a suitable execution node.

- Building a remote attestation framework that ensures secure execution of the selected
workloads by leveraging node hardware capabilities such as TEE and TPM.

Project unded by
Co-funded by 0 e e (8@ UK Research Page 12 of 66
the European Union s ——— =4 N and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

The rest of the document is structured according to these three main aspects:

e Section 2 provides state-of-the-art security aspects of the most promising execution
formats and runtimes for deployable workloads. This includes execution and image
payload security for Virtual Machines (VMs), containers, microVMs, and WASM. The
inception of WASM technology is recalled in the context of security.

e Section 3 covers the intelligent, intent-based selection of a suitable runtime for a
specific workload based on particular parameters and workload properties, in
addition to standardization and unification efforts in terms of networking and
orchestration APIs. Finally, this section covers ML-based workload modeling in the
context of resource optimization.

e Section 4 describes TEE and TPM-based attestation methods as the building blocks for
a scalable, flexible attestation framework. Moreover, WASM payload remote
attestation is discussed, exploiting a novel runtime integrity verification scheme
through a modified WASM runtime.

1.2. Intended Audience

NATWORK'’s D4.1 deliverable (Payload security per runtime, intelligent runtime selection, and
attestation) is devised for the internal use of the NATWORK consortium, comprising members,
project partners, and affiliated stakeholders. This document mainly focuses on the fundamental
security aspects of software runtimes and hardware attestation required for the project, thereby
serving as a referential tool throughout the project's lifespan.

This document contains sensitive context and is restricted exclusively to the consortium's
collective entities and European Commission (EC) representatives. Also, the document highlights
the project's strategic blueprint and collective vision, ensuring that all collaborative efforts are
harmonized and directed toward fulfilling the project's ambitions.

Dissemination or disclosure of the contents herein is limited to the internal circles of the
NATWORK consortium and the EC to maintain confidentiality and project integrity.

1.3. Interrelations

The NATWORK consortium integrates a multidisciplinary spectrum of competencies and
resources from academia, industry, and research, focusing on user-centric service development,
robust economic and business models, cutting-edge cybersecurity, seamless interoperability, and
comprehensive on-demand services. The project integrates a collaboration of fifteen partners

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 13 of 66
the European Union et ety =4 N and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

from ten EU member states and associated countries (UK and CH), ensuring a broad
representation for addressing security requirements of emerging 6G Smart Networks and
Services in Europe and beyond.

NATWORK is categorized as a "Research Innovation Action — RIA" project and is methodically
segmented into 7 WPs, further subdivided into tasks. With partners contributing to multiple
activities across various WPs, the structure ensures clarity in responsibilities and optimizes
communication amongst the consortium's partners, boards, and committees. The interrelation
framework within NATWORK offers smooth operation and collaborative innovation across the
consortium, ensuring the interconnection of the diverse expertise from the various entities (i.e.,
Research Institutes, Universities, SMEs, and large industries), enabling scientific, technological,
and security advancements in the realm of 6G. The D4.1 deliverable addresses all activities of the
NATWORK project related to T4.2 directly and as supporting activities for T3.1 (optimizing
selection and embedding of Al security services, i.c.w. UESSEX, CERTH, and ZHAW as main
stakeholders) and UC1 (Sustainability and reliability of 6G Slices and services i.c.w. UESSEX, ISRD
and TSS).

Project unded by
Co-funded by 0 e e (8@ UK Research Page 14 of 66
the European Union s ——— =4 N and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

2. Runtime overview & security

This section covers a state-of-the-art overview of critical aspects of various runtimes related to
T4.2: security properties, relative resource use, ease of use, and compatibility with existing
systems and software.

2.1. Virtual Machines

In today’s digital landscape, ensuring robust runtime payload security in virtual machine (VM)
environments is critical. The increasing adoption of virtualization technologies across cloud,
edge, and data center infrastructures has introduced significant challenges in maintaining the
confidentiality, integrity, and availability of sensitive workloads. Modern security strategies rely
on an integrated approach that combines advanced hardware features, TEEs, and comprehensive
software-based defenses. This discussion covers the latest developments in VM security, focusing
on hardware-assisted virtualization, TEEs, network and storage protections, real-time
monitoring, and emerging trends such as the unikernel technology. Hardware-assisted
virtualization technologies like Intel Virtualization Technology for x86 (VT-x) and AMD
Virtualization (AMD-V) are at the foundation of VM security, which provide essential isolation
between guest VMs and the host system [1]. These technologies leverage hardware-level
features to enforce strict separation, ensuring that operations within one VM cannot interfere
with or compromise another. Recent advancements, such as the incorporation of nested page
tables and extended page table protections, have further strengthened these measures by
limiting the ability of malicious entities to exploit memory access flaws or execute cross-VM
attacks [2]. Such enhancements improve the fundamental security posture and serve as critical
enablers for implementing higher-level security mechanisms.

TEEs have emerged as a crucial technology for protecting sensitive payloads during runtime.
Technologies like Intel Software Guard Extensions (SGX), Intel Trust Domain Extensions (TDX),
and AMD Secure Encrypted Virtualization (SEV) create secure enclaves within the processor,
allowing data and code to be executed with enhanced confidentiality and integrity even in
scenarios where the broader operating environment might be compromised [3]. By enforcing
memory encryption and implementing rigorous attestation protocols, TEEs verify the integrity of
the executed code and protect against sophisticated threats, including side-channel attacks and
memory tampering. Although these techniques have proven effective, they introduce
performance overheads and implementation challenges that require careful balancing during
system design and deployment.

Project unded by
Co-funded by 0 e e (8@ UK Research Page 15 of 66
the European Union s ——— =4 N and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

Securing network communications inside virtualized environments is another critical aspect of
runtime payload security. Software-Defined Networking (SDN) technologies enable
administrators to implement fine-grained control over VM communication patterns, ensuring
that only authorized traffic crosses virtual boundaries [4]. In addition, virtual network interface
controllers (vNICs) equipped with hardware-assisted packet processing bolster security and
performance. Techniques such as micro-segmentation and dynamic access control policies
further limit the lateral movement of potential attackers, effectively containing breaches and
enhancing overall network security. Storage security for VM payloads has evolved in response to
emerging threats and compliance requirements. When combined with robust key management
systems, full disk encryption technologies ensure that sensitive data remains confidential even if
physical media are compromised [5]. Modern security practices increasingly integrate hardware
security modules (HSMs) to safeguard encryption keys and other critical configuration data,
helping to secure VM migration, backup operations, and adherence to industry regulations.
These measures are particularly vital in environments where data confidentiality and integrity
are critical, such as in regulated or sensitive information sectors.

Modern VM environments incorporate sophisticated runtime monitoring and threat detection
mechanisms to bolster security further. Advanced intrusion detection systems now combine
traditional signature-based methods with machine learning (ML)-driven behavioral analysis to
identify known and novel threats in real time [6]. The development of automated response
mechanisms has streamlined threat mitigation, enabling rapid system responses to potential
security incidents. Nonetheless, challenges remain in minimizing false positives while maintaining
high detection accuracy and overall system performance. Recent research into unikernel
technology and lightweight virtualization has introduced a promising new paradigm for
enhancing runtime payload security. Unikernels, which combine the essential functions of the
application and operating system into a single executable, significantly reduce the footprint of
code executed in privileged modes, thereby minimizing the attack surface. This streamlined
approach offers substantial security benefits, particularly in cloud-native environments, though
the operational complexity and compatibility challenges associated with unikernels continue to
be active research areas [7].

Integrating security features through APIs allows different VM software services, containers, and
other infrastructure components to dynamically interact and share threat intelligence. As
isolated security devices detect potential threats, such as Distributed Denial of Service (DDoS)
attacks, they can communicate this information to services running on virtual machines or across
containers via APls. This integration enables the system to automatically isolate compromised
VMs, migrate critical services to secure environments, or trigger other countermeasures.
Additionally, the feedback generated from these defensive measures provides continuous data

e Prcjec funded by
Co-funded by ee © smmaesen s « A9, .4 UK Research Page 16 of 66
the European Union {118 P ey =4 B and Innovation

NRAT .-
(W D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

W.R:RK

to the entire network, allowing the system to refine its security protocols. This feedback loop
ensures that VM software and services align with the most up-to-date defense strategies,
enhancing the network’s resilience and allowing faster, more effective responses to emerging

threats (cf. Section 3.3).

2.2. MicroVMs

MicroVMs are a lightweight form of VM designed to run individual processes. As VMs, these can
leverage all the security benefits described in Section 2.1. As such, the rest of this section details
the specific properties of microVMs. Figure 1 illustrates the architectural differences between

various types of (micro)VMs and containers.

[=k (=5 o
o o o
< < <
2/lg|l g
2122 PElPEE] |8|l8|l s gl g2
< < <
{= 5 o =L
FRIN-RIN: || 2| < allall e
E § E e || 2 || 2 o |l 2 || 2 =1 =
v >3 v | | g | | |]
+ + + 2 2 2
8 8 8 Kernel| |uKernel| [uKernel iKemnel| |uKemnel| |uKernel = = = QVISOT kernel
Hypervisor Hypervisor Hypervisor Kemnel Kernel
Hardware Hardware Hardware Hardware Hardware
Full Virtual V o Firecracked ity .
Machine O S] dOCker gV|sor
. : MicroVM .)
Virtual Machines Containers

Figure 1: conceptual comparison of several runtime options. Userspace is marked in green. While gVisor is not discussed in the
rest of the text due to lackluster performance, it presents an interesting architecture using a custom system interface.

Several technologies enable the creation of microVMs, among which unikernels are a varied
group with excellent security and performance features [8],[9]. Specifically, unikernels are
specialized operating system libraries that compile an application with only the necessary system
components into a single executable, which runs inside a virtual machine. This reduces both the

image size and the attack surface.

Apart from the kernel- versus userspace designs, microVMs can be roughly classified into two
types: POSIX-compatible (Portable Operating System Interface [10]) ones that focus on existing
software, and those based on non-POSIX system interfaces which sacrifice compatibility for
smaller images and lower resource requirements. OSv [11] is a POSIX-compatible [10] unikernel

Prcjec funded by
Co-funded by O s tavmn po RO\ UK Research
the European Union Pt E =4 B and Innovation

Page 17 of 66

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

platform with wide compatibility for existing programs and programming language runtimes.
Although microVMs generally support a wide variety of hypervisors for their execution,
QEMU[12] with KVM (Kernel-based Virtual Machine [12], [13]) acceleration is a widely endorsed
option due to its Type | hypervisor capabilities and integration with Linux.

Given the diversity in microVM architectures and hypervisor support, evaluating their
performance and trade-offs across different virtualization technologies becomes crucial.
Therefore, various classes of virtualization technologies, including microVMs, have been
extensively compared and benchmarked [14], and their performance has been examined at the
kernel level [15].

2.2.1. Non-POSIX

This type of microVM is designed from the ground up around a single programming language,
generally a C dialect, providing a custom (not POSIX compatible) system interface. Unikernels
most often use this approach: at compile time, all the libraries and system calls the program uses
are compiled, together with the program itself, creating a single kernel that starts on boot.
Platforms of this type are generally incompatible with existing source code, often requiring
developers to rewrite applications entirely using platform-specific APls. Such rewrites can
introduce security risks, especially if critical security features are omitted or reimplemented
incorrectly. These issues are particularly pronounced on ARM-based edge devices, where
limitations like missing system calls, lack of 64-bit support, or ELF format incompatibilities further
complicate development. Considering the still-evolving nature of existing platforms of this type,
it also often means dropping functionality that is not yet implementable [23]. On the other hand,
this type of microVM results in lower CPU and memory use and far smaller images than POSIX-
compatible ones [17]. Direct security benefits are usually limited to “security through obscurity”
and a reduced attack surface by modifying the kernel. IncludeOS?* [22] and MirageOS? are good
examples of this approach.

2.2.2. POSIX
2.2.2.1. Runtimes

MicroVM runtimes, such as Firecracker?, are small hypervisors designed to minimize the footprint
and enhance the security of the virtualization layer. Unikernels reduce both the attack surface

1 https://www.includeos.org/ - IncludeOS - Run your application with zero overhead
2 https://mirage.io/ - A programming framework for building type-safe, modular systems
3 https://firecracker-microvm.github.io/ - Secure and fast microvVMs for serverless computing

Project unded by
Co-funded by 0 e e (8@ UK Research Page 18 of 66
the European Union s ——— =4 N and Innovation

https://www.includeos.org/
https://mirage.io/
https://firecracker-microvm.github.io/

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

and the overhead of virtual machines by implementing only minimal virtual device drivers and
omitting all non-essential functionality. They can achieve performance close to that of native
processes, such as high Representational State Transfer (REST) API throughput under CPU load,
by leveraging para-virtualized devices like virtio [18] and hardware-assisted virtualization
technologies such as Intel VT-x and AMD-V [19] [73].

Guest operating systems often require minor changes to run in a minimal environment. The
smallest, most optimized unikernel platforms, such as Unik* and Unikraft, provide custom system
interfaces and dedicated programming languages. The latter produces unikernels of only around
1 MB for essential web functions such as Nginx, SQLite, or Redis [8].

2.2.2.2. Image formats & platforms

In addition to runtimes, several specialized VM guests and image formats have emerged. These
fall into two categories: the first category runs existing software on a highly minified Linux kernel,
such as the default Firecracker kernel [20][20]. While this approach ensures near-perfect
compatibility with most Linux software and system calls, the need to support a broad set of Linux
APIs and architectures—combined with the typically straightforward “transpiling” of existing
libraries—limits how small these kernels can become. However, using custom kernels with
reduced API support is often possible, which can further minimize both the image size and the
attack surface. Unikernels represent the second category, in which the application is compiled
together with only the necessary operating system components into a monolithic binary that
runs entirely in kernel mode. This improves performance by removing context switches,
providing smaller images, and reducing the attack surface [21]. POSIX-compatible unikernels,
such as OSv>, can integrate existing POSIX executables, such as Linux software, or compile
software in various programming languages into a unikernel from scratch without modification
(e.g., Rust, Go, C). However, compatibility and potential security issues depend highly on the
active community maintaining such kernels, and most initiatives still focus on compatibility rather
than specific security improvements. OSv, for example, has several significant issues that
supersede security concerns [14], many of which are shared by other platforms:

- Multithreading: multithreaded REST services, specifically configured with four handler
threads, result in up to 20% performance loss compared to single-threaded unikernels
rather than an expected (up to 300%) increase. While this issue has been known for years,
it remains unresolved.

4 https://github.com/solo-io/unik - A platform for automating unikernel & MicroVM compilation and deployment
5 https://github.com/cloudius-systems/osv - OSv, a new operating system for the cloud

Project unded by
Co-funded by 0 e e (8@ UK Research Page 19 of 66
the European Union s ——— =4 N and Innovation

https://github.com/solo-io/unik
https://github.com/cloudius-systems/osv

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

- Multicore operation: like multithreading, allowing a unikernel to use multiple cores
results in a significant performance hit rather than an improvement, indicating that it is
not merely a thread scheduling issue on single cores.

- Reliability: when performing essential REST server/client evaluations, some requests get
“stuck” while processing, resulting in extreme lag, which is orders of magnitude beyond
that of running the same services in containers. This is the case even with single-threaded
operations.

- Stability: After handling a certain (random) number of REST requests, unikernels often
crash, independent of the actual REST service they provide. This is inconvenient in
evaluation scenarios but unacceptable in production environments.

- Hardware platforms: ARM support may be seemingly random, especially for languages
such as Golang, which tend to change the specific syscalls they use on any platform,
depending on the language version.

- Resource use: memory and CPU requirements vary wildly depending on the scenario; a
Minecraft server with a large world uses 25% less memory than its containerized
equivalent but uses up to 30% more CPU. For REST services, this is inverted, with higher
request throughput at the cost of the virtualization layer using an order of magnitude
more memory than a containerized version.

2.2.3. Image & payload security

Apart from often quoted security benefits due to a reduced kernel attack surface and VM-based
process isolation, little research has investigated other security aspects of microVMs. However,
SEVeriFast [16] proposes a solution to run microVMs using AMD SEV with 86-93% performance
improvements, in terms of boot times, over the state-of-the-art. On the other hand, recent work
shows that to preserve kernel size, unikernels may skip important yet fundamental security
features such as Address Space Layout Randomization (ASLR), Data Execution Prevention (DEP),
and Non-eXecutable (NX) bits [23].

2.3. Containers

Containerized services are prevalent in 5G networks and are considered a key enabler in 6G
networks. Although they offer significant benefits such as portability, enhanced resource usage,
and scalability, they also introduce inherent vulnerabilities that raise new security issues [24].

Several security strategies to mitigate risks have been explored, including isolation mechanisms,
static image analysis and hardening, and network security policies. Even though these methods
enhance security in different ways, they each have inherent limitations.

Project unded by
Co-funded by 0 e e (8@ UK Research Page 20 of 66
the European Union s ——— =4 N and Innovation

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

More specifically, isolation mechanisms, including namespaces and control groups (cgroups®),
ensure that each container operates in its restricted environment, minimizing the risk of cross-
container interference [25]. However, although effective isolation can provide security to some
extent, it is not sufficient to prevent DoS attacks that are executed by consuming excessive CPU
or memory [26].

In static image analysis, relevant tools inspect the container images to detect any potentially
exploitable misconfigurations, while in image hardening, unnecessary packages are removed to
strengthen the containers’ security posture. Nonetheless, static analysis methods are ineffective
against runtime nor zero-day attacks, whereas image hardening is subject to causing implications
on the service's normal execution. Finally, network security policies restrict attackers' access to
the service by enforcing access control rules, though they introduce additional execution
overhead. [27] provides a more thorough review of related works that explore various container
defense mechanisms.

A

(= web Ul

M DB .(;

° ‘;g° < eNB

& Topology AMF = B -

-

A Firewa ‘r . R
PCRF g 1192.187.3.253

A Accoss Convol Lists .- h192.147.3.2

- h192.187.35 =
o h192.187.3.1
>
- h192.187.3.254 -
h192.187.3.3 | = UE
- = h192.187.3.4
. HSS
h192.187.3.6
UPF

Figure 2: Containerized 5G topology

A recent approach introduces Al-based runtime monitoring, anomaly detection, and mitigation.
This technique is more advanced and is suitable for mitigating container security threats at
runtime. Motivated by this, NATWORK is developing an Al-powered monitoring and mitigation

8 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

Prcjec funded by
Co-funded by d o s e B8 (@ UK Research Page 21 of 66
the European Union Pt E S =4 B and Innovation

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

tool. This tool is built upon and extends previous works [28] to enable continuous analysis of
system behavior, detecting anomalies, and responding in real time to contain any potential
attacks efficiently and promptly. A 5G network topology is deployed for experimentation and
validation using open-source implementations such as free5GC’ and Open5GS8, which aim to
provide standards-compliant 5G core networks. To support standalone (SA) 5G core functions—
such as the Access and Mobility Management Function (AMF) and the User Plane Function
(UPF)—the projects mentioned above offer a microservices-based architecture, where each
network function operates in its container.

SDN controllers and switches—such as Floodlight® or Container Network Interfaces (CNIs)°—
facilitate communication between the containers and simulated 5G User Equipment (UEs). Figure
2 illustrates one example of such a topology. The computing and network resources consumed
by each container are monitored in real-time, as shown in Figure 3.

CONTAINER ID NAME % MEM USAGE / LIMIT
697b48c1baf2 att .00% 2.523MiB .82GiB
laadbfc941bf ue D.00% 87.94M1B .82G18
223b7561d452 enb .01% 353.4MiB .82G18B
e54fd3baec9a webul .00% 126.5M1B .82G18
19926e13a6d1 pcrf 01% 26.77MiB .82G18
5e63ef5b39dc hss 0.01% 21.68M1B .82G18B
smf .30% 74 .01MiB .826G18B
upf .81% 97.14MiB .82G1B
€c954cbc82b4 amf B.39% 74.77M1B .82G1B
308d710cd3a2 mongodb-svc 11% 47.41M1B .82G18

NET I/0 BLOCK I/0
0B / 08B 6.1M8 / OB
08 / 0B 42.9M8 /
eB / eB 29.7M8 /
336kB / : 54.3M8 / .4kB
/I
/
/

—

.3kB

oo

6B / 08B 5.12M8 .2MB
o8

NN N
O ww

/ 0B 4.71M8 .2MB
eB / 0B 14.5M8 .2MB
0B / o8 167M8 / 55.2MB
o8B / 08B 225MB / 52MB

42.6kB / 210kB 45.5MB / 807kB

N NN RN N NSNS
N ODODWONOD

3
3
3
3
3
<
3
3
3
3

Figure 3: Resource consumption statistics per container

This containerized architecture enables us to evaluate the tool's performance against various
types of Denial of Service (DoS) attacks, including User Datagram Protocol (UDP) Flooding attacks
on the UPF and Stream Control Transmission Protocol (SCTP) Flooding attacks on the AMF. Such
attacks aim to exhaust the target network resources. Considering the above, the Al-powered tool
operates as follows:

First, it utilizes packet sniffers (cf. Figure 4), such as tcpdump?! and Wireshark'?>To capture
network traffic of container interfaces in real-time across several transport layer protocols. UDP
and SCTP were selected because of their widespread use in 5G/B5G networks.

It also monitors all active flows and their traffic in the network setup. Different traffic patterns
are simulated using tools such as Apache JMeter?3, to create realistic attack scenarios.

7 https://free5gc.org/

8 https://github.com/open5gs/open5gs

% https://github.com/floodlight/floodlight

10 https://github.com/containernetworking/cni
1 hitps://www.tcpdump.org/

12 https://www.wireshark.org/

13 https://jmeter.apache.org/

Prcjec funded by
Co-funded by d s e B8 (@ UK Research Page 22 of 66
the European Union Pt s e =4 B and Innovation

https://free5gc.org/
https://github.com/open5gs/open5gs
https://github.com/floodlight/floodlight
https://github.com/containernetworking/cni
https://www.tcpdump.org/
https://www.wireshark.org/
https://jmeter.apache.org/

NRT:..

Based on the information collected on network traffic and flows, the tool performs online
anomaly detection using a moving average algorithm. An attack is detected when an unexpected

surg
case

Upo

control rule is created to restrain incoming packets from the suspicious flow, thus effectively

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

tcpdump: listening on corel-ethl, link-type EN16MB (Ethernet), capture size 262144 bytes
1000 packets captured

226 packets received by filter

@ packets dropped by kernel

tcpdump: listening on corel-ethl, link-type EN1GMB (Ethernet), capture size 262144 bytes
10060 packets captured

1140 packets received by filter

@ packets dropped by kernel

tcpdump: listening on corel-ethl, link-type EN16MB (Ethernet), capture size 262144 bytes
1000 packets captured

1426 packets received by filter

0 packets dropped by kernel

Figure 4: Packet sniffing using tcpdump

e in traffic is generated by a particular flow, indicating the potential activity of a flooder. This

is shown in Figure 5.

active flows:
active flows:
active flows:
active flows:
active flows:
active flows:
active flows:
active flows:
active flows:
active flows:
active flows:
active flows:
active flows:
active flows:

Figure 5: Number of active flows captured at runtime

n detection, the tool immediately identifies the IP of the attacking flow. Subsequently, a new

mitigating the attack, as illustrated in Figure 6.

alarm=True

2025-03-21 11:02:27.137

*xxxx2xAN ATTACK HAS BEEN DETECTED***=**=

Details: The attacker's IP is: 192.187.3.200

xxxx++ADDING NEW FLOW CONTROL RULE FOR ATTACK MITIGATION***==x
Restricting flows from IP: ''192.187.3.260''
{"src-1p":"192.187.3.200/32","action": "deny"}

{"status" : “Success! New rule added."}

Figure 6: Online attack detection & mitigation

roject funded by
Co-funded by d s e, L@ (@ UK Research Page 23 of 66
the European Union i fralrutry =4 B and Innovation

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

2.4.

WebAssembly

2.4.1. Origin and core design objectives

WASM !4 was created as a collaboration between major browser vendors, including Mozilla,
Google, Microsoft, and Apple, under the World Wide Web Consortium (W3C) WebAssembly
Working Group®. It was first announced in 2015 and became an official W3C standard in 20191°,

The core reasons behind WASM'’s creation were:

Performance: JavaScript!’ technology, while powerful, has inherent performance
limitations, particularly for compute-intensive tasks such as gaming, video processing,
and data visualization. WASM was designed to enable near-native execution speed by
using a binary format that is more efficient to parse and execute. This binary format
is structured on low-level instructions, which are closer to native instructions and,
therefore, faster to interpret.

Security: WASM was designed with a sandboxed execution model, ensuring that
WebAssembly code runs within the same security constraints as JavaScript in the
browser. This makes it harder for WASM code to escape and compromise a system.
Security derives from several memory designs:

o Contiguous (i.e., linear) memory allocation where each WASM payload is
allocated with its access-restricted memory map, preventing overwrite
beyond this area (e.g., overflow for escalation)

o No direct memory pointers (as enabled by native assembly), preventing direct
jump to read and write anywhere

o Control-flow integrity, enforced by the interpreters, prevents unvalidated
indirect calls and mitigates control-flow-based attacks such as Return-
Oriented Programming (ROP), self-modifying code, or attacks that exploit Just-
In-Time (JIT) compilation to inject malicious code dynamically.

Portability: WASM is not tied to JavaScript—it is a low-level bytecode format that can
be compiled from multiple languages (e.g., C, C++, Rust, Go), enabling developers to
run high-performance code on the web without relying on JavaScript. From the
outset, WASM was designed to be a polyglot platform. It can serve as a common

14 https://github.com/webassembly

15 https://www.w3.org/groups/wg/wasm/

16 https://www.w3.org/TR/wasm-core-2/

17 https://github.com/topics/javascript

roject funded by
Co-funded by d s e, L@ (@ UK Research Page 24 of 66
the European Union i fralrutry =4 B and Innovation

https://github.com/webassembly
https://www.w3.org/groups/wg/wasm/
https://www.w3.org/TR/wasm-core-2/
https://github.com/topics/javascript

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

compilation target for many programming languages rather than being limited to a
single language or ecosystem.

IV. Interoperability: WASM was designed to work alongside JavaScript, not replace it.
This allows developers to use WASM modules within JavaScript applications,
leveraging its speed for performance-critical parts.

Although initially developed by browser vendors, WASM technology has expanded into other
domains, including telecom, where it is used in Function-as-a-Service (FaaS) platforms like
CloudFlare Workers®. These platforms enable serverless execution of code in WASM, allowing
lightweight, high-performance functions to run on demand in the cloud. WASM is also viewed as
a serious competitor against containers. WASM is also considered in gaming (e.g., Unity?'?),
blockchain (Ethereum 2.0 WASM smart contracts?®), and Al (e.g., Pyodide?!). Browser vendors
faced JavaScript's limitations in both security and performance. JavaScript high abstraction level
made it slow to run, easy to reverse, and tamper. As importantly, its high-speed engine (i.e., the
Just-In-Time compiler) was exploited, as demonstrated in a real-world attack [76]. The core
prototype inheritance structure (i.e., the backbone of JavaScript object-oriented programming)
was also an attack pathway, as illustrated in another real-world attack [77]. JIT spraying and
prototype pollution are the two main attack pathways taken by attackers on JavaScript and are
difficult to apprehend and prevent for developers.

While keeping the same level of portability as offered by JavaScript (i.e., through
virtualization/interpretation), the WASM conceptor team has developed a lower-level
interpreted language, more complex to reverse and faster to execute, also almost closing the
door to JIT compilation through a preferred ahead of time compilation mode, notably by browser
vendors, reluctant to use JIT for security reasons. JIT is, however, possibly activated (e.g.,
WASTIME runtime).

2.4.2. WASM security aspects

Several rich surveys of WASM security have flourished since 2020. In [29], the authors have sifted
through 121 works covering different security aspects, including vulnerabilities and interactions
with the operating system. In essence, primary emphasis is put on the opportunities and threats
of the sandbox.

18 https://github.com/cloudflare/workerd

19 https://unity.com/

20 https://ewasm.readthedocs.io/en/mkdocs/
21 https://pyodide.org/en/stable/

Project unded by
Co-funded by 0 e e (8@ UK Research Page 25 of 66
the European Union s ——— =4 N and Innovation

https://github.com/cloudflare/workerd
https://unity.com/
https://ewasm.readthedocs.io/en/mkdocs/
https://pyodide.org/en/stable/

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

The sandboxed payload isolation, a key promise of WASM, can be eroded by memory-unsafe
native language programs (before being compiled as a WASM payload), which, of course,
advocates eliminating C, C++, or other memory-unsafe language programs (e.g., Rust
programming). Side-channel attacks are potentially robust sandbox data extraction techniques,
as they operate within the domain of a trusted execution environment or Linux domain space.
On both fronts, side-channel attacks require technology vendors (e.g., CPU manufacturers for
TEEs) and software developers (e.g., those working on WASM or Linux distributions) to engage in
constant and proactive engineering to mitigate vulnerabilities and strengthen isolation
guarantees. While perfect security is unattainable, systems should be hardened to the point
where only highly skilled attackers can pose a threat. In practice, reverse engineering and
tampering remain common attack vectors, prompting developers to obfuscate most WASM
payloads—often at the cost of performance—to protect confidentiality. However, performance
is less relevant for attackers aiming to evade detection. In such cases, obfuscated WASM payloads
are frequently deployed for illicit use, particularly on the dark web and in crypto mining
operations where WASM thrives [30].

The strict memory management of WASM confers a high-security profile in contrast to native
programming, as do other interpreted languages (e.g., Java), but in a more advanced manner.
The relatively low abstraction level of WASM instructions only raises the bar for good reversers
but without attaining any level of certainty. With a significant impact on performance,
obfuscation is practiced preventing malware detection rather than intellectual property
preservation.

Project unded by
Co-funded by 0 e e (8@ UK Research Page 26 of 66
the European Union s ——— =4 N and Innovation

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

3. Intelligent runtime selection

This section discusses some of the enablers of intelligent runtime selection. The most critical
aspects are runtime unification, which ensures that the selectable runtimes are easily
interchangeable; network unification, which provides a uniform network environment regardless
of the underlying runtime; and standardization, which extends existing standards, e.g., Open
Container Initiative (OCl), to other runtimes or applying more generic standards to a unified
platform. Finally, workload modeling and resource optimization are considered. Although this
work is currently limited to workload modeling, it can be easily extended to runtime-dependent
properties, as the same workload over different runtimes is likely to have varying resource usage
and optimization parameters.

3.1. Runtime unification

The current state of software orchestration in the network edge is fairly container-centric. Most
standards, networking solutions, and plugins are designed for container orchestration,
particularly platforms such as Kubernetes (K8s)??, K3s%3, etc.

Several alternatives have been explored. For instance, one study leverages KubeVirt to deploy
and evaluate (micro)VM-based workloads on K8s clusters [31]. While KubeVirt?* supports
virtualization within K8s, significant modifications to the cluster, including custom resources and
daemon sets, are required. Other solutions exist, such as Firecracker?® through Kata Containers?®
or WASM/WASI?” workloads [32]. However, these approaches are typically designed to support
specific workload types rather than offering a unified integration model across diverse execution
environments. Throughout T3.1/T4.2, Feather was explicitly developed as a multi-runtime agent
for edge computing designed to replace the Kubelet?® in K8s clusters without requiring any
modifications to the cluster. Feather utilizes a Virtual Kubelet as its foundation, receiving
commands from Kubernetes through the REST interface. Workload platforms (e.g., container,
unikernel) are referred to as “backends,” which may be supported by different runtimes as
described in 2.2.2.1 (e.g., QEMU, VirtualBox). A high-level overview of the Feather architecture
is presented in Figure 7, where newly developed components are highlighted in dashed red

22 https://kubernetes.io/

23 https://k3s.io/

24 https://kubevirt.io/ - Building a virtualization API for Kubernetes

2 https://firecracker-microvm.github.io/

26 hitps://katacontainers.io/

27 https://www.spinkube.dev/ - Hyper-efficient serverless on Kubernetes, powered by WebAssembly.

28 https://virtual-kubelet.io/ - An open-source Kubernetes kubelet implementation that masquerades as a kubelet.

roject funded by
Co-funded by d s e, L@ (@ UK Research Page 27 of 66
the European Union i fralrutry =4 B and Innovation

https://kubernetes.io/
https://k3s.io/
https://kubevirt.io/
https://firecracker-microvm.github.io/
https://katacontainers.io/
https://www.spinkube.dev/
https://virtual-kubelet.io/

NRT:..

w / };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

rectangles. The Virtual Kubelet runs a REST API, which receives deployments from K8s; these are
forwarded to any registered providers to handle deployments at the K8s pod level. To separate
node and pod logic from atomic workloads (i.e., individual containers), Feather implements a
provider which takes care of all pod-level logic, leaving the workload-level (or instance) logic to
backends (e.g., containerd, OSv). This approach simplifies the complexity of additional backend
implementations. It enables mixing different runtimes in a single pod if security requirements
require, for example, when trusted execution is necessary for the primary payload but not for a
logger and web API clients in the same pod. The provider also interacts with a basic Resource
Monitor to report node status and determine if it has enough resources to execute a deployment.
For advanced monitoring outside the default K8s dashboard, a Prometheus Golang Exporter?®
may be enabled in addition to the default process metrics. The OSv backend is implemented as a
proof of concept for unikernel microVMs, which are run on KVM-QEMU by default.

Cloud Edge device
Container runtime Feather agent
I virtual Resource
Kube API H Kubelet Provider monitor
Conta|ner+ Worker
Sl microVMs
acKkenas
K8S :
dashboard Hypervisor
Master node)
. containerd Worker
- containers
- t Container runtime
Tools St A
Cgroups | Networking : Namespaces -
|l i

Figure 7: General architecture of the Feather multi-runtime platform.

Initial developments focused explicitly on enabling OSv unikernels within K8s, on edge devices,
through a standard Open Container Initiative (OCl) image®°. To achieve this goal, a second tool
called Flint was developed, which can store microVM images inside an OCl image as a single layer,
adding metadata information to indicate the type of backend and runtime to be called by
Feather. Storing images unaltered inside an OCl image conserves any security mechanisms in
place (e.g., encryption), which backends may validate. It enables additional image layers required
for payload security protocols. Figure 8 shows the deployment flows for containers and unikernel

2 https://github.com/prometheus/exporter-toolkit
30 https://github.com/opencontainers/image-spec

Prcjec funded by
Co-funded by d s e, L@ (@ UK Research Page 28 of 66
the European Union : : et =4 B and Innovation

https://github.com/prometheus/exporter-toolkit
https://github.com/opencontainers/image-spec

NRT:..

W.R:RK

D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

images packed as OCl images within Feather. Key differences are how images are stored locally

and loaded into their respective runtimes after unpacking:

- Container images are forwarded to the container runtime (e.g., containerd3!), which
stores the layers on disk and loads them as required when starting an instance.
- Feather extracts OSv images from the OCl image, stored in the OSv cache, and KVM start

commands are constructed from deployment parameters to ensure expected

functionality (e.g., mounts, networking, environment variables).

There are a few limitations to the current implementation. More importantly, although it can
interact with most basic K8s resources (e.g., ConfigMaps3?, Secrets33), due to virtio-fs34 and OSv
limitations, the current version of Feather only supports read-only mounts of local directories.

Container
repository

: : I Virtual
I ﬁ: Kubelet
|
|

Edge device

Feather agent

Provider

Container+

Backends

containerd

8b

Worker
containers

Worker
microVMs

Hypervisor

Disk image
repository

Container runtime

 ————————

Local repasitory

9a

Figure 8: Example of deployment flows for different runtimes in Feather, in this case containers and OSv unikernels.

In addition to runtime security considerations, evaluations reveal notable hardware implications
for future alternatives. While OSv unikernels use significantly less memory than containers,
combining OSv images with QEMU/KVM introduces substantial processing overhead (cf. Figure

9).

31 https://containerd.io/

32 https://kubernetes.io/docs/concepts/configuration/configmap/

33 https://kubernetes.io/docs/concepts/configuration/secret/

34 https://virtio-fs.gitlab.io/

Co-funded by
the European Union

BESNS =

Project funded by

L9, .4 UK Research
=4 B and Innovation

Page 29 of 66

https://containerd.io/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://virtio-fs.gitlab.io/

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

2 [—_
s 125 a 800
2 100 2 600
VR z
2 > 400
D: 50 §
c
6 25 g 200
0 ——1 — I — 0 | |
0:00 2:00 4:00 6:00 8:00 10:00 0:00 2:00 4:.00 6:00 8:00 10:00
feather (ctd) —— feather (osv) feather (ctd) —— feather (osv)
—— containerd (ctd) —— gemu-sys (osv) —— containerd (ctd) =—— gemu-sys (0sv)
shim-runc (ctd) —— java (ctd) shim-runc (ctd) —— java (ctd)

Figure 9: Tradeoff between hardware requirements of containers vs OSv unikernels, to consider along with security aspects.

3.2. Network Unification

3.2.1. Container Networking

Integrating various runtimes into a single platform is non-trivial because orchestration software's
practices and standardization efforts have historically focused on containers3>, which are typically
combined into pods consisting of multiple containers that form a logical unit of services. A single
pod's container normally shares a network namespace, enabling local communication.
Standardized pod networks handle network traffic between pods or Container Network Interface
(CNI) plugins [33] in the case of Kubernetes (K8s), with implementations focusing on various
aspects such as security, performance, and flexibility. Plugin design varies but is usually based on
Layer 3 Internet Protocol (IP) routing and/or extended Berkeley Packet Filter (eBPF) for
performance, with several alternatives evaluated by Koukis et al. [34] in the context of edge
computing. Non-container runtimes can be integrated using various methods; for example, shim
implementations such as the WebAssembly OCI-compliant runtime shim (CWASI) [35] may be
able to interface directly with a CNI plugin. Kata Containers [36] are implemented using a custom
runtime that embeds the containers of an entire pod within a microVM, and the microVM's
network interface is attached to the pod's network. MicroVM workloads may integrate with a
CNI to some degree. However, evaluations [37] (OSv, Firecracker, etc.) and guides (Nabla3®) never
deploy more than a single workload per pod, nor do they explicitly discuss the (pod) networking
architecture. As a microVM uses a single IP address per machine, it is doubtful whether these

35 https://opencontainers.org/ - Open Container Initiative - an open governance structure for the express purpose
of creating open industry standards around container formats and runtimes
36 https://nabla-containers.github.io/2018/11/05/nabla-k8s/ - Nabla on Kubernetes

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 30 of 66
the European Union i fralrutry =4 B and Innovation

https://opencontainers.org/
https://nabla-containers.github.io/2018/11/05/nabla-k8s/

NRAT .-
: D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
W.R:RK
solutions support more than a single workload per pod from a networking perspective.
Furthermore, many microVM options are designed for FaaS operation in the cloud (e.g., OSv with

Firecracker®’), which, by design, does not require pod networking.

To that end, a runtime-agnostic networking solution was devised to provide mixed workload pods
with all the standard behavioral features of pod networking. The core functionality of the
proposed solution is sub-pod networking, which sets up small, independent subnets for each pod,
rather than providing them with a single IP address. It is based on eBPF programs for efficient
and secure traffic processing. The networking solution is integrated into Feather as a
configuration option, in addition to IPv4/6 networking schemes and an additional REST API for
stand-alone operation (i.e., without the necessity for a Kubernetes cluster).

General pod | | Pod networking Pod traffic
setup setup routing
Userspace
Pod deployments Kubelet Pod Feather
.. _———
= API Manager
Containerd 0osv L
provider provider
Int d d traffi
mermode pod el ceere (o N | |
Lcnd | | PodwAN
Manager
A v
\ PodNetwork PodAddress
Manager Manager
|
|

|

Y

—

Kernel space

eBPF
Traffic

routing

Y

Worker services

Pod namespace

Worker services

Pod namespace

v

Worker service

v

kvm-gemu

Worker service

|

Figure 10: Architecture overview of Feather’s multi-runtime networking solution.

Figure 10 shows the high-level component overview of the proposed architecture integrated into
Feather. Existing components are indicated in yellow, while novel components are green. The
Pod Manager performs General pod management, which receives commands through the
Kubelet API. The Pod Manager examines workloads in every pod deployment to determine the
runtime providers that should execute them; the Containerd and OSv provider components

37 https://firecracker-microvm.github.io/

Project funded by

BESNS #=

UK Research
and Innovation

Co-funded by
the European Union

Page 31 of 66

WS
o

https://firecracker-microvm.github.io/

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

indicate these. However, these components only handle workload image management, resource
restrictions (e.g., cgroups), and basic runtime parameters.

Mixed-runtime pod networking is enabled at the pod level by interaction of the Pod Manager
with the PodNetwork Manager, which creates a dedicated bridge interface for each pod using
the pod IP address and a dedicated pod network namespace connected to the bridge through a
veth (Virtual Ethernet Device) pair3®. Different implementations of this component exist,
depending on Feather configuration options. The pod network namespace supports any
workload process that can directly access the cniO network interface inside it (e.g., containers)
and can be optionally disabled for performance reasons if no workloads within a pod require it.
Any pod workload that requires its interface, e.g., a TAP3° device for a QEMU VM, is attached to
the bridge instead of moving it into the pod network namespace. To support cross-runtime
networking, providers must call either a PodNetwork Manager function, which assigns a
workload to the pod network namespace, or a function that creates a sub-pod ready TAP device
for a workload to use; in Feather the Containerd provider adds containers to the pod network
namespace, while the OSv provider requests TAP devices. Feather provides a flexible interface to
integrate additional runtimes as providers (e.g., WASM/WASI).

External traffic 4------»{ CNI subpod 44— - — - ->‘ \Cl\lld——bl
4

eth0 192.168.10.13 dumoO 10.184.66:1/24

pod0 10.184.66.8/3 I-‘. # podl 10.184.66.16/3 ‘
.f - -~ ’ -
7 P \
/) 7 > \
\‘r;tho - ~vethl '\tapl
¥ ra \
cni0 10.184.66.9 y(‘ cni0 10.184.66.17 ‘ >< '\]’j
‘. - /" T~ — 4
N r'e RN L eth0 10.184.66.18 J
Worker service Containerd Worker service Worker service Worker service
Pod 0 namespace ‘ | Pod 1 namespace kvm-gemu

Figure 11: Example of network devices and connections within and between multi-runtime pods.

As the PodNetwork Manager is workload agnostic, any network configuration required by the
runtimes is instead passed to them by Feather Providers. This allows for flexible network

38 https://man7.org/linux/man-pages/man4/veth.4.html
39 https://docs.kernel.org/networking/tuntap.html - Universal TUN/TAP device driver

Project funded by

Co-funded by 0 e e (8@ UK Research Page 32 of 66
the European Union i fralrutry =4 B and Innovation

https://man7.org/linux/man-pages/man4/veth.4.html
https://docs.kernel.org/networking/tuntap.html

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

implementations but has no measurable impact on performance compared to containers, i.e., a
small setup cost per workload to create a network interface and attach an eBPF program. In
addition to pod and workload level network initialization, the PodNetwork manager is
responsible for sub-pod networking. This concept uses custom eBPF traffic routing programs to
ensure optimal performance and disguise sub-pod networking from the point of view of other
pods and K8s nodes. The lifecycles and routing tables of these programs are handled by the
PodNetwork manager based on the interaction between the Feather Provider and the
PodAddress manager. Finally, the PodNetwork manager interacts with the PodWAN Manager to
route pod traffic to other nodes. In the example architecture, Warrens [38] is used for this
purpose. Still, configuration options also allow the PodWAN Manager to directly route traffic to
a suitable network interface for compatibility with Kubernetes clusters, expecting default CNI
behavior.

A concrete example of the networking components created by this architecture is shown in
Figure 11, in which two pods are deployed on a Feather-managed node; podO consists of a single
container, while pod1 consists of two containers and an OSv unikernel. Three types of network
traffic must be managed in this example; “localhost", interpod, and internode traffic. eBPF
programs attached to the pod0/pod1 interfaces and ethO and TAP devices manipulate pod traffic
at the packet level to achieve secure, high-performance pod-level networking between runtimes.

a) Workload CPU b) eBPF CPU
120 T T T | T

100 - B

80 - *

60 - =

CPU (core %)
CPU (core %)

40 .

20 - =

U 1 | | | | | U | | | | | | I
0 20 40 60 80 100 120 140 160 0O 20 40 60 80 100 120 140 160

Time (s) Time (s)

—— Container —— OSv —— Multi-Container
— Multi-OSv

Figure 12: Workload vs networking CPU impact for a video streaming application.

Figure 12 illustrates the multi-runtime performance of a basic video streaming application serving
multiple clients from static files stored on disk, achieving a throughput between 3 Gbps and 4
Gbps. The different series denote how the streaming server is executed. The “multi-container”

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 33 of 66
the European Union i fralrutry =4 B and Innovation

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

and “multi-OSv” scenarios refer to pod compositions where the streaming server runs as a
container or microVM within a multi-workload pod. While performance scaling depends on the
composition of both source and target pods, in most cases, the overhead will be approximately
1% of a single CPU core (x86 @ ~3 GHz), and a latency of 10 us to 20 us is added compared to
standard processing. The erratic behavior of OSv-based pods is related to stability issues
described in Section 2.2.2.2.

3.3. Network Resilience

In parallel with runtime and network unification, ensuring a network’s resilience to external
threats is critical. The key objective is to identify attacks as close to their source. By deploying
multiple devices across the entry points of an extensive network, the system can establish a
unified strategy to block malicious traffic effectively. This collaborative approach has been shown
to enhance detection accuracy using techniques such as entropy and Deep Learning (DL) [70].
This approach enables a coordinated defense mechanism that works across different network
segments, mitigating potential threats early in the attack life cycle.

Control Plane

v 1
H /[User Plane ' N

... @
R e R ST TR
D N W -

5G RAN | @,,?

5G CORE

Figure 13: 5G infrastructure with DDoS attack detection mechanism.

The NATWORK solution (cf. Figure 13) is built to be easily integrated into existing infrastructure,
enhancing the overall security posture of the network without requiring a complete overhaul of
the system. To improve the security and resilience of 5G infrastructures, particularly in the
context of emerging threats targeting 6G networks, the NATWORK network resilience framework
has been defined. NATWORK introduces intelligent monitoring components throughout the
network to observe and analyze traffic behavior. Specifically, network probes are strategically
deployed within the RAN and the 5G Core, especially near the UPF, to capture traffic
characteristics from both control and user planes. These probes feed data into specialized

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 34 of 66
the European Union i fralrutry =4 B and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

detection models designed to identify anomalous behaviors indicative of cyberattacks, such as
flooding, signaling storms, or protocol abuse. The models leverage machine learning techniques
to differentiate between benign and malicious patterns, including the ability to detect previously
unknown attack vectors. The classification of network traffic into “healthy” and “infected”
categories will be performed in real time and can be adapted to specific services or protocols
under analysis. In addition to anomaly detection, the framework will ensure data integrity
through traffic anonymization, format normalization, and source consistency checks. This
comprehensive approach allows the system to operate effectively at scale while preserving data
quality and privacy. Ultimately, integrating the NATWORK framework with the 5G architecture
supports a proactive security posture by enabling the early detection and mitigation of network
threats. It offers a scalable and adaptive solution aligned with the needs of future mobile network
generations. Studies have demonstrated that a distributed defense mechanism at the Internet
scale offers scalability and resilience across diverse network topologies [70], [71]. To improve
adaptability and flexibility, isolated security devices—such as DDoS detection systems—can be
integrated via REST APIs to share real-time threat data with the broader infrastructure,
contributing to a more comprehensive threat intelligence ecosystem (cf. Figure 14).

API

5G RAN + CORE
+ DDoS Detection System

Large Network Infrastructure
————

=

5G RAN + CORE
+ DDoS Detection System

B

5G RAN + CORE
+ DDoS Detection System

Figure 14: Integration through an API

When an attack is detected, the NATWORK system can trigger responses across the network,
such as isolating contaminated equipment or shifting services from compromised virtual
machines (VMs) to healthier, more secure locations. By leveraging APl integration, the system
ensures that threat data is seamlessly shared between devices and services, enabling faster and
more coordinated responses to attacks. This integration also allows the network to dynamically

roject funded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 35 of 66
the European Union it fralrutry =4 B and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

adjust by orchestrating services based on their health and security status. For example, VMs
showing signs of compromise can be automatically quarantined, while healthy services are
migrated to different network parts with minimal disruption. The result is a more resilient and
responsive network, where the defense mechanisms work in real time to isolate and mitigate the
impact of malicious activities.

Ultimately, the goal is to improve detection accuracy and response times, making the network
more resilient to attacks, e.g., DDoS. Through this distributed and proactive method, the system
ensures a more efficient defense strategy, reducing the impact of malicious flows on the
network’s resources and maintaining operational continuity. For example, recent work has also
highlighted how ensemble-based packet processing and bandwidth optimization significantly
improve DDoS attack detection and overall network resilience [71], [72].

3.4. Standardization

Standardization of the developments in T4.2 is key to long-term compatibility and extensibility.
To that end, efforts have been made to ensure Feather's compatibility with Kubernetes and Open
Container Initiative (OCI) standards. At the same time, the Open Application Model (OAM) is
being adopted as an independent model for intent-based application modeling.

3.4.1. Kubernetes & Open Container Initiative

Feather supports Kubernetes APl data structures as required for Pod deployment, i.e., Pods,
Deployments, Containers, etc., as defined in the K8s v1 specification®. The APl itself is compliant
with several OCl guidelines and standards, including container and image formats.

Non-container images are supported within the OCl image format specification by leveraging
freely defined metadata as described in Section 3.1; non-Feather Kubernetes nodes will ignore
this metadata and (attempt to) deploy images in a Deployment as a container.

Networking options (multi-runtime or otherwise) are directly integrated into Feather and do not
adhere to the principle of a CNIl. However, they comply with all expected behavior of a container
network from the point of view of other nodes and the control plane (barring Services and certain
DNS features).

40 https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/#workloads-apis

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 36 of 66
the European Union s ——— =4 N and Innovation

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.30/#workloads-apis

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
-\ A l*

3.4.2. Open Application Model

______ | .
OAM Standard 1 Flocky extension I Trait
e > - Type TraitDef
—_— e -
_——— - Properties - Metadata

7 Y - Spec
I NodeCapabilites |

| 1 - DefinitionRef
- Resources
'd - SupportedTraits WorkloadDef

______ 1 s | ! \
- - Metadata
NodeSummary , ’ I SupportedWorI(IoadsI "

|
| ! e - Spec
| - Metadata 1, i -
! Netinfo t - TR - DefinitionRe!
- | - Type
- S D
| - Capabilities I\ - Metadata yp ‘ \ cope(Def)
| - Applications \ =1 - Properties \ _\’ - Metadata
LY - Spec / h
e e = = - Traits Y - Spec
\ - Components / N\
\ / - Scopes \ - DefinitionRef
\ 4 \ ;
\ SESEmEEea—a Vs WorkloadTypeDescriptor
\ |SubApplication Iz \ - Type
\ |- Metadata ! II ¥ e ———
\I - Spec I‘. ComponentDef \ I Sehematic 1
B Components I IR - (= - Parameters 1
| - ComponentDefs - Workload I -'BaseComponent :
| - Relevantscopes | - Schematic I v1.container |

Figure 15: Overview of OAM and modifications required to provide intent-based orchestration

Open Application Model (OAM)*' adopts multi-runtime intent-based deployment in a larger
framework, Flocky, which is designed for decentralized intent-based node discovery and
orchestrator-agnostic workload deployment. Technically, the framework allows for translating
deployments to any platform, including K8s, although Feather was chosen for Flocky due to its
low resource requirements and mixed-runtime capabilities. The modifications to OAM are shown
in Figure 15, marked in light green. To summarize, the basis of OAM is the Application, which
primarily consists of metadata and several Components. Components are used during
deployment, referencing ComponentDefinition and Traits and Scopes. The ComponentDefinition
contains the entire schema and all required details for its deployment, including a reference to
its WorkloadType. Traits refer to TraitDefinitions, which are intended to apply specific behavior
or restrictions to Components. Scopes refer to ScopeDefinitions and are primarily used to link
components that need logical access to shared resources. Note that Figure 15 shortens these
concepts to Component-, Trait- and ScopeDefs.

The modifications made to OAM are for internal use (decentralized orchestration) only, and
consist of:

e The ComponentDefinition Schematic is the Flocky implementation of an unstructured
field in the OAM standard, containing a Kubernetes APl Container description and

4 https://oam.dev

Prcjec funded by
Co-funded by 6] o RO (4 UK Research Page 37 of 66
the European Union Pt e =4 B and Innovation

https://oam.dev/

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

parameter data. Importantly, Flocky is workload runtime-agnostic; v1.Container?? is
merely used for convenience. “'BaseComponent" allows several ComponentDefinition to
implement the same base component under a single reference.

e WorkloadType is reinterpreted to serve as an indication of which runtime a
ComponentDefinition requires. Basic workload types for OSv unikernels and Docker
containers are implemented.

e Several example Traits are defined, including GreenEnergy, SecureRuntime,
SoftDistancelLimit, Attestation, and NetworkEncryption. Some traits apply to
WorkloadType selection (e.g., a unikernel workload uses SecureRuntime), while others
apply to nodes (e.g., limiting QoE impact with SoftDistancelLimit, requiring a node with
attestation) or node properties (e.g., NetworkEncryption, GreenEnergy).

e NodeSummary and NodeCapabilities, respectively, are used to build a Metadata
Repository; these structures allow the Repository service to request the (available)
hardware resources, Traits, supported WorkloadTypes and running (Sub)Applications of
another node.

e To break down Applications into smaller deployable units for several nodes,
SubApplication is used to deploy subsets of an Application while retaining important
information such as specific ComponentDefinitions to be deployed for each component
and any Scopes that should be applied to its particular collection of Components.

3.5. Intent-based selection

Flocky was developed as a framework for decentralized intent-based metadata gathering and
orchestration. Its main goal is to allow any device to deploy an Application consisting of multiple
Components to multiple discovered target devices, depending on the requirements of each
Component and the target device's capabilities. Flocky is entirely decentralized, as indicated by
the distribution of identical Flocky services among different nodes, as illustrated in Figure 16.

The Discovery service (green rectangles and interactions) is responsible for discovering nearby
nodes running the Flocky framework, based on earlier work in SoSwirly [39]. The Discovery API
uses a “ping” operation, which periodically checks the existence of a remote node and its network
latency, and an operation, which requests the list of nodes known by a remote node. Through
these, the Discovery service maintains a cache of nodes within a configurable maximum network
latency by recursively contacting nodes and requesting their node lists. Network latency is chosen
as a basic metric at this level as the Discovery service is only interested in exploring the actual
network topology; advanced metrics are reserved for higher-level metadata and decisions. The

42 https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1Container.md

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 38 of 66
the European Union s ——— =4 N and Innovation

https://github.com/kubernetes-client/python/blob/master/kubernetes/docs/V1Container.md

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

Discovery APl also provides operations that allow subscribers to receive periodic updates on node
topology changes.

Remote node x Remote node y
L Deployment Discovery Service Discovery Service Swirly Service] —
Service [
Repository Service| Repository Service
Repostory Senvie sedhabing]
- Q
© o
3 <
o] Local node - Flocky =l L
E E Swirly Service Discovery Service Deployment Service 3 §
=2 25
o= — i =0
=3 :c.; Repo Client Node Cache =+ Disco API 3 2
o = o=
E® ~g
28 Node Update DEP‘;;TEM =
gé Listener &
g 0 Repository Service
o w
23 Node Update
53 Repo APl «—s 00 5P
» 2 Orchestrator P Listener
/\ Application
Node Metadata Manager
—— SwirlyAP| QoEEvaluator Repository
T
[|
l Warrens Other capab\liiy providers... Feather
g Capability Node Update Capability Capability Capability ,___ Kubelet
E Provider Listener Provider Provider Prov%;{yAF{
< .
Tunneling
Routes Linux systems Containerd kvm-gemu

Figure 16: Overview of Flocky services for decentralized, intent-based orchestration

The Repository Service maintains the Metadata Repository (blue rectangles and interactions in
Figure 16), which subscribes to the Discovery service for node updates. The repository is not
updated on each node update; the service integrates all updates and only periodically contacts
known nodes for additional metadata through the Repository API.

Remote nodes provide one part of this metadata, such as a NodeSummary, which contains node
metadata, network interface information, capabilities, and any running applications deployed
through Flocky. Every node maintains its own NodeSummary through the Repository API, which
allows Capability Providers to register with it, as illustrated at the bottom of Figure 16. Registered
Capability Providers are periodically queried for any NodeCapabilities and NodeApplications they
provide, representing partial content of the Capabilities" and “Applications" fields of the
NodeSummary. As indicated, providers may include a container engine, i.e., Feather, which
provides hardware resources, Flocky-deployed Applications, and supported WorkloadTypes
based on detected runtimes. Other providers may be container network-based, e.g., Warrens or
the presence of a VPN, enabling Traits such as NetworkEncryption. Other Traits may be similarly
provided through vendor-specific adapters that detect the presence of green energy or an
attestation agent.

Prcjec funded by
Co-funded by d] o RO (4 UK Research Page 39 of 66
the European Union Pt e =4 B and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

Apart from a NodeSummary, remote nodes are also queried for any ComponentDefinitions in
their repository, which are then merged with the local store, allowing new ComponentDefinitions
to propagate throughout an entire topology from just a few nodes.

The orchestration component of Flocky is split into two services, indicated by red components in
Figure 16: the Swirly service and the Deployment service. The Swirly service subscribes to the
Discovery and Repository services, receiving updates on newly discovered nodes and metadata
changes. When software on the local nodes requires the deployment of an OAM Application
through the Swirly API, the application is split into its Components, and ComponentDefinitions
fulfilling the required Traits for each Component are requested from the Repository API.

For each Component, the algorithm matches known nodes with the WorkloadTypes and resource
requirements of suitable ComponentDefinitions, along with Component Traits, resulting in a list
of candidate nodes. The first step of the matching algorithm considers nodes on which it already
has a suitable ComponentDefinition deployed; if found, these are contacted through the
Deployment APl to determine whether they support another client. Suppose no existing
deployment (or available node) is found. In that case, the algorithm iterates the remaining nodes
to determine which is currently capable of deploying a suitable ComponentDefinition based on
resources and metadata. A QoE Evaluator then ranks all eligible nodes for a specific Component
based on hardware resources, Traits, WorkloadTypes, latency, and other relevant metadata.
Current implementations include the Legacy evaluator, which ranks by latency, and the Scored
evaluator, which extensively uses metadata using a static calculation. Other implementations
may include online learning evaluators and matching components and nodes based on elusive
user preferences, which are difficult to capture in a static model. By combining the flexibility of
Trait providers, Trait implementation logic, and the freedom of custom Evaluators to customize
Trait effects, Flocky provides potential support for a host of functional and non-functional intents,
user-driven or otherwise.

After ranking, each node is contacted through its Deployment API, i.e., the most desirable ones,
to determine whether it can currently deploy the required Component (specifically, a concrete
implementation or ComponentDefinition). If the |list is exhausted before the
ComponentDefinition is deployed, the entire Application deployment fails and returns an error.

Due to the dependency of Components on Traits to ensure specific behavior or properties, a
single node (i.e., Swirly service) may be requested to deploy several instances of the same
Component with different non-compatible Traits, e.g., a database sidecar for a standard
application, and a highly secured version of that same sidecar for a critical application which
requires node attestation. In all cases, the algorithm will first attempt to reuse suitable
deployments, even if they operate under strictly needed tracks. If no existing Component
instance with the required Traits is found, another one will be deployed on a remote node.

e rojctfundec by
Co-funded by ee € spenen e « A9, .4 UK Research Page 40 of 66
the European Union {118 et ety =4 N and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

3.6. Data collection methodology for ML Services

The NATWORK framework aims to strengthen the resilience of upcoming 6G networks against
evolving attacks. Therefore, careful attention must be given to data collection, source reliability,
and quality. In such a way, NATWORK will support accurate problem analysis and the
development of well-defined models in various services as defined in D2.3. As new attacks
emerge continuously, the focus must go beyond existing threats to enable the detection and
mitigation of novel ones. Therefore, data will be gathered on a per-service basis. Given the
volume of data involved, considerations such as anonymization, format normalization, and
source consistency are essential.

The NATWORK project considers the two traditional sources of data:

e External databases. NATWORK uses an existing database that contains data traces.
e Internal databases. We generate the database from testbeds prepared in different
NATWORK research centers.

4 N

Online Databases

MATWORK Services

Local Testbed

. v

{[Storage]4—[Probe](—[Source]J

Figure 17: Data gathering & data sources for NATWORK

Figure 17 illustrates the data collection architecture within the NATWORK framework, integrating
external and internal data sources. Two primary components support data acquisition: Online
Databases and a Local Testbed. The online databases serve as repositories of pre-existing
network data, potentially encompassing known attack traces, standard network patterns, and
labeled datasets useful for training and validating anomaly detection models. In parallel, the local
testbed enables controlled, real-time data generation and collection. Within this testbed, data
originates from a source, is observed and analyzed by a probe, and then stored for further
processing. This modular chain (Source — Probe — Storage) facilitates the acquisition of rich,
context-aware traffic data under customizable conditions. The online and locally generated data

Project unded by
Co-funded by 0 e e (8@ UK Research Page 41 of 66
the European Union s ——— =4 N and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

streams are funneled into the NATWORK services, the core processing and intelligence layer. This
architectural design supports comprehensive data fusion, enabling robust model development,
testing, and continuous learning in a dynamic network environment. Finally, model validation
requires data that was not used during training. Acommon practice is to use 70% of the collected
data for training and reserve the remaining 30% for validation, ensuring the model is tested on
previously unseen data.

3.7. ML-based workload modeling & resource optimization

Machine learning modeling is crucial in resource optimization by enabling intelligent workload
prediction and resource optimization. We are conducting benchmark analyses of machine
learning models to predict workload patterns and incorporate intelligence into resource
allocation strategies. Currently, we are working with Google workload traces [61]. This
methodology will be extended to synthetic datasets generated from attack simulations against
Cloud native functions (CNFs) and Fog-native deployments. Different traditional and gradient-
boosting ML models will be used to test and benchmark analysis of their performance, ensuring
the most effective models are selected for workload prediction. Federated learning (FL) is
integrated across the edge-to-cloud continuum to enhance workload modeling and resource
optimization further. This enables decentralized model training, aiming for data privacy while
reducing communication overhead. By allowing edge nodes to train models locally, FL supports
dynamic workload adaptation, proactive risk assessment, and efficient orchestration across the
infrastructure.

3.7.1. Data Engineering and Preprocessing

Data engineering and preprocessing are key steps in structuring workload traces for analysis.
Initially, the traces are processed to extract critical features for resource allocation. The data will
be structured chronologically, ensuring suitability for time-series modeling, and undergo feature
engineering, aggregation, and categorization to derive meaningful workload patterns. Our
approach adapts to evolving workload datasets, limiting both under- and over-provisioning
resources in cloud workload management. Before feeding the data into machine learning
models, exploratory data analysis (EDA) is performed to understand workload characteristics and
distributions. EDA helps identify patterns, detect anomalies, and assess correlations between
workload attributes.

Project unded by
Co-funded by 0 e e (8@ UK Research Page 42 of 66
the European Union s ——— =4 N and Innovation

NNT * 5k

w.{ . };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

3.7.2. Model Building and Algorithm Selection

Various time-series forecasting models, including Long Short-Term Memory (LSTM) networks
[63] and statistical models like ARIMA 64], are implemented to capture workload behavior.
Additionally, gradient-boosting models such as XGBoost [65] are incorporated to enhance
prediction accuracy. The selected algorithms will be determined through benchmarking various
machine learning and statistical models to analyze and predict dynamic, non-linear data patterns.
This evaluation will compare the performance of traditional time-series models against more
advanced approaches, identifying the most effective methods for workload prediction. The
chosen model will be trained on historical Google workload traces and newly generated attack
datasets. The models will be validated against unseen data to ensure robustness and predictive
accuracy, assessing its generalization to future workload behaviors and security threats.

3.7.3. Federated Learning

Federated learning (FL) is introduced as the next step. FL enables decentralized learning by
allowing edge nodes to train models locally on their data. Each trained model is sent to an
aggregation point within its cluster, merging with other locally trained models to form a more
generalized aggregate model, as depicted in Figure 18.

/ - 3 _./".---_ _---._
| Edge Node | | EdgeNode |
FLModel1 FLMODEL1

/ o \ & : - » N r : B » is _./'J.---_ _---.‘_

I: Edge Node FLModel2 » Aggregation Point | 5 0o) | Aggregation Point | FLModel2 |" Edge Node "|
- ~ s N4
B FLModel3

FL Model3 VN

| Edge Node |

Edge Mode |
o Cluster1 Cluster2 AN

Figure 18: Federated learning over edge-cloud continuum

This aggregated model is then exchanged between clusters, further refining with insights from
different network slices and workloads. The updated global model is redistributed to the edge
nodes, which continue to be refined in iterative learning cycles until convergence [74]. Attack
datasets generated from CNF deployments are utilized in this step to improve anomaly detection.

and Innovation

: L_:ﬁ i UK Research Page 43 of 66

Co-funded by 4]
the European Union

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

Historical data is leveraged to forecast potential security risks in the form of denial-of-
sustainability (DoSt) attacks [75]. FL agents train models on attack-induced anomalies and
exchange learned patterns with other nodes through aggregation. This ensures that models
capture variations in network behavior across different infrastructure components, allowing for
continuous adaptation.

3.7.4. Hyperparameter Tuning

In this step, the hyperparameters of the chosen algorithms are optimized using Bayesian
optimization [66], grid search [67], or other systematic techniques to explore the parameter
space and determine the best configurations efficiently. We differentiate our specific
orchestration needs from the outcomes of Bayesian optimization to ensure the resulting
configurations align with real-world requirements and constraints. The objective is to minimize
prediction errors and ensure that the models perform well across different workload scenarios,
including sudden spikes or drops in resource usage.

Project funded by

Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 44 of 66
the European Union i fralrutry =4 B and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

4. Remote Attestation

4.1. TPM-based attestation

A Trusted Platform Module is a secure cryptographic coprocessor. One of its most important
functionalities is its ability to measure digests into so-called platform configuration registers
(PCRs) [40]. The core idea of these PCRs is built around two basic operations: extend and reset.
The extend operation performs an XOR operation with the current PCR state and the new digest
as operands and saves the hash of the result as the new PCR value. The reset operations set a
PCR to zero.

Proving that a device is running trusted software is a very complex process, stretching all the way
from the lowest levels of the boot sequence to the kernel, the operating system, and the
applications it runs. These components form a chain, relying on a lower level to tie the next to a
trusted state by measuring the next binary into a TPM platform configuration register in a
measured boot process. The lowest level of the chain is the so-called core root of trust for
measurement (CRTM) [41], which anchors the entire chain to a piece of immutable CPU code. If
a system lacks proper measurement for any part of this chain, it could compromise its ability to
protect workloads, as many container isolation mechanisms rely on security features provided
by the Linux kernel (such as cgroups and namespaces).

TPMs are often used in edge research to provide hardware-based trust. It is, however, essential
to acknowledge a critical oversight regularly present in such implementations. These designs are
often implemented on devices lacking a CRTM (e.g., Raspberry Pi). Without a CRTM, the chain of
trust, crucial for ensuring the system's integrity, lacks a solid anchor [42]. Consequently, reliance
on a potentially compromised kernel to transmit measurements to the TPM can render the entire
attestation process unreliable. Simply plugging a TPM into an edge device and trusting it is not
enough. This oversight highlights the importance of ensuring that the foundational elements,
such as a complete boot attestation anchored in the CRTM, are present.

An issue with TPM-based attestation is its complexity. Interacting with a TPM requires an
excellent understanding of the complex architecture [43] and is generally done by transmitting
low-level binary commands [44] to the device. In recent years, the Trusted Computing Group
(TCG) [45] has put a lot of effort into developing and standardizing higher-level APIs [46] to
interact with the TPM, resulting in a toolset called tom2-tools*3. These tools allow for higher-level
interactions with the TPM using the CLI. While the low-level code complexity has been reduced
significantly, a deep knowledge of a TPM's inner workings and mechanisms is still required to use

43 https://github.com/tpm2-software/tpm2-tools

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 45 of 66
the European Union s ——— =4 N and Innovation

https://github.com/tpm2-software/tpm2-tools

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

it actively in an application. Research projects like Keylime** could help alleviate this complexity

issue.
Trusted cloud * Untrusted cloud
«Keylime» -F=:
@ Verifier & TP
. A :
Sysadmin rInteracts with
«Keylime» : @«Keylime»
Tenant CLI : Agent
i I—Executesj
@ «Key{llme» . payload
Registrar .

Figure 19: Architecture of the Keylime, abstracting away to complexity of TPM operations.

Keylime is an open-source CNCF project initially developed by MIT's Lincoln Laboratory [47]. It
has since seen increased adoption with the support of RedHat, which is actively developing it for
RHEL and OpenShift. Keylime provides an additional abstraction layer for TPM attestation on top
of the existing tpm2-tools, allowing developers to integrate boot and runtime attestation into
their architectures easily. Keylime consists of cloud components written in Python (verifier,
registrar, and tenant) and a Rust agent running on the machine to be attested.

The Keylime architecture, as depicted in Figure 19, is controlled by the tenant CLI application,
which enables a system administrator to enroll a device and configure it for TPM-based boot and
runtime attestation using specific golden values for each device. These values contain known
good states of the system and serve as a reference for future attestation. The tenant interacts
with the other cloud components to deliver a secure payload to an agent. This agent is the
device's connection point to the Keylime cloud components. It provides an APl over HTTPS,
allowing an abstract interaction with the device's TPM.

4 https://keylime.dev/

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 46 of 66
the European Union s ——— =4 N and Innovation

https://keylime.dev/

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

Efforts are underway to develop a cloud operator to manage TPM-enabled nodes in a K8s-
compatible environment [48]. This operator is designed to simplify the deployment of Keylime in
cloud Kubernetes environments, providing node attestation.

In T4.2, TrustEdge was developed [49], and its architecture is shown in Figure 20. TrustEdge uses
Keylime to automate the enroliment of trusted TPM-enabled edge devices into a heterogeneous
Kubernetes cluster. It ties into K8s’ Role-Based Access Control (RBAC) and dynamically adjusts a
node’s permissions based on its trust status. A sysadmin can register an edge device as a custom
resource (CR), which the attestation controller monitors. As soon as the edge device comes
online, it contacts the registrar, which updates the CR. The controller interacts with the K8s API
to generate an identity and permissions for the edge device, which are distributed through the
tenant and verifier to the edge device after successful attestation. The verifier monitors the
attestation state of the edge device and updates the CR as necessary, potentially triggering a
controller response that adjusts permissions for the edge device’s identity.

13 | Cloud : Edge
___________________ ' Cluster notifier . o
' «K8S AP o p TR : g
: T <5 —11—— H = TPM
; Certlflcates ! Verifier : 'g'
ﬁ) . v [interacts withT
: «K8s APl» | Attestation : . «Keylime»
: «——6—| 7—>| API 9 > @
E RBAC ! @ controller ' Tenant : ” Agent
O CELLErEEEE e : yy
Sysadmin 3 . 12
> «Custom Monitor status—| Reqi 2
— ——> egistrar
—0—> Resource» 4 9 < : 1 Fledge
EdgeNode Cluster notifier .

x . |

Figure 20: Architecture of the TrustEdge, with the centrol controller managing the trust state of edge devices.

4.2, TEE-based attestation

Remote attestation is a crucial mechanism in trusted execution environments (TEEs) that allows
external parties to verify whether a system's hardware and software components are genuine
and not tampered with [52]. This functionality is especially relevant in confidential computing
scenarios, as organizations rely on TEEs in cloud or multi-tenant settings to protect sensitive data
from potentially malicious privileged entities, including system administrators and hypervisors.
Three prominent implementations of TEEs that incorporate attestation are Intel Software Guard
Extensions (SGX) [51], AMD Secure Encrypted Virtualization Secure Nested Paging (SEV-SNP) [50],
and Intel Trust Domain Extensions (TDX) [55]. There are also implementations for RISC-V [56] and
ARM CPUs [57], which are less mature.

roject funded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 47 of 66
the European Union it fralrutry =4 B and Innovation

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
-\ A l*
Application Virtual Machine
VM VM VM

System

Intel SGX AMD SEV / Intel TDX

Figure 21: Trusted Computing Base comparison of process and VM based TEEs. Source:
https.//www.decentriq.com/article/swiss-cheese-to-cheddar-securing-amd-sev-snp-early-boot

SGX operates at the process level, creating small, isolated enclaves that protect code and data
from access by the operating system, hypervisor, or other processes. Because SGX enclaves sit
within a host process, they have a relatively tight trust boundary that excludes most system
software. At the same time, enclaves must manage a restricted memory footprint, and
applications that rely on SGX require substantial refactoring to partition sensitive code within
enclaves. Remote attestation in SGX is facilitated by a hardware-based key provisioned on each
SGX-enabled processor. An enclave produces a measurement reflecting its initial code and data,
signs this measurement using a platform-specific key, and then delivers the signed quote to a
relying party for verification. In practice, this verification commonly involves a trusted Intel
attestation service [57] that checks the signature and the enclave’s identity, confirming the
enclave is running on genuine Intel hardware and its contents have not been modified. Recently,
Intel announced the retirement of the Attestation Service [53] and the move to DCAP [54]. DCAP
is more focused on cloud providers and allows them to cache Intel’s cryptographic material,
making verification of attestation reports possible without sending the reports to Intel.

AMD SEV-SNP differs from SGX in that it focuses on virtualization-based isolation. Instead of
enclaves, SEV-SNP protects entire virtual machines, making it more straightforward to integrate
with existing software stacks that are already virtualized. A VM under SEV-SNP runs with its
memory encrypted and protected by AMD’s secure processor, effectively preventing both
passive attacks, for example, unauthorized snooping or reading of memory contents, and active
attacks, such as inserting malicious code or modifying data in memory, which can originate from
a compromised hypervisor or host firmware. Remote attestation for SEV-SNP entails the VM
obtaining a hardware-signed report that includes information about its initial state, the version
and policy configuration of the secure processor, and a cryptographic measurement of its
memory. By default, SEV-SNP only measures the first component it loads during boot (for
instance, the firmware). Additional measures must be taken to ensure the integrity of the full

Prcjec funded by
Co-funded by 6 o b s g B8 (4@ UK Research Page 48 of 66
the European Union Pt b ; =4 B and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

system, including the static boot chain and userspace. These components must also be measured
and verified, adding complexity to the attestation process. AMD offers an online service [58] that
allows a remote party to fetch the required cryptographic material to independently verify the
integrity of the attestation report, like Intel’s DCAP.

Intel TDX is similar in principle to SEV-SNP, but it was developed for Intel platforms and designed
to support confidential VMs (termed Trust Domains). Like SEV-SNP, TDX encrypts VM memory to
ensure that neither the hypervisor nor other system software can read or modify the guest’s
data. Remote attestation in TDX is achieved by measuring the trust domain’s contents and
configuration, which is then signed by Intel’s hardware-rooted attestation key. The verifying
party can use Intel’s infrastructure to confirm the authenticity and verify the trust domain’s
integrity or use DCAP similarly to SGX.

A significant distinction between SGX, SEV-SNP, and TDX is the size and composition of the
Trusted Computing Base (TCB) as indicated in Figure 21. SGX enclaves reside within a process
boundary and place minimal trust in operating system and hypervisor layers. This effectively
restricts the TCB to the enclave code and the CPU microcode handling enclaves. This narrow TCB
can be advantageous for reducing the potential attack surface. However, SGX enclaves demand
more specialized development practices to split code between trusted enclave sections and
untrusted host sections. By contrast, VM-based TEEs like SEV-SNP and TDX rely on a larger TCB
that includes the VM components. In return, SEV-SNP and TDX typically require less invasive
application changes since most workloads can run inside a protected VM without extensive
changes.

Additionally, the increased TCB size of a VM-based TEE results in a much more complex
attestation procedure. While both process and VM-based solutions must evaluate the platform
(genuine CPU, genuine CPU microcode), the user-defined part is much larger than VM-based
ones. SGX only requires measuring a single statically compiled binary file, while SEV-SNP requires
evaluating the full boot stack (virtual firmware, kernel, OS, applications).

Like TPM-based attestations, TEE ones can be very complicated. While each platform technically
achieves the same goal, the verification steps vary widely, making it difficult for developers. An
active research domain is the development of abstraction layers for these technologies. Software
like Enarx [59] and Trust Monitor [60] attempt to provide a generalized interface for attestation
across multiple technologies.

e rojctfundec by
Co-funded by ee € spenen e « A9, .4 UK Research Page 49 of 66
the European Union {118 et ety =4 N and Innovation

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

43. WASM remote attestation

4.3.1. General. Development stages.

What is described below is the current state of progress of NATWORK’s WASM runtime integrity
verifier and its integration into D-MUTRA. At the current stage, we have gone through the stages
of:

o WASM payload runtime integrity verification: Feasibility study, blueprint design,
implementation of a proof of concept.

o WASM payload runtime integrity verification integration into D-MUTRA (blockchain
based mutual remote attestation): Feasibility study, blueprint design.

o Full stack WASM remote attestation (i.e., including the runtime and payload): Feasibility
study, blueprint design.

4.3.2. WASM authentication and remote attestation merits.

The state of the art provides all means to authenticate a WASM payload, whether used client-
side (i.e., interpreted by web browser) or server-side (i.e., interpreted by runtimes such as
WASMTIME#>, WASMER #6, WAMR*’). A plethora of implementations (e.g., OAUTH*®, mutual
TLS*?, JWT, session tokens) validate the origin and integrity of the WASM payload by turning on
the classical signed hash technique. As a reminder, authentication enables a local verification of
a payload and requires that the public key (i.e., identifying the signer) be recognized/accepted by
the recipient. This security assurance is needed for those who control or own the execution
environment. Typically, authentication is used to check before installing a piece of code, and this
check-in is made at the code recipient site. Based on the same core maths (i.e., cryptographic
hash function (CHF) and the Rivest—Shamir—Adleman (RSA) encryption), authentication delivers
security assurance different from that of remote attestation.

In networking, payloads are operated with low control in off-premises execution environments.
In these conditions, there is a need to verify that what is deployed remotely is integrated, and
this goes through remote attestation. The ETSI network function security working group>° highly
recommends remote attestation as a strong foundation of networking service security[78].
However, as stated, remote attestation comes with heavy management and workflow

4 https://github.com/bytecodealliance/wasmtime

46 \WWASMER, available at: https://wasmer.io/

WAMR (Web Assembly Micro Runtime), available at : https://github.com/bytecodealliance/wasm-micro-runtime
48 https://oauth.net/2/

4 https://en.wikipedia.org/wiki/Mutual_authentication

50 https://docbox.etsi.org/ISG/NFV/Open/other/Tutorials/201805-Tutorials-

NFV_World Congress San Jose/NFV%20Security%20Layer123%20april%202018%20v3.pdf

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 50 of 66
the European Union i fralrutry =4 B and Innovation

https://github.com/bytecodealliance/wasmtime
https://docbox.etsi.org/ISG/NFV/Open/other/Tutorials/201805-Tutorials-NFV_World_Congress_San_Jose/NFV%20Security%20Layer123%20april%202018%20v3.pdf
https://docbox.etsi.org/ISG/NFV/Open/other/Tutorials/201805-Tutorials-NFV_World_Congress_San_Jose/NFV%20Security%20Layer123%20april%202018%20v3.pdf

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

considerations on signature management (creation, sharing, and revocation) and payload

deployment dependencies (e.g., TPM). Ideally, novel remote attestation solutions should

eliminate these two significant drawbacks.

4.3.3. State of the art

The state of the art does not offer today a remote attestation of WASM module per se, but

close-by security attributes or existing bricks:

TEEs-enabled remote attestation can attest that the WASM interpreter (i.e., piece of
native code) runs inside a verified trusted environment and, hence, is integrated. The
WASM payload (i.e., a piece of data as bytecode) is not verified remotely. Several TEE-
enabled frameworks offer this security assurance (e.g., Occulm®!, Enarx>?, Gramine3). To
the best of our knowledge, these frameworks do not check the authenticity of a WASM
payload before running it through the TEE-sheltered (i.e., integrated) interpreter. It is
worth noting that these solutions imply a dependency on the deployment of the
interpreter, being the presence of such a type of TEE on the host. It is also worth noting
that without authentication produced inside the TEE, the WASM payload, though
interpreted inside a TEE, can be tampered with before entering the TEE.

The WASM-sign>* or equivalent tools (e.g., WebAssembly Binary Tool WABT®>>, LUCET"®)
tool produces signatures of WASM modules and, hence, could be used as a “prover” of a
remote attestation implementation if installed on the host. It is worth noting that what is
measured here is the WASM module before execution, hence using the hash of the WASM
module file (i.e., carrying the .wasm extension). To our knowledge, a remote attestation
schema integrating WASM-sign with RSA encryption, which is necessary for signing and
authentication verification, does not exist. As the prevalence of WASM in networking
increases, with no specific technical difficulties encumbering it, a WASM remote
attestation framework will emerge, utilizing direct .wasm file hashing and signing.

4.3.4. Continuous attestation

Continuous attestation is the novel trend the EU Agency for Cybersecurity (ENISA) recommends

[68] and calls for permanent and constant service monitoring. Continuous attestation enables

51 https://occlum.io/

52 https://enarx.dev/

53 https://gramineproject.io/

54 https://github.com/frehberg/wasm-sign

55 https://github.com/WebAssembly/wabt

56 https://github.com/bytecodealliance/lucet

the European Union

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 51 of 66
et ety =4 N and Innovation

https://github.com/frehberg/wasm-sign
https://github.com/WebAssembly/wabt
https://github.com/bytecodealliance/lucet

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

execution metrics or integrity verification when the service is executed. Static measurements
cannot grasp the evolution of the threat level. Where integrity is concerned, it simply means that
the verification shall be performed with a running payload without interruption. Technically, it
relies on the runtime integrity verification technique, the first enabler we would need for WASM.

4.3.5. WASM runtime integrity verification

Runtime integrity verification is the technique that enables the integrity of software to be
attested when it executes. Combined with the means for remote verification, this property
enables runtime remote attestation.

WASM's primary security pitfall, often perceived as its downside, is the vulnerability to module
tampering, which can manipulate the data structure during interpretation. Easy tampering can
be viewed as the counterpart of WASM's easy portability. As for all interpreted languages, the
processor treats WASM bytecode as a data frame. Bytecode tampering is a common rule for all
interpreted languages (e.g., no runtime integrity verification for Java payloads). Currently, WASM
module integrity can only be proven when the module resides in a TEE, leveraging TEE-based
remote attestation. However, this comes with the workflow and operational drawbacks
associated with workflow considerations for TEE. As stated in [62], TEEs incur performance and
memory consumption penalties, as well as new TEE-associated security threats (e.g., DoS attacks
through raw hammering and covertly spawned malicious payloads). Another significant side
effect of TEE is its heterogeneity, which restricts deployment to specific processors—a major
workflow issue in cloud or hybrid service deployment. Typically, this conflicts with the portability
and mobility of WASM payloads, and NATWORK's contribution is to seamlessly bring WASM
payload runtime integrity. This is achieved through runtime integrity, which detects tampering
(i.e., when the attacker fails to reset the memory states to their original state at the time of
measurement).

Setting integrity verification requires (i) getting a good understanding of the WASM code
structure and how the different segments are processed during the module interpretation, (ii)
identifying the invariant sections, and (iii) devising a routine that processes a measurement
(i.e., hash) and signature on these sections.

4.3.5.1. Understanding the WASM module structure at runtime
Before its loading and interpretation, a .wasm file contains a header and several sections
referring to imports, exports, global variables, data, and code. The latter includes the WASM
bytecode instructions. Figure 22 maps the different data sections of the .WASM module.

rojctfundec by
Co-funded by 0 e e (8@ UK Research Page 52 of 66
the European Union et ety =4 N and Innovation

Nan"f‘,@'*

w.{ . ;;R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

The preamble: this is a WebAssembly module and is built
according to version 1 of the WebAssembly binary format.

\ Module

N
Listof om

unique function — Type

-

|~ 6. The module’s

Global «| global variables

[Global variables]

signatures used 45 15 55
in the modul ol tan e E | 7. Items that will be
{164,164) = 0 xport «| exposed to the host
0—=0 I “add", Function 0 l
2. Items to be — 8. An index to a function
imported PR Start in the module that will
) l "mathlib", "multiply”, Type 0] [Function 1 J[e— be called automatically
3. List of all once the module has
functions in] Function Eloment been initialized
the module M Type 0
[Initialization data for Table |
Type 2 *|
4. An array Type 1 Code ™~ 9. Data to load into the
of references — Code for Function 0 Table section during
to items like h Table - instantiation
. Code for Function 1
functions 00000100
Code for Function 2

W
\10. The body of each

Data function defined in

5. The module’s — Memory [Initialization data for Memoryl the Function section

linear memory x ' N
Custom sections ™~ 11. Data to load into the
I Any kind of data l linear memory during
: instantiation
0 Size
Continued

Figure 22. WASM module data structure

4.3.5.2. Understanding the created memory maps at runtime
To better understand the parsing and memory structure of the module at execution, we have
studied the WASMTIME interpreter (i.e., an open-source interpreter)>’. WASTIME interpreter
parses the different sections to construct three core memory areas needed for the interpretation,
as shown in Figure 23. These areas are:

e The instantiated stack for the module (which dynamically changes)
e Linear Memory, which contains data and offsets (static)
e The WASM instructions (static bytecode)

57 https://github.com/bytecodealliance/wasmtime

Prcjec funded by
Co-funded by 6 e w8 \Q UK Research Page 53 of 66
the European Union : =4 B and Innovation

https://github.com/bytecodealliance/wasmtime

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
-\ A l*

Application

Linear Memory

0 A mem_size

Virtual Machine Read/Write

0 | oxsroo | call2

<

0x91AA Wasm
s Stack
raolIvees] Instructions

0x7F12

w N

Figure 23. The memory structure of a loaded WASM application (and virtual machine)

4.3.5.3. Getting access to the WASM instruction memory mapping

Once the payload is executed (i.e., interpreted), the memory space of the WASM application is
restricted to the Linear Memory, with no access to the WASM instructions, which are only
accessible inside the interpreter, referred to as the “Virtual Machine” in Figure 23. The Linear
Memory shall be viewed as a script of memory addresses (i.e., offset) to functions loaded inside
the VM and residing in the WASM instruction area. Obtaining these offsets is insufficient for
elaborating a memory map integrity verification, as one cannot map the physical memory from
these offsets. Only the interpreter sitting in the memory map of the functions and WASM
instructions can scrutinize the memory area of WASM instructions. The interpreter “sees” linear
memory, but the reverse is untrue (i.e., the linear memory cannot map the interpreter). Last, for
the search for exhaustivity, a measurement shall cover both WASM instructions and the Linear
memory to guarantee the integrity of the WASM payload.

4.3.5.4. WASMTIME payload integrity verification, through the ELF generation.

WASMTIME offers different execution paths (i.e., interpretation, compilation) after parsing and
unfolding the contents of the WASM file sections. Our analysis of this interpreter leads us to
create a second thread, executed separately from the interpreter's main thread, enabling us to
build an ELF-formatted payload through the WASMTIME “serialize” function. From this step
onward, we calculate a hash, e.g., Secure Hash Algorithm (SHA)-256, of the ELF’s text section,
which contains the instructions. The new partial interpreter block diagram, integrating the added
second thread, is shown in Figure 24.

rojctfundec by
Co-funded by 6 gpeenen e B8 QUK Research Page 54 of 66
the European Union = ety =4 N and Innovation

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

Load WebAssembly Module
with Wasmtime

!

Spawn Integrity Thread

/ 4
Main Thread Integrity Thread
Continue Execution & Run Convert to ELF via wasmtime's
Module serialize method

!

Compute SHA-256 of ELF's
text section

!

Verify or Sign SHA-256

Periodic Check

0\
Success Failure
v

Integrity Verified Integrity Failed: Alert

Figure 24. NATWORK's WASMTIME added second thread

4.3.5.5. Unavoidable and trustworthy interpreter change

For the above reasons, measurements shall be made at the interpreter level. There is no
alternative to produce changes on the interpreter to produce the payload measurements as the
latter, once loaded, has no insight into the memory map allocated for its unrolling.

Hence, there is a need for changes to be produced on the interpreter (i.e., as is currently carried
out) or for a future plug-in embedding of the functionality. These changes result in creating a
guote of the ELF-compiled payload, leveraging an existing Measure routine that can (i) map the
text section once duly loaded by the system in memory and (ii) produce a hash with its content.
These functions can be implemented as part of a plug-in, as shown in Figure 25, which resides
aside the original WASMTIME interpreter, or by adding these functions directly inside the
interpreter's source code, as shown in Figure 26. Noticeably, our current progression has gone
down the second path, but a closer look shall be put on the plug-in alternative, which may stand
as less intrusive and lead to higher scalability. Additionally, and as shown in Figure 25, in addition
to the Measure function, Verification and Distributed Ledger Technology (DLT) routines can also
be added, enabling the blockchain-enabled mutual attestation mode as offered by D-MUTRA, as
discussed in Sect. 4.4.1.1.

roject funded by
Co-funded by d sgpeemen e B8 (4 UK Research Page 55 of 66
the European Union i fralrutry =4 B and Innovation

NRT:..

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
-\ A l*

e ~)

Verification Measure
routine routine

DLT routine
optional

\ Plug-in WASMTIME J

Figure 25. Simple representation of the NATWORK's WASM plug-in

TSS source code of
WASM integrity
check routines

Add

WASMTIME original | Start WASMTIME source Compilation WASMTIME Runtime

source code code modified modified

Figure 26. Workflow for changing WASMTIME interpreter

Trustworthy interpreter change: Supported by the above-mentioned “runtimes” attestation
discussed in Section 4, it is engineered and progressed in NATWORK, ensuring the runtime is
genuine and integrated. Hence, we can modify the runtime (i.e., the WASM interpreter) or add a
plug-in and then run the “runtime” attestation, checking the set made of the novel potentially
modified interpreter and the plug-in. In other words, the security foundation, as stated above,
from the deep-rooted CRTM to the “runtime,” ensures that the complete software stack is valid,
and this includes our modified or plugged-in WASM interpreter. Compared to the TPM, which
makes the memory measurement through direct memory access in an impenetrable
environment, the modified or plugged interpreter is the binary code exposed to malicious
introspection and tampering, which calls for regular remote attestation.

Prcjec funded by
Co-funded by 6 s s poo RO (@ UK Research Page 56 of 66
the European Union Pt =4 B and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

44, WASM runtime remote attestation

4.4.1. NATWORK’s WASM runtime remote attestation

Leveraging our ability to verify the integrity of a WASM payload during its execution, as stated

in Section 4.3 above, we can construct an integrated runtime remote attestation orchestrated

in three different steps:

Step 1: SECaaS reference measurement generation. NATWORK implements a SECaaS
server, producing the reference measurement (i.e., a hash of the payload once
instantiated by WASMTIME interpreter) used timely at the verification stage. The SECaa$S
consumes wasm payloads and hosts a WASMTIME interpreter, our developed ad hoc
measurement plug-in. With these elements in hand, the SECaaS constructs the ELF file
artefact and produces its hash. Concurrently, the SECaaS appends an RSA key pair inside
the original .wasm module, enabling its future unambiguous identification of the payload
using the public key and the authentication verification of the quote (i.e., RSA private key
encrypted hash) by the verifier, using the private key.
Step 2: Prover quote generation. On deployed instances with the same instance of
WASMTIME interpreter and plug-in, the same measurement operation can be worked out
by the prove module in a 1:1 replicated fashion as in step 1. This measurement is signed
using the RSA private key to form the quote. The quote is transmitted with the public key.
Step 3: Quote verification. Quote from step 2 is transmitted to a verifier, provisioned
additionally by the reference measurement of Step 1. With both blobs (i.e., large integers)
in hands and the public key, the verifier can:
e Verify the origin of the quote using the public key
e Decrypt the quote and compare it to the reference measurement. A positive check
means that the WASM payload is integrated once instantiated, loaded, and
running.

4.4.1.1. Future work

Design: The current modus operandi in modifying the WASMTIME interpreter can be perceived

as intrusive. First, We will challenge that a more easily accepted plug-in can be designed

alternatively.

Performance: The core consideration of NATWORK to reconcile security and performance (i.e.,

eternal rivals) is typically valid for runtime integrity verification, which shall be carefully

conceived to preclude heavy performance penalties. For that sake, we will consider different

techniques that turn on restricted resource allocation to the measuring function (e.g., Linux’s

Prcjec funded by
Co-funded by O s reon poo RO (@ UK Research Page 57 of 66
the European Union P — =4 B and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

cgroups®, Docker’s CPU shares®®), multi-threading typically using SharedArrayBuffer, and finally,
idle time technique applied on the measuring thread. All these techniques must be analyzed in
the context of WASM payloads and may not be practicable in this specific context, though a final
penalty-friendly solution shall emerge.

Integration: The integration of WASM runtime integrity verification to D-MUTRA is the main
progress to be made. A strong consideration of NATWORK is to develop platform-agnostic
security for easy payload migration. D-MUTRA (i.e., DLT-based Mutual Remote Attestation)
solution does not depend on hardware or kernel level routine. Moreover, the solution relaxes a
strong blocker to remote attestation signature management. Being zero-touch, the signatures
are automatically generated and provisioned where they are used (i.e., at the smart contract-
elected verifier). Leveraging the power of blockchain and magnifying the concept of distributed
security, D-MUTRA removes a single point of attack on a single verifier implementation, exposed
to DoS by flooding sockets and distributing the verification to any nodes. D-MUTRA distributes
the Measure and Verification function at each software node, able to prove themselves and verify
peers through the blockchain. It also innovates with a pure software-based root of trust, which
consists of electing the “freshest” node as the verifier for the next remote attestation job. The
most recently verified node is the next verifier of D-MUTRA distributed remote attestation
schema. It is worth noting that D-MUTRA relaxes both potent operational blockers of complex
signature management and deployment dependencies. The signatures are automatically
generated by the SECaaS and provisioned at the right end, being the elected verifier.

Confidentiality preservation: In addition to runtime integrity, we will investigate the relevance
and practicality of confidentiality preservation by modifying the plug-in. We are not inclined to
consider obfuscation for the associated performance penalty as discussed in 2.4.2, but instead
consider encryption, preventing the reverse engineering of the WASM module. In this respect,
we will analyze the inner mechanisms enforced in [69] but without leveraging TEE as considered
by the authors.

4.5, NATWORK full stack remote attestation schema for WASM
technology

NATWORK’s work on remote attestation by IMEC and Solidshield provides a full stack integrity
guarantee. As shown in Figure 27, IMEC first works (i.e., step 1) on the system and runtimes
integrity, ensuring that the execution environment is correct, including the WASM’s runtime (i.e.,

58 https://en.wikipedia.org/wiki/Cgroups
59 https://docs.docker.com/engine/containers/resource constraints/

Project unded by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 58 of 66
the European Union s ——— =4 N and Innovation

https://en.wikipedia.org/wiki/Cgroups
https://docs.docker.com/engine/containers/resource_constraints/

Nan"f‘,@'*

w.{ . };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

interpreter), while Solidshield deals with the WASM payload itself in step 2. This association is
nothing but needed and operates at two different time scales. At first, IMEC's WASM runtime

verification integrates the interpreter and Solidshield’s plug-in, guaranteeing that the plug-in is

integrated and providing correct measures. Thereafter, the WASM module remote attestation

using the runtime plug-in can take place, delivering reliable attestations.

WASM payload

Modified WASM payload

routine routine

v
[Verification] Measure

A\,

)

[Blockchain routine]

Plug-in WASMTIME

SECaasS

Verifier l i

S

DLT

/
-

_

Keylime

O

Figure 27. NATWORK's full stack remote attestation

Co-funded by] —
the European Union

N LA
o

UK Research
and Innovation

Page 59 of 66

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

5. Conclusions

The deliverable D4.1 “Payload security per runtime, intelligent runtime selection and
attestation.r1” presented a comprehensive overview of the NATWORK aspects enabling secure,
flexible-runtime workloads. This is actually a report on the payload security per runtime, the
intelligent runtime selection as well as the remote attestation, that derive from NATWORK
innovations.

While containerized software and virtual machines have been employed for years in software
orchestration, many security aspects of containers and security optimization through
orchestration have been neglected in research and frameworks. This document highlights the
neglected factors, summarizing the work performed in each of them.

From the security perspective, relevant runtimes are presented, including VMs, microVMs,
unikernels, containers, and WebAssembly. Each of these is examined in detail, providing an
overview of essential security advantages and disadvantages compared to native processes
and/or containers. Additional security features and measures are presented through relevant
state-of-the-art research and activities performed within T4.2 “AlaaSecS for software payload”.
This overview provides the groundwork for the rest of T4.2 and various other tasks within
NATWORK concerning runtime choices.

Network and runtime API standardization provides a uniform way of selecting and deploying
workloads independently of the runtime executing it. This paves the way for intelligent runtime
selection, consisting of intent-based metadata gathering and deployment, which can be
combined with an in-progress ML-based approach for workload modeling for optimal
orchestration. These efforts feed into the “optimizing selection” part of T3.1 “Secure-by-design
federated slice orchestration and management”, along with UC1, for sustainable and reliable 6G
services.

The progress concerning remote attestation is presented based on TPM and TEE, which are
capable of securing workloads at runtime and may be integrated as a feature within intelligent
runtime/node selection at deployment time, aiding with the reliability aspect of UC1.

Finally, the second and final version of the NATWORK payload security per runtime, intelligent
runtime selection as well as remote attestation aspects will be described by the D4.2 “Payload
security per runtime, intelligent runtime selection and attestation.r2” due to M24 along with
detailed capability maps, algorithms and effectiveness of the derived solutions.

rojctfundec by
Co-funded by 0 pgeeeen oz, 18 (@ UK Research Page 60 of 66
the European Union et ety =4 N and Innovation

NRT:..

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

References

[1]

(2]

3]

[4]

(5]

(6]
[7]
8]
[9]
[10]
[11]
[12]

[13]
[14]

Singh, A., & Shrivastava, M. (2019). "Security in Hardware Assisted Virtualization for Cloud
Computing - State of the Art Issues and Challenges." International Journal of Computer
Sciences and Engineering, 7(1), 1-8.

Blenk, A., Basta, A., Reisslein, M., & Kellerer, W. (2015). "Survey on network virtualization
hypervisors for software-defined networking." IEEE Communications Surveys & Tutorials,
18(1), 655-685.

Costan, V., & Devadas, S. (2016). "Intel SGX Explained." IACR Cryptology ePrint Archive,
2016(086), 1-118.

NIST Special Publication 800-125B. (2019). "Security Recommendations for Server-based
Hypervisor Platforms." National Institute of Standards and Technology. Retrieved from
https://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf

Sabt, M., Achemlal, M., & Bouabdallah, A. (2015). "Trusted execution environment: What
it is, and what it is not." In 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 57-64. IEEE.
Choi, J. S., Renom, L. G, Yun, K., Casellas, R., Martinez, R., Vilalta, R., & Munoz, R. (2024).
"Microsegmentation of a Microservice-Based Transport Control Plane for Multitenant
Optical Virtual Networks." IEEE Network.

Rehman, A., Algahtani, S., Altameem, A., & Saba, T. (2014). "Virtual machine security
challenges: case studies." International Journal of Machine Learning and Cybernetics, 5,
729-742.

Kuenzer, S., Badoiu, V.-A., Lefeuvre, H., Santhanam, S, Jung, A., Gain, G., ... Huici, F. (2021,
April). Unikraft. Proceedings of the Sixteenth European Conference on Computer Systems.
doi:10.1145/3447786.3456248

Abeni, L. (2023). Real-Time Unikernels: A First Look. In Lecture Notes in Computer Science
(pp. 121-133). d0i:10.1007/978-3-031-40843-4_10

Walli, S. R. (1995). The POSIX family of standards. StandardView, 3(1), 11-17.

Kivity, A., Laor, D., Costa, G., Enberg, P., Har’El, N., Marti, D., & Zolotarov, V. (2014). OSv—
Optimizing the Operating System for Virtual Machines. 2014 Usenix Annual Technical
Conference (Usenix Atc 14), 61-72.

Bellard, F. (2005). QEMU, a fast and portable dynamic translator. USENIX Annual Technical
Conference, FREENIX Track, 41, 46. Califor-nia, USA.

Habib, I. (2008). Virtualization with KVM. Linux Journal, 2008(166), 8.

Goethals, T., Sebrechts, M., Al-Naday, M., Volckaert, B., & Turck, F. D. (2022, July). A
Functional and Performance Benchmark of Lightweight Virtualization Platforms for Edge
Computing. 2022 IEEE International Conference on Edge Computing and Communications
(EDGE). doi:10.1109/edge55608.2022.00020

Prcjec funded by
Co-funded by L e coen RO (@ UK Research Page 61 of 66
the European Union P — =4 B and Innovation

NRT:..

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

Anjali, Caraza-Harter, T., & Swift, M. M. (2020, March). Blending containers and virtual
machines. Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments. doi:10.1145/3381052.3381315

Holmes, B., Waterman, J., & Williams, D. (2024). Severifast: Minimizing the root of trust for
fast startup of sev microvms. Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2,
1045-1060.

Madhavapeddy, A., Leonard, T., Skjegstad, M., Gazagnaire, T., Sheets, D., Scott, D., ...
Lesli.e., I. (2015, May). litsu: Just-In-Time Summoning of Unikernels. 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), 559-573.
Russell, R. (2008). virtio: towards a de-facto standard for virtual I/O devices. ACM SIGOPS
Operating Systems Review, 42(5), 95-103.

Lee, H. (2014). Virtualization basics: Understanding techniques and fundamentals. School
of Informatics and Computing Indiana University, 815.

Agache, A., Brooker, M., lordache, A., Liguori, A., Neugebauer, R., Piwonka, P., & Popa, D.-
M. (2020). Firecracker: Lightweight virtualization for serverless applications. 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20), 419—-434.
Talbot, J., Pikula, P., Sweetmore, C., Rowe, S., Hindy, H., Tachtatzis, C., ... Bellekens, X.
(2020). A security perspective on Unikernels. 2020 International Conference on Cyber
Security and Protection of Digital Services (Cyber Security), 1-7. IEEE.

Bratterud, A., Walla, A.-A., Haugerud, H., Engelstad, P. E., & Begnum, K. (2015). IncludeOS:
A minimal, resource efficient unikernel for cloud services. 2015 IEEE 7th International
Conference on Cloud Computing Technology and Science (Cloudcom), 250-257. IEEE.
Wollman, A., & Hastings, J. (2024, October). A Survey of Unikernel Security: Insights and
Trends from a Quantitative Analysis. In 2024 Cyber Awareness and Research Symposium
(CARS) (pp. 1-9). IEEE.

Jarkas, Omar, et al. "A Container Security Survey: Exploits, Attacks, and Defenses." ACM
Computing Surveys (2025).

Sultan, S., Ahmad, I., & Dimitriou, T. (2019). Container security: Issues, challenges, and the
road ahead. IEEE access, 7, 52976-52996. Jarkas, Omar, et al. "A Container Security Survey:
Exploits, Attacks, and Defenses." ACM Computing Surveys (2025).

Chen, J., Feng, Z., Wen, J. Y., Liu, B., & Sha, L. (2019, March). A container-based DoS attack-
resilient control framework for real-time UAV systems. In 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE) (pp. 1222-1227). IEEE.

Hag, M. S., Nguyen, T. D., Tosun, A. S., Vollmer, F., Korkmaz, T., & Sadeghi, A. R. (2024,
May). SoK: A comprehensive analysis and evaluation of docker container attack and
defense mechanisms. In 2024 IEEE Symposium on Security and Privacy (SP) (pp. 4573-
4590). IEEE.

e Prcjec funded by
Co-funded by ee © smmeson « A9, .4 UK Research Page 62 of 66
the European Union {118 P — =4 B and Innovation

NRT:..

(28]

[29]

(30]

[31]

[32]

[33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

Kalafatidis, Sarantis, et al. "Experiments with Digital Security Processes over SDN-Based
Cloud-Native 5G Core Networks." 2024 27th Conference on Innovation in Clouds, Internet
and Networks (ICIN). IEEE, 2024.

Perrone, G., & Romano, S. P. (2025). WebAssembly and Security: a review. Computer
Science Review, 56, 100728.

Bhansali, S., Aris, A., Acar, A., Oz, H., & Uluagac, A. S. (2022, May). A first look at code
obfuscation for webassembly. In Proceedings of the 15th ACM conference on security and
privacy in wireless and mobile networks (pp. 140-145).

Mavridis, 1., & Karatza, H. (2021). Orchestrated sandboxed containers, unikernels, and
virtual machines for isolation-enhanced multitenant workloads and serverless computing
in cloud. Concurrency and Computation: Practice and Experience, 35(11).
d0i:10.1002/cpe.6365

Kjorveziroski, V., & Filiposka, S. (2023). Webassembly orchestration in the context of
serverless computing. Journal of Network and Systems Management, 31(3), 62.

Qi, S., Kulkarni, S. G., & Ramakrishnan, K. K. (2020). Understanding container network
interface plugins: design considerations and performance. 2020 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN, 1-6. IEEE.

Koukis, G., Skaperas, S., Kapetanidou, |. A.,, Mamatas, L., & Tsaoussidis, V. (2024).
Performance Evaluation of Kubernetes Networking Approaches across Constraint Edge
Environments. arXiv [Cs.NI]. doi:10.48550/ARXIV.2401.07674

Marcelino, C., & Nastic, S. (2023). CWASI: A WebAssembly Runtime Shim for Inter-Function
Communication in the Serverless Edge-Cloud Continuum. 2023 IEEE/ACM Symposium on
Edge Computing (SEC), 158-170. IEEE.

Randazzo, A., & Tinnirello, I. (2019). Kata containers: An emerging architecture for enabling
mec services in fast and secure way. 2019 Sixth International Conference on Internet of
Things: Systems, Management and Security (IOTSMS), 209-214. |EEE.

Mavridis, 1., & Karatza, H. (2023). Orchestrated sandboxed containers, unikernels, and
virtual machines for isolation-enhanced multitenant workloads and serverless computing
in cloud. Concurrency and Computation: Practice and Experience, 35(11), e6365.
Goethals, T., Al-Naday, M., Volckaert, B., & De Turck, F. (2024). Warrens: Decentralized
Connectionless Tunnels for Edge Container Networks. IEEE Transactions on Network and
Service Management, 21(4), 4282-4296. doi:10.1109/tnsm.2024.3417703

Goethals, T., De Turck, F., & Volckaert, B. (2021). Self-organizing Fog Support Services for
Responsive Edge Computing. Journal of Network and Systems Management, 29(2).
do0i:10.1007/s10922-020-09581-6

Kinney, S. (2006). 6 - Platform Configuration Registers. Trusted Platform Module Basics, 53—
64. Newnes. DOI: 10.1016/B978-075067960-2/50007-5.

e Prcjec funded by
Co-funded by ee © e « A9, .4 UK Research Page 63 of 66
the European Union {118 P — =4 B and Innovation

https://doi.org/10.1016/B978-075067960-2/50007-5

NRT:..

[41]
[42]

[43]
[44]
[45]
[46]
[47]
[48]
[49]
(50]

(51]

[52]

(53]

[54]

w N, };R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl

Cooper, D., Polk, W., Regenscheid, A., & Souppaya, M. (2011). Special Publication 800-147:
BIOS Protection Guidelines. NIST. Gaithersburg.

Arthur, W., Challener, D., & Goldman, K. (2015). A Practical Guide to TPM 2.0. Apress. DOI:
10.1007/978-1-4302-6584-9.

Trusted Computing Group. (2019). Trusted Platform Module Library Part 1: Architecture.
Trusted Computing Group. (2019). Trusted Platform Module Library Part 3: Commands.
Trusted Computing Group. (n.d.). Trusted Computing Group. Retrieved from
https://trustedcomputinggroup.org/.

TPM2-Software. (n.d.). Developer community for those implementing APIs and
infrastructure from the TCG TSS2 specifications. Retrieved from https://github.com/tpm2-
software.

Schear, N., Cable, P. T., Moyer, T. M., Richard, B., & Rudd, R. (2016). Bootstrapping and
maintaining trust in the cloud. Proceedings of the 32nd Annual Conference on Computer
Security Applications, 65-77. ACM. DOI: 10.1145/2991079.2991104.

Keylime Project. (n.d.). Keylime/Attestation-Operator: Keylime easily deployable on
Kubernetes/OpenShift. Retrieved from https://github.com/keylime/attestation-operator.
Thijsman, J., Sebrechts, M., De Turck, F., & Volckaert, B. (2024). Trusting the Cloud-Native
Edge: Remotely Attested Kubernetes Workers. 2024 33rd International Conference on
Computer Communications and Networks (ICCCN), 1-6.
https://doi.org/10.1109/ICCCN61486.2024.10637515

AMD. (2020). AMD SEV-SNP: Strengthening VM lIsolation with Integrity Protection and
More. AMD. https://www.amd.com/content/dam/amd/en/documents/epyc-business-

docs/white-papers/SEV-SNP-strengthening-vme-isolation-with-integrity-protection-and-
more.pdf

Anati, |., Gueron, S., Johnson, S., & Scarlata, V. (2013). Innovative Technology for CPU Based
Attestation and Sealing. https://www.semanticscholar.org/paper/Innovative-Technology-
for-CPU-Based-Attestation-and-Anati-
Gueron/708a3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2

Birkholz, H., Thaler, D., Richardson, M., Smith, N., & Pan, W. (2023). Remote ATtestation
procedureS (RATS) Architecture (RFC No. 9334). Internet Engineering Task Force (IETF).
https://www.rfc-editor.org/rfc/rfc9334

IAS End of Life Announcement. (2023, November 20).
https://community.intel.com/t5/Intel-Software-Guard-Extensions/IAS-End-of-Life-
Announcement/m-p/1545831#M6018

Intel Corporation. (2023a). Intel® Trust Domain Extensions Data Center Attestation
Primitives (Intel® TDX DCAP): Quote Generation Library and Quote Verification Library (No.
0.9). Intel Corporation. https://download.01.org/intel-sgx/latest/dcap-
latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf

Prcjec funded by
Co-funded by O s reon poo RO (@ UK Research Page 64 of 66
the European Union P — =4 B and Innovation

https://doi.org/10.1007/978-1-4302-6584-9
https://doi.org/10.1007/978-1-4302-6584-9
https://trustedcomputinggroup.org/
https://github.com/tpm2-software
https://github.com/tpm2-software
https://doi.org/10.1145/2991079.2991104
https://github.com/keylime/attestation-operator
https://doi.org/10.1109/ICCCN61486.2024.10637515
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.semanticscholar.org/paper/Innovative-Technology-for-CPU-Based-Attestation-and-Anati-Gueron/708a3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2
https://www.semanticscholar.org/paper/Innovative-Technology-for-CPU-Based-Attestation-and-Anati-Gueron/708a3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2
https://www.semanticscholar.org/paper/Innovative-Technology-for-CPU-Based-Attestation-and-Anati-Gueron/708a3c03556b5bc20b5bd8e58ef2f47f6a9fc7d2
https://www.rfc-editor.org/rfc/rfc9334
https://community.intel.com/t5/Intel-Software-Guard-Extensions/IAS-End-of-Life-Announcement/m-p/1545831#M6018
https://community.intel.com/t5/Intel-Software-Guard-Extensions/IAS-End-of-Life-Announcement/m-p/1545831#M6018
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/Intel_TDX_DCAP_Quoting_Library_API.pdf

NRT:..

[55]
[56]

(57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
o\ A l*

Intel Corporation. (2023b). Intel® Trust Domain Extensions (Intel® TDX). Intel Corporation.
https://cdrdv2.intel.com/v1/dl/getContent/690419

Keystone-enclave/keystone. (2025). [C]. Keystone Enclave. https://github.com/keystone-
enclave/keystone (Original work published 2018)

Intel Corporation. (2025). Attestation Service for Intel® Software Guard Extensions: API
Documentation (Technical Report No. 7.2). Intel Corporation.
https://www.intel.com/content/www/us/en/developer/articles/technical/software-

security-guidance/resources/sgx-ias-using-epid-eol-timeline.html

Advanced Micro Devices, Inc. (2025). Versioned Chip Endorsement Key (VCEK) Certificate
and KDS Interface Specification (No. 57230; Version 1.00). Advanced Micro Devices, Inc.
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-
docs/specifications/57230.pdf

Enarx/enarx. (2025). [Rust]. Enarx. https://github.com/enarx/enarx (Original work
published 2019)

Bravi, E., Berbecaru, D. G., & Lioy, A. (2023). A Flexible Trust Manager for Remote
Attestation in Heterogeneous Critical Infrastructures. 2023 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), 91-98. https://doi.or-
g/10.1109/CloudCom59040.2023.00027

Tirmazi, M., Barker, A., Deng, N., Haque, M. E., Qin, Z. G,, Hand, S., ... & Wilkes, J. (2020,
April). Borg: the next generation. In Proceedings of the fifteenth European conference on

computer systems (pp. 1-14).

M.Lacoste, V.Lefebvre, Trusted Execution Environments for Telecoms: Strengths,
Weaknesses, Opportunities, and Threats, IEEE security and privacy Journal, 2023.
Abbasimehr, H., & Paki, R. (2022). Improving time series forecasting using LSTM and
attention models. Journal of Ambient Intelligence and Humanized Computing, 13(1), 673-
691.

Shumway, R. H., Stoffer, D. S., Shumway, R. H., & Stoffer, D. S. (2017). ARIMA models. Time
series analysis and its applications: with R examples, 75-163.

Zhang, L., Bian, W., Qu, W., Tuo, L., & Wang, Y. (2021, April). Time series forecast of sales
volume based on XGBoost. In Journal of Physics: Conference Series (Vol. 1873, No. 1, p.
012067). IOP Publishing.

Wu, J,, Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., & Deng, S. H. (2019). Hyperparameter
optimization for machine learning models based on Bayesian optimization. Journal of
Electronic Science and Technology, 17(1), 26-40.

Belete, D. M., & Huchaiah, M. D. (2022). Grid search in hyperparameter optimization of
machine learning models for prediction of HIV/AIDS test results. International Journal of
Computers and Applications, 44(9), 875-886.

P

roject funded by
Co-funded by d b poo RO (@ UK Research Page 65 of 66
the European Union i fralrutry =4 B and Innovation

https://cdrdv2.intel.com/v1/dl/getContent/690419
https://github.com/keystone-enclave/keystone
https://github.com/keystone-enclave/keystone
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/sgx-ias-using-epid-eol-timeline.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/sgx-ias-using-epid-eol-timeline.html
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/57230.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/57230.pdf
https://github.com/enarx/enarx
https://doi.or-g/10.1109/CloudCom59040.2023.00027
https://doi.or-g/10.1109/CloudCom59040.2023.00027

NRT:..

(68]

[69]

[70]

[71]

[72]

[73]
[74]

[75]

[76]
[77]

[78]

w / "R K D4.1 Payload security per runtime intelligent runtime selection and attestation.rl
-\ A l*

ENISA: Cyber risk management implementating guidance (Oct 2023):
https://www.enisa.europa.eu/sites/default/files/2024-
11/Implementation%20guidance%200n%20security%20measures_FOR%20PUBLIC%20CO
NSULTATION.pdf

Sun, J. et al SELWasm: A Code Protection Mechanism for WebAssembly. December 2019
Computer Science IEEE Intl Conference

Bai, Y., Li, B., & Zhang, W. (2020). A collaborative approach to detecting DDoS attacks in
SDN using entropy and deep learning. Journal of Telecommunications and Information

Technology.

Gao, C., Wang, Z., & Yu, H. (2020). Distributed DDoS defense: A collaborative approach at
Internet scale. IEEE Xplore.

Zhang, X., Zhao, C., & Chen, Y. (2020). Enhancing DDoS attack detection and network
resilience through ensemble-based packet processing and bandwidth optimization.

ResearchGate.

Briggs, I., Day, M., Guo, Y., Marheine, P., & Eide, E. (2014). A performance evaluation of
unikernels. In Technical Report.

Li, L., Fan, Y., Tse, M., & Lin, K. Y. (2020). A review of applications in federated learning.
Computers & Industrial Engineering, 149, 106854.

Aldhyani, T. H., & Alkahtani, H. (2022). Artificial intelligence algorithm-based economic
denial of sustainability attack detection systems: Cloud computing environments. Sensors,
22(13), 4685.

National Vulnerability Database - CVE-2014-0515 Detail -
https://nvd.nist.gov/vuln/detail/CVE-2014-0515
National Vulnerability Database - CVE-2021-20087 Detail -

https://nvd.nist.gov/vuln/detail/CVE-2021-20087
ETSI NFV Security WG: ETSI GR NFV-SEC 007 V1.2.1 (2024-11), report of Attestation
Technologies and Practices (2024-11)

Prcjec funded by
Co-funded by 6 o o RO (4 UK Research Page 66 of 66
the European Union Pt s = =4 B and Innovation

https://www.jtit.pl/jtit/article/view/1609
https://www.jtit.pl/jtit/article/view/1609
https://ieeexplore.ieee.org/document/9110300
https://ieeexplore.ieee.org/document/9110300
https://www.researchgate.net/publication/380014414_Enhancing_DDoS_Attack_Detection_and_Network_Resilience_Through_Ensemble-Based_Packet_Processing_and_Bandwidth_Optimization
https://www.researchgate.net/publication/380014414_Enhancing_DDoS_Attack_Detection_and_Network_Resilience_Through_Ensemble-Based_Packet_Processing_and_Bandwidth_Optimization
https://nvd.nist.gov/vuln/detail/CVE-2014-0515
https://nvd.nist.gov/vuln/detail/CVE-2021-20087

