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Executive summary

This deliverable, D4.3 — Intelligent Networking, CTl & Explainability.rl, presents the first results
of Work Package 4 (WP4) of the NATWORK project, regarding the development of Al-powered
security services for 6G networks. It focuses on integrating Al-based automation, cyber threat
intelligence (CTl), and explainability into the orchestration and security management of
distributed services. The document outlines the conceptual foundations, architectural models,
and initial technical components developed to enable NATWORK’s vision of secure, self-adaptive,
and trustworthy service environments. It addresses the technical challenges that arise when
delegating critical security decisions to Al-driven systems, particularly in terms of real-time
responsiveness, human interpretability, and integration with heterogeneous infrastructures.

The work reported on this deliverable is the outcome of two complementary tasks. Task 4.3
introduces the concept of Al-as-a-Security-Service (AlaaSecS), a paradigm in which modular Al
components operate across the orchestration layers to detect threats, enforce dynamic policies,
and autonomously adapt service configurations in response to changing risk conditions. Task 4.4
focuses on two critical enablers: the integration of multi-source cyber threat intelligence and the
design of mechanisms for explainability and observability in Al-based decision-making. Together,
these efforts support the development of intelligent network services that are not only secure
but also transparent, traceable, and responsive to evolving operational contexts.

Section 2 of the document provides a thorough state-of-the-art review, situating the NATWORK
approach about ongoing research in zero-touch orchestration, threat detection, blockchain for
trust, and explainable Al. Building on this foundation, Section 3 introduces the initial design of
NATWORK’s zero-touch solutions, which aim to automate the deployment and lifecycle
management of services with minimal human input. Section 4 presents the architecture for real-
time threat detection based on Al agents that process telemetry and contextual information to
identify attacks and abnormal behaviour. Section 5 outlines a decentralized trust framework
based on blockchain technology, supporting secure data sharing and authentication across
service components. Section 6 develops the explainability dimension, proposing techniques and
tools to ensure that Al decisions—especially those related to security—are understandable and
verifiable. Finally, Section 7 describes the NATWORK CTI framework, which enables the ingestion,
processing, and operational use of diverse threat intelligence sources.

The main conclusion of this deliverable is that NATWORK’s combined use of Al, CTIl, and
explainability represents a viable and forward-looking approach to securing the next generation
of networked services. The architectural designs and early components presented here
demonstrate strong technical feasibility and alignment with the project’s goals of building
resilient, adaptive, and low-overhead cybersecurity solutions for 6G infrastructures. They also
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provide a foundation for the deployment of intelligent orchestration platforms that can respond
to threats in real-time while maintaining transparency and auditability.

The purpose of Deliverable D4.3 is to consolidate the results of the first phase of technical work
within WP4 and to establish a coherent baseline for further development, integration, and
testing. It provides a shared reference for partners working on related tasks. It prepares the
ground for the implementation and validation activities that will follow in the second half of the
project. The final results will be documented in Deliverable D4.4, where the complete system
integration and performance evaluation will be presented based on NATWORK’s use cases and

scenarios.
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1. Introduction

The transition toward 6G networks is driving a profound rethinking of how security is designed,
integrated, and delivered across digital infrastructures. As services become more distributed,
automated, and context-aware, the traditional approaches to cybersecurity—often centralized,
static, and reactive—are no longer sufficient. Emerging architectures must embed security by
design, leveraging real-time intelligence and Al-driven capabilities to ensure resilience,
adaptability, and trustworthiness in an increasingly complex and dynamic environment.

Within this strategic vision, the NATWORK project proposes a bio-inspired, energy-aware, and
self-adaptive framework that enables secure and autonomous orchestration of services across
the 6G continuum. A core component of this vision is the ability to incorporate Al-powered
security services that can proactively defend against threats while maintaining visibility,
explainability, and operational accountability. Deliverable D4.3 contributes directly to this
ambition, presenting the first major technical outcomes of Work Package 4 (WP4), which focuses
on the research and development of such intelligent services.

The work captured in this deliverable, stems from two tightly interrelated tasks. Task 4.3
introduces the concept of Al-as-a-Security-Service (AlaaSecS)—a novel framework that leverages
modular Al components to enable proactive and autonomous network defence. These Al agents
operate within the orchestration layers of the network, dynamically assessing risks, enforcing
security policies, and reacting to threat intelligence in real time. They are designed to interpret
and integrate inputs from multiple sources, including CTI feeds, telemetry data, and contextual
information, allowing them to anticipate vulnerabilities, detect ongoing attacks, and recommend
or trigger appropriate mitigation measures. This marks a fundamental shift from post-facto
security enforcement to preventive and adaptive protection embedded directly in service
lifecycles.

Task 4.4 complements this work by addressing two equally critical dimensions: cyber threat
intelligence (CTI) integration and explainability of Al-driven decisions. On one hand, it focuses on
enriching the CTI pipeline by designing mechanisms for the collection, correlation, and
contextualization of threat data at different layers of the system—ranging from infrastructure-
level events to application and service-level indicators. This enables more precise and timely
threat awareness, feeding both human operators and Al-based decision modules. On the other
hand, Task 4.4 advances the explainability and observability of these intelligent systems. As Al
agents gain control over sensitive decisions, it becomes essential to ensure that their actions are
transparent, auditable, and understandable. The task therefore investigates and integrates
explainable Al (XAl) techniques, observability frameworks, and tracing methods that can support
accountability, foster user trust, and enable effective incident response and system debugging.
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Together, these two tasks provide a robust foundation for embedding secure, intelligent, and
interpretable functions into the NATWORK platform. Deliverable D4.3 represents the first major
milestone in this process, consolidating the architectural designs, state-of-the-art analysis, and
initial implementation activities related to both AlaaSecS and CTl-driven explainable intelligence.
The components described herein will ultimately be integrated, tested, and validated in real-
world scenarios in the later stages of the project, with final results to be reported in D4.4.

By aligning advanced Al technologies with cyber threat intelligence and explainability, this
deliverable contributes to the overarching goals of NATWORK: to build resilient, energy-efficient,
and trustworthy 6G infrastructures where services can self-adapt to threats and operate securely
without constant human oversight. In this sense, D4.3 not only reflects significant technical
progress but also lays the conceptual groundwork for the secure automation paradigm
NATWORK seeks to achieve.

1.1. Purpose and structure of the document

This deliverable reports on the progress achieved within Work Package 4 (WP4) of the NATWORK
project, which focuses on the design and development of intelligent secure services that
integrate artificial intelligence, cyber threat intelligence, and explainability into next generation
6G network architectures. In particular, Deliverable D4.3 presents the outcomes of the initial
research, architectural design, and early implementation activities conducted under Tasks 4.3
and 4.4. These tasks aim to enable proactive, autonomous, and trustworthy security mechanisms
capable of operating within complex service orchestration environments.

The main objective of this document is to outline how Al-based modules can be used to enhance
network security through self-adaptive mechanisms, real-time threat awareness, and
transparent decision-making. It also highlights the importance of explainability and
accountability in the deployment of such intelligent services, as well as the role of cyber threat
intelligence in supporting robust and informed decision processes.

The structure of the document is as follows:

e Section 2 provides a state-of-the-art analysis covering Al-driven network security, zero-
touch orchestration, threat intelligence, and explainable Al techniques, setting the
foundation for the technical developments described in later sections.
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e Section 3 presents the Zero-Touch Network Solutions, including the design of
autonomous orchestration and Al-based secure service deployment mechanisms that
reduce human intervention while maintaining operational integrity.

e Section 4 describes the Al-Driven Real-Time Threat Detection capabilities being
developed within the project, focusing on the integration of machine learning agents and
proactive defence strategies to identify and mitigate cyber threats.

e Section 5 introduces the Blockchain-Based Trust Establishment mechanisms that support
data integrity, provenance tracking, and distributed trust for secure service orchestration.

e Section 6 focuses on the Explainability Framework, detailing the different technical
approaches developed to provide visibility, interpretability, and auditability of Al-driven
decisions across the NATWORK platform.

e Section 7 presents the Cyber Threat Intelligence (CTI) Framework, outlining how multi-
source intelligence is collected, processed, and used to feed both human users and Al-
based modules within the system.

e Section 8 concludes the document by summarizing the main achievements to date and
outlining the next steps toward full system integration and validation.

e Section A.1 is an Annex that provides a classification of the examined attacks in
NATWORK, that facilitate the development of intrusion detection mechanisms, while A.2
presents updates on an attack tool that generates some of these attacks.

This deliverable thus provides a comprehensive overview of the intelligent and secure service
capabilities being developed in NATWORK, while preparing the path for further implementation
and evaluation activities in the second phase of the project.

1.2. Intended Audience

This deliverable is classified as public and is intended for a broad audience that includes not only
the members of the NATWORK consortium but also external stakeholders, such as researchers,
practitioners, policy makers, and other European research and innovation projects working in the
fields of network security, artificial intelligence, and 6G technologies.

Deliverable D4.3 serves as a comprehensive reference for those interested in the design and
development of intelligent secure services, Al-driven threat detection, explainable Al, cyber
threat intelligence, and trust establishment mechanisms within the context of next-generation
network infrastructures. The content is particularly relevant for academic and industrial
communities engaged in the advancement of autonomous orchestration, cybersecurity
automation, and Al trustworthiness.

By sharing the architectural designs, conceptual models, and initial implementation strategies
developed under Work Package 4, this document contributes to ongoing discourse in the fields
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of secure and intelligent networking. It aims to foster knowledge exchange, cross-project
collaboration, and alignment with related initiatives funded under the Horizon Europe
framework.

As a public deliverable, D4.3 also supports the transparency and openness objectives of the
NATWORK project, offering insight into its technical vision and intermediate results while
encouraging further collaboration and feedback from the broader research and innovation
community.

1.3. Interrelations

The NATWORK consortium integrates a diverse and complementary set of competencies from
academia, research institutions, SMEs, and large industrial partners, covering critical domains
such as user-centric service design, Al-driven orchestration, cybersecurity, trust mechanisms, and
secure-by-design network architectures. With fifteen partners across ten EU member states and
associated countries (including the UK and Switzerland), NATWORK ensures broad geographical
and technical representation in addressing the complex security and intelligence challenges
posed by emerging 6G Smart Networks and Services.

As a Horizon Europe Research and Innovation Action (RIA), the project is organized into seven
interdependent work packages (WPs), each structured into focused tasks to facilitate
specialization, cross-WP collaboration, and continuous alignment with overall project objectives.
This approach ensures that knowledge and technologies developed in each part of the project
are shared and leveraged across the consortium, enabling scientific and engineering innovation
at scale.

Deliverable D4.3 is a central output of Work Package 4 (WP4) — Intelligent Secure Services. It
captures the progress in designing and implementing intelligent Al-based modules for proactive
threat detection, explainability, and cyber threat intelligence integration. These components
represent foundational elements for NATWORK’s overarching goal of enabling autonomous,
secure, and trustworthy service orchestration in future 6G infrastructures.

This deliverable is closely interrelated with the following project components and deliverables:

e D4.5 - NATWORK Federated Repository for B5G/6G Networks: D4.3 contributes to the
data generation processes that feed into the federated repository defined in DA4.5,
particularly datasets related to Al-based threat detection, CTl, and explainability. These
data assets will support the training, evaluation, and reproducibility of NATWORK’s
security models and frameworks. Furthermore, Annex A presents a brief output of T4.1,
related to Al-based attack generation, that populates the data repository, and facilitates
development activities under T4.3.
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D4.1 — Payload Security per Runtime, Intelligent Runtime Selection and Attestation: The
intelligent components developed in D4.3 complement the runtime security mechanisms
defined in D4.1 by enhancing their adaptability to threat contexts through CTI analysis
and Al-driven decision-making. Moreover, explainability mechanisms from D4.3 provide
critical transparency into how secure runtime selections and reactions are made.

All deliverables across the project involving Al-based decision-making: As explainability is
a transversal requirement for building trust in Al-driven automation, D4.3 is inherently
connected to every deliverable in NATWORK that integrates Al modules, particularly
those involving orchestration, monitoring, actuation, and adaptive security. The methods,
models, and tracing mechanisms defined here serve as a reference and technical input
for ensuring that Al decisions are interpretable, auditable, and aligned with ethical and
regulatory expectations across the project.

In addition, D4.3 provides input to future integration and validation work in WP6 and aligns with

WP2’s requirements and user-centric use cases. It supports coherence and reuse of developed

assets while promoting a unified vision for intelligent and explainable cybersecurity in
NATWORK’s system architecture.

the European Union
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2.State of the art

2.1.

Zero-Touch Networking

Intrusion Detection Systems (IDSs) are vital for the identification and mitigation of unauthorized

network activities. The introduction of Artificial Intelligence (Al) has strengthened the IDS

effectiveness. However, Al models are usually quite complex, and this often leads to a lack of
transparency, making it hard for security professionals to trust and understand their Al-based
decisions. To face this problem, Explainable Al (XAl) techniques have been developed that

provide insights into Al-IDS actions [1].

Current XAl Techniques in IDS are the following:

Local Interpretable Model-agnostic Explanations (LIME), which provides explanations for
individual predictions by locally approximating the Al model with an interpretable model.
In the context of IDS, LIME assists security specialists in understanding the reasons behind
specific alerts, enabling them to make more informed responses [2].

SHapley Additive exPlanations (SHAP) assigns an essential value to each feature for a
given prediction, providing a clear understanding of how each input impacts the output.
This is especially useful in IDS for pinpointing the features that play the most significant
role in detecting anomalies [3].

Self-Organizing Maps (SOM) are neural networks that create a low-dimensional
representation of the input data while preserving its topological properties. They are able
to visualize complex data forms aiding this way in the interpretation of network
behaviours and anomalies [4].

Decision Trees and Random Forests are interpretable by constructions since they provide
well defined decision paths. For IDS applications, they can be used to identify patterns
related to unauthorized activities and at the same time provide clear explanations for
their detections [5].

Challenges and opportunities of XAl in IDS:

Balancing accuracy and interpretability is a constant challenge, as there is often a trade-
off between the complexity of an Al model and how easily it can be understood. Al models
of higher complexity usually led to higher accuracy but this complexity negatively affects
transparency. It is definitely a challenge to design accurate Al methods without sacrificing
interpretability.

Real-Time explanations are essential for sufficient responses to adversary actions. Fast
generation of these explanations without accuracy degradation is a challenging task.
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e User-Centric explanations should be pursued for the XAI-IDS output to be actionable and
comprehensible, whether the users are security analysts, network administrators or
stakeholders.

Future Research Directions:

e Integrating XAl with Large Language Models (LLMs) will strengthen the IDS interpretability
by providing natural language explanations allowing users to access complex detections
more easily [6].

e Development of comprehensive XAl frameworks specifically designed for intrusion
detection systems (IDS) that can help standardize the generation and presentation of
explanations, ensuring uniformity in how insights are delivered across different models
and scenarios. This not only promotes interpretability but also enhances the reliability
and trustworthiness of the system by reducing variability and ambiguity in the
explanations provided [7] .

Conclusively, the integration of XAl into IDS is progressing, providing more transparent and
reliable Al-driven security solutions. Current research aims to improve the balance between
model performance and interpretability i.e. making the models more user-centric, enabling
security professionals to effectively understand and respond to Al-generated insights.

2.2. Al-Driven Real-Time Threat Detection

As network technology continues to evolve, in-network Machine Learning (ML) is expected to
transform network operations by enabling real-time processing of data streams, including
packets and flows, while eliminating the need for intermediate processing stages. Integrating ML
directly into network infrastructure creates new opportunities for enhancing efficiency, security,
and resource management.

The application of Artificial Intelligence (Al) in real-time threat detection is an emerging field that
utilizes in-network ML techniques to strengthen network security. Numerous research studies
explore advancements in in-network functions and their implementations across various
programmable architectures, such as P4-programmable [8] devices and Data Processing Units
(DPUs).

In-Network ML for Threat Detection Using P4: The shift toward self-driven next-generation
networks [9] highlights the growing role of ML algorithms as key enablers in solving complex
network management and optimization challenges. For instance, the work in [10] introduces
SwitchTree, a system that embeds a configurable and reconfigurable Random Forest model
inside a programmable switch. This design enables real-time flow analysis by extracting flow-level
stateful features for network monitoring and attack detection. Experimental results confirm that
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SwitchTree operates at line rate and achieves real-time attack detection with minimal resource
overhead.

Similarly, the study in [11] presents a machine learning technique that utilizes Decision Trees
(DTs) to predict heavy network flows directly within the switch. Given the constraints of limited
memory and computing power, the method relies on a specialized packet processing pipeline
that integrates pre-trained DT models for in-network flow prediction, which has been evaluated
on BMv2 and Tofino ASIC platforms.

The author in [12] introduced llsy, a framework that enables programmable switches to
efficiently run machine learning classification models using an optimized encoding algorithm. By
adopting a hybrid strategy, llsy processes lightweight models on the switch while offloading
complex computations to a backend server, achieving near-optimal classification accuracy and
reducing backend load by 70%.

Another recent work [13] introduced Planter, an open-source framework designed to integrate
various trained ML models into different programmable network devices. Evaluations show that
in-network ML using Planter achieves high performance in anomaly detection, operates at line
rate with minimal latency impact, and efficiently manages resource constraints with negligible
accuracy loss.

Finally, an architecture leveraging programmable data plane switches to implement Binarized
Neural Networks (BNNs) as switch functions has been proposed in [14], enabling line-rate packet
classification at the edge. To ensure efficient training with minimal communication overhead,
even in large-scale scenarios, the architecture adopts a federated learning approach. Their P4-
based prototype evaluation demonstrates significant latency and bandwidth improvements over
conventional ML-based network architectures.

In-network ML for DPU: Programmable DPUs and smart NICs are revolutionizing networking and
computing by introducing advanced programmability for edge applications. The work in [15]
introduces three DPU-driven edge use cases: a distributed network monitoring system for 5G, a
power-efficient edge-to-cloud continuum, and security mechanisms integrated within DPUs.

The work in [16] highlights Processing-in-Memory (PIM) as a promising accelerator for ML
training, demonstrating significant performance gains over CPUs and GPUs in memory-intensive
tasks. Like DPUs, PIM technology shifts computation closer to data, reducing bottlenecks and
improving scalability for next-generation ML accelerators.

The authors in [17] propose DLAU, a deep learning accelerator unit optimized for scalable deep
learning networks using an FPGA-based architecture. The design integrates three pipelined
processing units and tile-based techniques to enhance efficiency, achieving high-speed
computation with minimal power consumption compared to traditional CPU implementations.
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Multimodal Al based approaches: The work in [18] introduces 5G-NIDD, a comprehensive and
fully annotated dataset comprising both DoS attack traffic and normal traffic captured from a
real 5G testbed. This dataset is specifically designed to facilitate the development and evaluation
of Al-based security mechanisms. Their study demonstrates the dataset's utility in intrusion
detection through extensive testing with standard machine learning (ML) models, achieving
promising levels of detection accuracy. [19] investigated the application of representation
learning for malware traffic classification in Network Intrusion Detection Systems (NIDS). Using
raw network traffic from two open-source datasets, they implemented a preprocessing pipeline
that transforms PCAP files into images. This process includes session extraction, duplicate
removal, and input normalization to ensure uniform image dimensions. Their approach,
encapsulated in the USTC-TK2016 toolkit, employs convolutional neural networks (CNNs) to
perform traffic classification. In [20], PayloadEmbeddings where proposed an innovative IDS
approach based on generating vector embeddings from packet payloads. Inspired by Word2Vec,
this method captures contextual relationships between bytes within a payload, enhancing the
system’s ability to detect payload-based attacks such as SQL injection and cross-site scripting,
which are often overlooked by traditional IDS techniques. [21] presented a technique for
classifying Tor traffic using time-based flow features between clients and entry nodes. Unlike
conventional methods that rely on packet size or port numbers, their model focuses exclusively
on temporal patterns. This approach enables the differentiation of eight categories of Tor traffic,
contributing a novel perspective to encrypted traffic analysis.

2.3. Endto End Trust Establishment

As 6G networks will connect a large number of devices, many of which may not be reliable, there
are a number of significant security challenges to address. Traditional trust management systems
are deemed inadequate for 6G applications due to their poor attack resiliency, relying on central
authorities, and not functioning efficiently in the increasing number of users and devices of 6G
networks [22][23]. This highlights the vital need for improved end-to-end security and trust
management solutions in 6G networks, utilizing various technologies and approaches such as
blockchain technology and zero trust approach [24]. The zero trust refers to eliminating any
implicit trust in the various components and entities of the system, following the rule of “never
trust, always verify”. It requires proper authentication during the trust establishment, and
continuous verification of the involved entities and services [24]. Additionally, the involved
entities are granted access to parts of the system, considering the minimal access policy to reduce
the attack surface. The authentication, authorization, and attack detection need to be developed
considering the trade-off between the high security level and system efficiency. Considering the
trust management schemes, the main components and approaches of the trust management
between entities in 6G environment are as follows:
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Zero trust approach: It relies on the concept that no entity whether inside or outside the network
should be trusted by default. An active authentication of all participating nodes is required before
allowing access to resources. This feature is an important component considering the openness
and diversity of 6G networks.

Blockchain-Based Trust Management: The decentralized nature of blockchain technology and
without relying on centralized authorities provides safe and transparent trust evaluation
procedures through the employing of smart contracts and immutable ledgers. This
decentralization is crucial for maintaining trustworthiness among the vast number of devices in
6G networks.

Access Control Management: Malicious or compromised nodes represent a serious risk in the
network. This risk can be minimized by implementing access control policies which can be based
on predefined or real-time assessments of devices' security metrics.

Trust Evaluation and Security Monitoring: Ensuring security in 6G networks requires constant
evaluation of the trustworthiness of network elements. This involves monitoring in real-time a
number of variables, including compliance levels, in order to determine trust scores and respond
effectively when trust thresholds are reached.

Advanced Authentication Mechanisms: Strong authentication approaches are essential given
the large number of devices in 6G networks. Approaches such as authentication and key
agreement protocols guarantee mutual authentication between various nodes in the network.
These mechanisms help prevent unauthorized network access and ensure that only legitimate
devices participate in the network.

Son et al. [25] introduced a zero-trust authentication scheme for 6G-enabled loT environments.
The proposed scheme provides continuous verification to ensure that all participating nodes
within the network are authenticated independently of a secure channel. The scheme utilized
the blockchain technology, which facilitates mutual authentication among network elements and
provides the integrity and reliability of identity verification processes in a decentralized context.
Additionally, a dynamic and fine-grained access control is achieved through the utilization of
attribute-based encryption (ABE) [26]. The authors utilize a lightweight ABE method based on the
elliptic curve cryptosystem (ECC), which minimizes computational overhead while improving the
security. Through effective key management and access verification processes, the proposed
approach guarantees effective defence against a range of security threats and provides adaptable
access permissions based on real-time UE status. The authors provided a comprehensive security
analysis using BAN logic and AVISPA [27] to validate the proposed approach, proving its resistance
to potential attack vectors. A lightweight authentication scheme was proposed by the Rana et al.
[28], designed for next-generation loT infrastructures, specifically 6G networks. Mitigating
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vulnerabilities such as user impersonation attacks was among the primary achievements of this
work. The proposed scheme utilizes symmetric cryptographic algorithms to ensure mutual
authentication between edge nodes and servers. This scheme ensures that only legitimate users
can access services provided by the servers while protecting sensitive information transmitted
over public channels.

An authentication scheme, named REHAS, presented in [29], was specifically designed for the
Internet of Drones (loD). The scheme employed Hyperelliptic Curve Cryptography (HECC) [30]
and utilizes an 80-bit key size for strong security. It performs fuzzy extractors for biometric data
processing, enhancing user authentication and safeguarding against unauthorized access in case
of device theft or loss. The scheme also utilizes a hash function, which balances the security and
computational efficiency. By generating unique session keys for each communication session
through a base station, the scheme mitigates the risk of replay attacks. Considering the resource
constraints of drones, the scheme adds low computational overhead (approximately 6.7171 ms.),
communication overhead (1696 bits), and energy consumption (22.5 mlJ.). Choi et al. [31]
provided a trust management scheme, considering drone security through the use of physical
unclonable functions (PUFs). The integration of the proposed scheme improves the system’s
resilience against specific attacks such as impersonation and stolen verifier threats. While
schemes such as REHAS employ cryptography to ensure efficient trust management approach,
the PUF-based scheme introduces a lightweight approach that addresses the vulnerabilities that
such schemes may not fully cover, particularly concerning the physical security of drones and
challenges posed by compromised cryptographic materials. By integrating PUF technology, the
proposed scheme provides a more adaptable and responsive security solution that is better
suited to the unique constraints and requirements of drone operations. However, increased
complexity in the authentication phase which involves a higher number of message exchanges
potentially lead to greater communication overhead and latency, which may affect the
responsiveness of drone operations in critical scenarios.

The authors in [32] introduced a hierarchical architecture that integrates Multi-Access Edge
Computing (MEC) and Device-to-Device (D2D) communications to enhance healthcare services
in the 6G environment. This architecture comprises three layers: Sensing, Processing, and
Storage, where Internet of Medical Things (loMT) devices collect health data, Cluster Controller
(CC) nodes process and relay the data to MEC servers, and MEC ensures secure storage. A key
focus is on security and privacy, achieved through the development of a lightweight mutual
authentication protocol named LiIMAD, which employs strong encryption to defend against
threats like replay and man-in-the-middle attacks. However, the reliance on Cluster Controller
(CC) nodes to facilitate communication between IoMT devices and MEC servers introduces
potential inefficiencies, particularly if the CCs become bottlenecks under high loads. Putra et al.
[33] proposed a blockchain-based trust management framework that leverages the decentralized
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nature of blockchain technology, which eliminates the reliance on a central trusted party and
thus enhances overall security against malicious activities. Key cryptographic components of this
framework include smart contracts [34], which automate the processes of trust evidence
collection and score calculation, ensuring transparency and adherence to predefined rules. An
immutable ledger stores all trust-related data securely, maintaining data integrity and enabling
auditability. Furthermore, by employing pseudonymity through cryptographic identifiers, the
system enhances user privacy, allowing participants to engage without revealing personal
identities. The proposed framework continuously assesses and quantifies the trustworthiness of
all network participants. However, the main drawback is the inherent challenges in ensuring
privacy and security within a large-scale, decentralized system, particularly concerning the risk of
de-anonymization attacks against users and potential vulnerabilities in complex smart contracts.

A decentralized framework introduced in [35] for secure end-to-end (E2E) communications in
Large-Scale Heterogeneous Networks. This proposed approach addressed critical vulnerabilities
found in traditional E2E security systems that often rely on centralized nodes, identity privacy
breaches, and extensive communication costs. Key components of this scheme include a
blockchain-enabled UE registration and key management protocol. Additionally, the framework
incorporates a privacy-preserving mutual authentication protocol leveraging bilinear pairing
which allows users and serving networks to authenticate each other securely while safeguarding
their identities. Moreover, it employs a Trusted Execution Environment (TEE) for efficient session
key generation and distribution, ensuring secure communication channels between data senders
and receivers. The implementation of blockchain in similar protocols should be designed carefully
with minimizing the necessity of frequent access to the blockchain, as it can lead to increased
computational and communication costs [23]. Additionally, the complexity of integrating a TEE
within various devices raises concerns about compatibility and accessibility, potentially limiting
the widespread adoption of such frameworks across different network infrastructures.

2.4. Explainable Al

Ever since the emergence of Artificial Intelligence (Al), specifically neural networks, researchers
have been curious about the reasoning behind the decisions made by the complex ML models.
This curiosity has motivated various studies for providing human interpretations on the output
of Al models, reaching back to 1980s with a focus on rule-based expert systems [36], [38]. At the
time, numerous works were conducted to develop rule extraction techniques as a form of
producing explanations for artificial neural network-based systems [39], [40], [41], along with
survey papers to design taxonomies for such techniques [42], [43].
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Over time, with the resurgence of deep learning and advancement in computation power, the
focus of interpretability studies shifted into these highly accurate “black box” models, which are
basically deep neural networks [44], [45]. Numerous research papers were conducted for human
interpretations of such black box models, trying to explain the reasoning behind their predictions
using various methods, such as additive structures [46], sensitivity analysis [47], randomization
techniques [48] and so on.

While the studies on the interpretation of complex Al models continued, the focus of the relevant
research shifted more into the concept of “Explainable Al (XAl)” after DARPA formulated their 4-
year XAl program in 2015 [49]. Many researchers, tackling the trade-off between interpretability
and accuracy, produced output on the explainability of different ML models, mostly working on
inherently explainable models, such as generalized additive models [50], logistic regression [51]
or linear integer models [52], which are model-specific explainability techniques. On the other
hand, as a different approach, a novel and flexible model-agnostic technique called LIME (Local
Interpretable Model-agnostic Explanations) [53] was proposed in 2016, which provided a formal
way to explain specific predictions in addition to the global understanding of the model.
Moreover, the enforcement of EU General Data Protection Regulation (GDPR) in 2018 has
granted people the “right to explanation” for autonomous systems [54]. This legal binding has
also been a propelling factor towards further research on XAl.

Following the impact of LIME, other model-agnostic explainability methods were developed
throughout the years, some of them being widely adopted such as SHAP (Shapley Additive
Explanations) [3] and counterfactual explanations [55]. In addition, some model-specific XAl
methods were also proposed, namely saliency maps for neural networks [56], Grad-CAM for
convolutional neural networks [57], and integrated gradients for deep networks [58]. These
techniques are commonly utilized as the interpretability of many Al-based model in today’s
problems.

Although previously mentioned XAl methods cover plenty of scenarios and support various ML
algorithms, some techniques have also been developed to interpret specific models. For instance,
reinforcement learning is a unique paradigm of machine learning which is significantly different
than the supervised or unsupervised alternatives. In this approach, an agent is trained through
the interaction with the environment and subsequent observations of events, enabling an
autonomous learning process [59]. Although some model-agnostic methods such as LIME or
SHAP can also be applied, special consideration is required for an enhanced Explainable
Reinforcement Learning (XRL) concept, which is studied thoroughly in survey papers [60], [61].

To actualize XRL, PIRL (Programmatically Interpretable Reinforcement Learning) has emerged as
an alternative to deep reinforcement learning paradigm and has become a widely used
framework [62]. PIRL replaces the neural network-based policies in deep learning with high-level,
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domain-specific programming language, and thus, providing an intrinsic XAl capability. Another
intrinsic XRL method provides interpretability via fuzzy policies [63]. In addition to inherently
explainable RL techniques, some post-hoc methods have also been proposed for the XRL concept,
such as genetic programming [64], reward decomposition [65], expected consequences [66],
policy distillation [67], and so on. All of these studies provide invaluable contributions to help
reinforcement learning process to be humanly interpretable.

Methods explored so far have touched XRL for global explanations, since the interpretability of
reinforcement learning mostly focuses on that aspect. Nevertheless, some work also has been
conducted for the local interpretability of such models, to gain an insight into how an agent
would perform under certain conditions. For instance, aiming to tackle a complex, multi-task
reinforcement learning problem, a novel framework based on hierarchical policies was proposed
[68]. In addition, other techniques such as interesting elements [69], autonomous self-
explanation [70], and structural causal model [71] were also presented as a form of explaining
specific actions performed by the agents. Furthermore, the recent proliferation of large language
models (LLMs) empowers the reinforcement learning process in various ways [72]. Some studies
propose to leverage LLM-based policy interpreters as a form of achieving XLR [73], [77]. Although
the use of LLMs for XLR is quite limited, it seems like a promising future research direction.

Apart from reinforcement learning, another special group of ML models that could benefit from
XAl techniques is Graph Neural Networks (GNNs), which are a special type of neural network
[78]. GNNs are similar to convolutional neural networks, however; unlike the latter models which
work on images, GNNs operate on graph-structured data. This uniqueness results in a need for
special XAl techniques for the interpretability of such models. One of the first developed methods
for GNN explainability is called GNNExplainer [79], which is still widely adopted nowadays.
GNNExplainer is a post-hoc, model-agnostic approach that works on any GNN-based model with
any type of task, supporting both node classification and edge prediction. Inspired by
GNNExplainer, many studies developed their own techniques for explainable GNN models. One
such instance is CFGExplainer [80], which is a deep learning-based model-agnostic explainer,
aiming to interpret control flow graph-based malware classification. Another work namely
RCExplainer [81] focuses primarily on GNNs in the class of piecewise linear neural networks and
provides robust counterfactual explanations. With an emphasis on cybersecurity, ILLUMINATI
[83] is a post-hoc XAl method for GNNs, providing human-interpretable explanations by jointly
considering nodes, edges, and attributes. Botnet detection is also a popular topic for the usage
of GNN, motivating researchers to come up with XAl techniques for GNNs in this specific area.
Both XG-BoT [87] and BD-GNNExplainer [88] are methods that tackle the issue of over-
smoothing and high number of abnormal edges, respectively, in the botnet detection domain.
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2.5. Cyber Threat Intelligence

The work presented in [89] introduces VinciDecoder, an automated approach that leverages
provenance analysis, machine translation, and machine learning techniques to generate high-
quality natural language reports from provenance graphs. VinciDecoder is not a CTl tool per se,
but an attack forensic tool. VinciDecoder is designed to address the challenge of identifying the
root cause of security incidents in large-scale cloud infrastructures, which is crucial for enhancing
security awareness and strengthening threat detection and prevention capabilities. The system
comprises two main phases: during the training phase, suspicious paths and their corresponding
reports are collected, and these paths are transformed into primitive sentences in an
intermediate language using a model trained with Neural Machine Translation (NMT). In the
report generation phase, the trained model and the PILT (Translation to Intermediary Language)
algorithm are used to create forensic reports based on suspicious paths associated with detected
incidents. This approach enables analysts to quickly understand the sequence of operations
during a security incident, significantly reducing the time and effort required to compile these
reports.

The work in [90] provides a review of studies on the automatic extraction of cyber threat
intelligence (CTI) from textual descriptions, highlighting its importance for proactive defence
against cyber threats. CTl is defined as evidence-based knowledge that enables organizations to
predict, prevent, or defend against cyberattacks, categorized into strategic, operational, tactical,
and technical CTI. The authors emphasize the benefits of CTl, such as proactive and actionable
defence, as well as the challenges, including the need for clean data and automated extraction
methods to improve precision and relevance. Additionally, they address the importance of
collaborations and automation in CTl exchange, building on a review of 34 previous studies and
expanding their analysis to a larger number of publications, identifying three new purposes for
CTI extraction and proposing a CTI extraction pipeline. The methodology involves searching six
academic databases and selecting 20,922 relevant publications.

STIXnet, a modular and scalable solution designed to extract entities and relationships from
unstructured cyber threat intelligence reports, is introduced in [91]. It uses natural language
processing techniques and an interactive knowledge base to achieve high F1 scores in entity and
relationship extraction, standing out as the first system to extract all STIX entities, including 18
entity types and over 100 relationships. The system consists of several modules, each specialized
in different types of extraction, such as individual entities, novel entities, and Tactics, Techniques,
and Procedures (TTPs), and employs a combination of rule-based and deep learning approaches
to extract relationships between entities, producing a JSON file that can be processed by a
graphical interface. Additionally, STIXnet includes a framework for submodule interaction that
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avoids overlap during processing and merges results from different submodules into a single data
structure, facilitating its integration into various information extraction scenarios.

The authors in [92] introduce CTI-BERT, a BERT model trained from scratch using a high-quality
cybersecurity corpus, which outperforms other general and security-specific domain models in
sentence and token-level classification tasks. They emphasize the importance of training domain-
specific models with high-quality corpora to enhance precision in threat intelligence extraction.
The authors compare their approach with models like CyBERT and SecureBERT and evaluate CTI-
BERT in sentence and token classification tasks, demonstrating superior performance.
Additionally, they tested CTI-BERT and SecRoBERTa's ability to classify malware-related
sentences, achieving excellent results.

The study in [93] focuses on enhancing security professionals' ability to prioritize and defend
against cyber-attacks by identifying temporal attack patterns from open-source CTI reports. The
authors introduce ChronoCTl, a machine learning pipeline that employs a large language model
to extract temporal relationships from CTI reports. Their evaluation on a large corpus of CTI
reports revealed 124 temporal patterns across nine categories, with the most common involving
tricking users into executing malicious code and evading malware protection systems. The study
underscores the importance of educating users, implementing immutable operating systems,
and requiring multi-user authentication to mitigate recurring attack patterns.

AttacKG [94] is an innovative technique for automatically extracting structured attack behaviour
graphs from cyber threat intelligence reports. This system identifies attack techniques and their
dependencies, incorporating cyber threat intelligence to create technique knowledge graphs.
Evaluated on 1,515 real reports, AttacKG demonstrates superior precision in identifying attack
techniques and loCs, outperforming current approaches. By automating the analysis of
intelligence reports, AttacKG enhances the detection of advanced cyberattacks and provides
knowledge graphs that assist in attack reconstruction and APT detection. Additionally, it
compares favourably with other methods like TTPDrill, ChainSmith, and EXTRACTOR, highlighting
its performance and effectiveness in extracting cyber threat intelligence.

In [95] MALOnNt is introduced as an open-source malware ontology that organizes extracted
information into knowledge graphs centred around threat intelligence. This ontology provides a
comprehensive dictionary encompassing attacks and correlated details, aiding security analysts
in comprehending attack origins, goals, timelines, actors, and exploited vulnerabilities. MALOnNt’s
structural design includes classes and properties that characterize various malware-related
aspects, including behavior and affected targets, promoting efficient information extraction and
the establishment of new connections. Through its flexible framework, MALOnNt captures and
analyses malware threat intelligence while offering pathways for extracting significant insights
from threat reports.
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The work in [96] presents GoodFATR, an innovative methodology developed for the comparative
analysis of indicator extraction tools within cyber threat intelligence. Utilizing a majority voting
scheme, GoodFATR offers a more thorough and reliable performance evaluation of these tools
without necessitating a manually curated ground truth dataset. The effectiveness of GoodFATR
was established through a series of rigorous experiments, underscoring its advancements over
traditional methodologies. Moreover, the work introduces a new platform dedicated to
systematically collecting and extracting indicators from threat reports, ensuring traceability
throughout its operational pipeline and enabling analysts to accurately identify the underlying
document sources for each extracted indicator.

[97] explores commercial threat intelligence (TI) services and contrasts their advantages and
limitations vis-a-vis open-source alternatives. While commercial services tend to provide superior
quality, contextualization, and expansive threat coverage, they can often be costly and not
universally accessible. The study advocates for a hybrid approach that harnesses the strengths of
both models, revealing an overlap of indicator feeds between competing providers. The
gualitative assessment of Tl is also noted as primarily based on informal heuristics rather than
strict metrics, indicating a gap in academic scrutiny of commercial Tl compared to the existing
focus on open-source intelligence.

The study in [98] "Vulnerability Disclosure in the Age of Social Media" explores the role of Twitter
to forecast and recognize real-world vulnerability exploitations. Through the analysis of Twitter
data patterns, the authors employ natural language processing and machine learning algorithms
to classify tweets in relation to vulnerability exploits. This work establishes methodologies for
early exploit detection via Twitter, identifying features that mark useful indicators of ongoing
exploits, while also assessing the robustness of their detection system against adversarial
manipulation. The contributions encompass a characterization of the vulnerability disclosure
landscape, an introduction of techniques for early exploit detection, and the formulation of a
problem-specific threat model against competitive interference.

[99] introduces LogPrécis, a tool that employs language models (LMs) to scrutinize Unix shell
attack logs, . By utilizing advanced LMs, LogPrécis effectively identifies attacker tactics associated
with various components of shell sessions while condensing extensive logs into concise footprints
conducive to identifying novel and similar attacks. The work validates that LogPrécis can enhance
the defence response to cyber threats by employing pre-trained language models to evaluate
Unix shell logs, classifying detection efforts based on attacker techniques and facilitating MITRE
tactic identification. This comprehensive approach aims to enhance understanding of attackers'
motives, improve threat identification capabilities, and streamline cybersecurity operations.

[100] proposes CyberRel, a joint entity and relation extraction model tailored for cybersecurity
concepts, positioning the extraction challenge as a multiple sequence labelling task. By leveraging
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techniques such as BERT, BiGRU, and attention mechanisms, CyberRel attains an impressive F1
score of 80.98% on Open-Source Intelligence (OSINT) data. The primary focus is on enhancing
accuracy and efficiency in both entity and relation extraction within the cybersecurity domain
while addressing overlaps between entities in the corpus. The paper discusses the construction
of triples representative of cybersecurity knowledge and the model's ability to produce well-
structured outputs through advanced deep learning frameworks.

The proposed method in [101], rcATT, aims to streamline the retrieval of ATT&CK tactics and
techniques from cyber threat reports to bolster efficient threat hunting and risk assessment. This
solution automates the extraction of Tactics, Techniques, and Procedures (TTPs) sourced from
various references, organizing results within a STIX 2.0 structured format. The authors illustrate
a machine learning model tailored for this task, encompassing processes such as data
preprocessing, model selection, and performance evaluations, while accounting for challenges in
text classification, including data rebalancing and augmentation strategies.

[110] proposes a comprehensive system for creating cybersecurity knowledge graphs (CKG)
sourced from after-action reports (AAR) to enhance cyber threat intelligence. Employing named
entity recognition (NER) and relation extraction methodologies, the system effectively identifies
entities and relationships, representing this information within a CKG via an ontology known as
Unified Cybersecurity Ontology (UCO). The authors detail the functionality of their Malware
Entity Extractor (MEE), Relation Extractor (RelExt), and CKG module, aimed at improving
cybersecurity analyses by automatically identifying relevant relations within AARs, subsequently
facilitating the visualization of intricate malware details and enhancing overall security
operations.

[111] introduces ATLAS, a novel sequential learning model tailored for investigating attacks
within complex and interconnected systems, leveraging a combination of sequence mining
techniques and machine learning to classify attack patterns in network traffic. Evaluation with
real attack datasets displays ATLAS's proficiency in identifying attack entities, achieving a
significant average precision of 91.06% and a recall of 97.29%. This flexible approach effectively
addresses challenges related to contemporary network security assessments and enables a more
streamlined understanding of attacks through causal graph generation, thereby enhancing
operational investigation capabilities.

[112] presents CyNER, a Python library focused on named entity recognition (NER) specific to
cybersecurity, adept at extracting entities and indicators of compromise from unstructured data.
By integrating transformer models, heuristics, and publicly available NER solutions, CyNER
presents a versatile threat intelligence discovery tool, tailored for efficient processing and
analysis of cybersecurity information. The library employs high accuracy techniques using existing
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malware ontologies, benchmark datasets, and feature combinations, facilitating insightful
information extraction aimed at bolstering cybersecurity operations.

[113] presents an improved TTP (Tactics, Techniques, and Procedures) intelligence mining
framework, termed TIM, enhanced by contextual threat factors to systematically extract and
classify TTPs from unstructured threat datasets. By leveraging natural language processing in
conjunction with threat context information, TIM meticulously organizes elements as STIX 2.1
formatted descriptions for effective sharing. The framework showcases the TCENet (Threat
Context Enhanced Network) model, evaluated on annotated datasets, emphasizing superior
classification performance in TTP analysis, aiming to arm defenders with robust long-term threat
detection capabilities and realistic threat simulations to enhance security postures.

[114] compares various deep learning-based Named Entity Recognition (NER) algorithms using a
cybersecurity dataset compiled from diverse sources such as the Microsoft Security Bulletin. The
authors evaluate contemporary deep NER algorithms, including both established and novel
methodologies, to identify the most effective model for recognizing entities within a
cybersecurity corpus. Furthermore, the significance of embedding strategies in enhancing NER
performance is discussed, providing a valuable resource for future researchers focusing on
developing new cybersecurity information extraction algorithms.

[115] introduces a groundbreaking method for automatically extracting named entities from CTlI
reports using a deep learning approach. By defining security-related keywords, including
malware and vulnerabilities, the authors leverage a Conditional Random Field (CRF) integrated
with a bidirectional Long Short-Term Memory (Bi-LSTM) network to achieve exemplary
performance, attaining an average F1 score of 75.05%. Moreover, a labeled dataset containing
498,000 entities is released to foster future research in the security domain, enhancing analysts'
efficiency in scrutinizing CTl reports.
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3.Zero-Touch Networking

With the advent of management and orchestration of virtualized NFs in NFV environments, the
objective of automating such tasks to obtain a self-managed self-healing telco system is a natural
continuation and evolution of such environments. ETSI targets the standardization of such
management automation with the Zero-Touch Network & Service Management (ZSM) industry
specification group (ISG) [102]. This ISG adds standards complementing the NFV and MEC
standards, with a focus on the definition of a new, future-proof, horizontal, and vertical end-to-
end operable framework and solutions to enable agile, efficient, and qualitative management
and automation of emerging networks and services.

ETSI ZSM defines different management domains in various parts of a telco network, namely in
the radio access edge, the transport, and the core domains. ETSI uses a closed-loop mechanism
for each of these domains, then follows with a higher level End-to-End (E2E) management of all
these domains in a bigger closed-loop management framework. Closed-loop mechanisms are
described in various models such as the Orient-Observe-Decide-Act (OODA) and Monitor-
Analyze-Plan-Execute-Know (MAPE-K) models [103]. Despite differences in step definitions,
these models follow a similar high-level workflow: Monitoring, Analysing, Deciding, and Acting.

In alignment with the ETSI ZSM vision of achieving closed-loop, autonomous management across
various telco domains, there is a growing need for intelligent, high-performance components
capable of executing decisions at the data plane with minimal latency. NATWORK aims to provide
solutions towards this direction through: 1) MERLINS which provides a ZSM-compliant
methodology for selecting and executing MTD actions based on real-time network assessments,
thereby closing the loop from observation to automated remediation and 2) Wirespeed traffic
analysis in the 5G transport network, where threat detection, anomaly classification, and
adaptive response must occur without human intervention.

Policy(s)
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Figure 1: ETSI exemplary Closed Loop Coordination timeline [109].
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3.1. Al-based MTD optimization

Following the ETSI ZSM approach, NATWORK provides a closed-loop methodology used to
manage Moving Target Defense (MTD) enforcement and optimization. As MTD provides a set of
operations that are applied to VNFs and CNFs at different levels of a telco network, such as NF
live migration, NF reinstantiation, and network reconfigurations (e.g., IP shuffling, port shuffling
and dynamic vNIC), an automated system is required to select which MTD operation to perform,
on what, when, where, and why, requiring a complex decision-making system that determines
the MTD action based on what is observed in the network. This decision-making system is
realized by designing and following a ZSM-compliant closed-loop security management
methodology for MTD operations on NFV resources and over multiple edge domains, bridging
ETSI NFV, ETSI MEC, and ETSI ZSM standards. This methodology is named MERLINS, and is
composed of four chronological cyclic phases:

A. Integration to the 5G/B5G network: this phase consists of having a passive and active
interaction with the network. The passive interaction is the consistent and real-time
observation and monitoring of the network. In contrast, the active interaction consists of
the ability to operate on the networks' components, i.e., the VNFs/CNFs, NSs, NSls, and
VIMs of the different domains in the edge-to-cloud continuum, spanning from the
multiple edge clusters or nodes to the core network.

B. Network assessment and decision making: using the data obtained from the passive
interactions and monitoring in the previous phase, this phase focuses on analysing data
such as performance metrics, resource consumption analysis, and security evaluations to
assess risks or detect attacks. This analysis then results in a decision on whether to
enforce an MTD operation or not. This is where the modelling of the network in near real-
time to evaluate and assess its state is performed. Al/ML models then use such
observations to evaluate and train its MTD strategies.

C. MTD management/orchestration: in the advent of the decision to perform an MTD
operation, this phase goes through the validation process, analysing whether the
operation can be performed, with respect to technical feasibility, i.e., if the operation can
be implemented on the specified target, and policy-based feasibility, i.e., if there is no
other orchestrator with a conflicting policy and a higher hierarchical priority.

D. MTD enforcement: at the validation of an MTD operation, this phase enforces and
implements the MTD operation on the 5G network, also using the active interactions
available in phase A, transitioning to this phase for the next iteration of the closed-loop
methodology.
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3.2. P4-based Network Analytics

The evolving landscape of 5G and beyond necessitates a shift toward autonomous, adaptive
network architectures. Zero-Touch Networking (ZTN) emerges as a critical paradigm in this
context, emphasizing self-configuring, self-optimizing, and self-healing network functions with
minimal human intervention. In NATWORK, the Wirespeed traffic analysis in the 5G transport
network aligns seamlessly with the vision of ZTN, enabling fully automated, intelligent
management of the 5G data plane. Figure 2 presents the architecture of this approach and how
the different components interact with each other. This solution can be applied either between
the gNB and 5G CORE Network (01) or between the UPF function and the DN (02).

= OpenAirinterface 5G Core Network Static UE IP Address Allocation
OPEN AIR

== INTERFACE

DOCKER-COMPOSE HOST
OAI 5G Basic Functional Core Network (BFCN)

gNB HOST

Deployment
Should ping AMF container Order
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o
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P4-RT
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Figure 2: Wirespeed Traffic analysis Architecture

Our proposed approach introduces a programmable, intelligent pipeline for enhancing the
security and visibility of 5G transport networks. By leveraging P4-enabled SmartNICs (Netronome
Agilio CX25Gbps, as shown in Figure 3), we enable real-time parsing and data preparation for
feature extraction directly at the network interface. Parsed data is forwarded to an Al-augmented
Intrusion Detection System (IDS), which classifies the traffic and identifies anomalies or threats
in real time. The IDS utilizes well-established Large Language Models (LLMs) and has been trained
to detect potential attacks based on packet traces. The insights produced by the IDS are then
relayed to a centralized Software-Defined Networking (SDN) controller, which applies adaptive
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control policies over the P4 based network. Finally, the SmartNIC enforces these policies via a P4

match-action pipeline, ensuring low-latency, in-network mitigation of suspicious flows.

Figure 3: P4 SmartNIC - Netronome Agilio CX25

Figure 4 presents the internal architecture of O1 placement of the Wirespeed traffic analysis in

5G transport network, and its main functionalities are detailed below:
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Parse the packets in P4 SmartNIC: Leveraging a P4-programmable SmartNIC, 5G
transport network packets are being parsed enabling the analysis of incoming network
traffic and extraction of the relevant header fields, payloads, or metadata for further
processing. Fine grained control of the data is possible, allowing at wirespeed to extract
the data at different levels (e.g. specific host communicating over the telecom network,
specific connection from a host, or the entire transport interface between the RAN and
the Core Network).

Send the packets to IDS for classification: Once parsed, the SmartNIC forwards either full
packets or selectively extracted features (e.g., headers, flow keys, or metadata) to an
Intrusion Detection System (IDS). The IDS conducts real-time deep packet inspection and
behavioural analysis to classify traffic, identifying potential security threats such as
anomalies, malicious payloads, or patterns indicative of attacks within the 5G network
context.

Send inference to SDN Controller: Upon completing its analysis, the IDS generates
actionable insights, inferences or decisions which are transmitted to the SDN controller.
The controller which orchestrates network behavior based on centralized control logic,
interprets these inferences to dynamically update forwarding behavior, access controls,
or mitigation strategies across programmable network elements. These decisions are
enforced directly on the card, allowing the control over specific flows over the network
(e.g. dropping a single connection).
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e Apply match-action pipelines: Based on the inferences from the IDS and instructions from
the SDN Controller, the P4 pipeline on the SmartNIC executes context-aware match-
action rules. These pipelines consist of rules (match conditions) that determine how
packets should be handled, such as forwarding, dropping, modifying, or mirroring them.
This enables enforcement of fine-grained, stateful security and Quality of Service (QoS)
policies at the data plane with minimal latency.

Inference
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Figure 4: System architecture of O1 placement of Wirespeed traffic analysis in 5G

The communication between the IDS and the P4-RunTime has been defined, and a JSON
file is created by the IDS after the completion of the inference. Figure 5 presents the
template of the JSON file which is sent to the P4-RunTime in order to apply the match-
actions to the smartNIC and consequently the 5G network.

urity mac":

Figure 5: JISON template for applying match-actions to P4 smartNIC
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4. Al-Driven Real-Time Threat Detection

4.1. Al-based behavioural analysis

The increased complexity of modern computer networks has introduced significant challenges in
ensuring performance, reliability, and security. These challenges are further amplified by the
rapid growth of cloud computing, virtualization, and multi-tenant architectures, where diverse
applications and users share infrastructure across multiple domains. In such environments,
network monitoring plays a vital role in detecting anomalies, ensuring service quality, and
defending against Cyber threats.

However, traditional monitoring techniques are no longer adequate to meet the growing
demands of advanced infrastructures, particularly with the emergence of Al-based behavioural
analysis. This cutting-edge approach leverages machine learning and artificial intelligence to
detect patterns, predict anomalies, and enhance network security in real-time.

The effectiveness of Al models depends heavily on the availability of high-quality, fine-grained
telemetry data from various points in the network. Emerging techniques, such as Postcard
Telemetry and In-band Network Telemetry (INT), enable more detailed and real-time traffic
analysis by leveraging programmable data planes, including those written in P4. These
technologies allow the network to embed monitoring data within packets or generate trace
messages at each hop. However, these methods often lack the flexibility required to adapt to the
heterogeneous and rapidly evolving nature of modern networks.

Decentralized Feature Extraction (DFE) Telemetry, enabled by P4-based data plane
programmability, has been proposed as a novel solution that provides a flexible mechanism for
supplying Al models with only the required packet information. This is achieved by selectively
extracting specific features from packets associated with a particular flow, thereby enabling real-
time data processing, reducing bandwidth consumption, and preserving data privacy.

4.1.1. Decentralized Feature Extraction Telemetry (DFET):

The suggested DFE Telemetry module utilizes an offloaded data plane program, that can be
deployed across multiple P4 switches of the monitored network, to configure and manage
telemetry flows. Telemetry information can be dynamically tuned to adhere to specific
monitoring purposes, enabling precise control over network visibility. This functionality of DFET
is highly useful for Al-driven security techniques where the framework can recognize patterns
and correlations in new attacks.

Behavioural Model (BMv2) software switch has been used to deploy the P4 program of DFET
module. The model follows several key stages:
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The parser: Represented as a finite state machine, where each state extracts data from a
specific header structure and stores it into runtime variables. Transitions between states
are conditional, depending on the values of the parsed header fields.

Ingress and Egress control blocks: These blocks include multiple match-action tables that
inspect various header fields to trigger corresponding actions. A control function
determines the sequence in which the tables are executed. The ingress block mainly
handles packet forwarding, while the egress pipeline performs additional processing after
the egress port has been selected.

Traffic Manager: It is responsible for queueing and scheduling packets between the
Ingress and Egress pipelines. It guarantees efficient packet flow by managing buffering
and preventing congestion.

The deparser: This final stage reconstructs the packet by serializing the modified headers,
making the packet ready for forwarding to the next switch.

The processing procedure begins when a packet arrives at the P4 switch, where it first enters the

parsing stage. As illustrated in Figure 6, the parser extracts the Ethernet header, followed by the
IPv4 header. Then based on the value of the protocol field in the IPv4 header, the parser
determines whether to extract the UDP or TCP header.

Parser Ingress Pipeline Traffic Manager Egress Pipeline Deparser
o Table_forward UDP Table_forward TCP |:”> 1
Keys Keys 1]
[~Src P add | ~Src P add | =3
o -D:"m'aaa -D:Wm'aaa Packet ==
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uopP Actions Actions I:] |>
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Table L2 Table L3 Table_L4 UDP Table_L4 TCP Table Metadata Table_Report
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*L2 Flag “L3 Flag *L4 UDP_Flag *L4 TCP Flag Metadata_Flag -
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Figure 6: DFET pipeline

Once parsing is complete, the packet moves into the ingress pipeline, where it is directed to one

of two tables (Table_forward UDP / Table forward_TCP) according to the transport protocol

(UDP or TCP). These tables match on the packet header fields — specifically, IP addresses and
source UDP/TCP port — and invoke the corresponding action (Forward _UDP / Forward_TCP) that

roject funded by
Co-funded by 0 e s |8 () UK Research Page 41 of 113
the European Union i fralrutry =4 B and Innovation




NRT:..

D4.3 Intelligent networking, CTI & explainability.rl
W.ALRK

determines the output port and mirrors the packet to enable report generation in later stages.
Flows are identified based on source IP address, destination IP address, and source UDP/TCP
port.

It is essential to highlight that the DFET module enables the control plane to perform layer
selection by specifying the header layers from which features should be retrieved. This selection
is achieved by passing binary indicators (1 to activate extraction, O to deactivate extraction) as
parameters to the relevant action associated with the forwarding table. The packet then
proceeds through the egress pipeline, where only the cloned packet is subjected to additional
processing in this stage, moving through a set of tables (Table_L1, Table_L2, Table_L3,
Table_L4_UDP/Table_L4_TCP, Table_Metadata), one table for each layer. Each table checks
whether the corresponding layer argument is activated for the current flow. If it is enabled, the
DFET module allows the control plane to perform another level of flexibility by passing binary
flags in the same order of the corresponding standard header fields to determine which fields
are subjected to be retrieved from this header (by passing 1) and which not (by passing 0). A one
field equivalent customer header is defined and activated for each field marked for extraction.
Regarding the transport layer, two tables are defined for the extraction, and the packet is
processed through one of them based on the transport layer protocol it carries. For the metadata
extraction, the control plane provides a sequence of binary flags that determine which metadata
fields to include. These flags are ordered as follows: ingress timestamp, egress timestamp, hop
latency, enqueue timestamp, enqueue queue depth, dequeue time delta, and dequeue queue
depth. At the end of the egress pipeline, the packet undergoes the stage of the report generation,
where the destination of the report is defined by the control plane and the produced report is
always a UDP packet despite the original transport protocol (TCP/UDP).

4.1.2. Functional Validation:

To validate the functionality of the proposed DFET module, the Mininet emulation environment
was utilized for topology creation. Mininet enables the emulation of realistic network scenarios
and facilitates the verification of the behaviour of inserted flow rules. Figure 7 demonstrates the
network topology used for the operational verification, it consists of one P4 switch, three hosts
and three collectors. Host H1 sends two flows (one UDP flow and one TCP flow) to host H2 and
sends one UDP flow to H2. The P4 switch has been instructed to monitor different features for
each flow and forward the monitoring data to a specific collector as it is illustrated in Table 1.
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Figure 7: Network Topology in Mininet

Table 1: Test flows and corresponding DFE extraction parameters

Report To L2 Info L3 Info L4 Info Internal Info
UDP (ox} Src MAC, Dst Src Port,
MAC Ether Type Dst Port
UDP C2 Version,
Length
TCP Cc3 Src Port, | Ingress
Dst Port | Timestamp

Figure 8 shows the packets captured by Wireshark at the P4 switch interfaces for each flow: the
original received packet (length 2 bytes), the original forwarded packet (length 2 bytes), and
three generated UDP reports. The sizes of the UDP reports vary depending on the amount of data
extracted from each flow. As shown in Figure 8, the report length is 18 bytes for Flow 1, 3 bytes
for Flow 2, and 8 bytes for Flow 3. Different colours are used to highlight the information
contained in each report, which corresponds exactly to the information specified in Table 1.
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a. DFET report for the first UDP flow.
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b. DFET report for the second UDP flow.
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c. DFET report for TCP flow.

Figure 8: DFET reports for the three generated flows.

The validation results demonstrate that the proposed Decentralized Feature Extraction
Telemetry (DFET) mechanism functions as intended, successfully extracting varied information
from multiple traffic flows and delivering it to designated destinations as configured by the
control plane.

4.2. Multimodal Network IDS with PCAP Monitoring

This module offers a lightweight, Al-enabled Intrusion Detection System (IDS) for cloud-based
services. It leverages Software-Defined Networking (SDN) for centralized data collection and
control, in combination with artificial intelligence to deliver advanced threat detection and
mitigation capabilities. This approach is motivated by the studies presented in section 2.2. It
integrates three distinct representation methods through Al -Fusion methods.

The main objective is to create a resource-efficient IDS capable of promptly identifying and
responding to security threats—particularly Denial-of-Service (DoS) attacks—while maintaining
high performance and adaptability within modern cloud infrastructures.

The proposed IDS is grounded in a hybrid methodological approach that combines:
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e Simple statistical machine learning models for rapid initial detection, using network data
retrieved via the SDN infrastructure.
e Al-based analytical modules for in-depth threat characterization and attack profiling.

This dual-layer approach supports both speed and accuracy in detection while ensuring energy-
efficient system operation. The OpenFlow protocol plays a central role in enabling
communication and control between the SDN controller and network devices.

The proposed system will offer rapid Detection and Mitigation, which will be particularly effective
in early-stage DoS attack scenarios along with detailed Threat Analysis. It is designed to provide
insights into attack types and allows the identification of multiple malicious IP addresses.
Moreover a lightweight design is proposed, optimized for minimal resource consumption, making
it suitable for deployment in scalable cloud environments.

4.2.1.High Level overview

To enhance detection coverage and accuracy, multimodal architecture based on packet capture
(PCAP) file analysis has been developed. The module aims to enable the extraction and evaluation
of multiple data modalities from network flows. It offers deep packet inspection (DPI) alongside
statistical session analysis. The module is protocol independent, meaning that it will support all
standard communication protocols and is readily adaptable to new or evolving ones. It operates
as an End-to-End Al Pipeline, eliminating the need for manual or domain-specific feature
engineering.

The module processes network traffic captured in PCAP format that is pre-processed and filtered
in a time efficient manner. Then it extracts three types of features from each flow detected:

e Image-based representations
e Feature Embeddings
e Statistical Attributes

Each feature type is processed by a dedicated Al model. Their outputs are then fused in a final
decision module, allowing for robust detection of known and unknown attack patterns. Once a
malicious flow is detected, the system triggers an alert and logs relevant details about the attack
and its source. The process is shown graphically in Figure 9.
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Figure 9: High level overview of the proposed approach.

Each type of feature is handled by a different Al model: Image-based representations are fed to
a Convolutional Neural Network (CNN), Feature Embeddings are handled by a Long short-term
memory Neural Network (LSTM) while Statistical Attributes are handled by a Multi-Layered
Perceptron.

Currently, after an anomaly is detected, the user is notified via a terminal as shown in Figure 10.
Along with the type of attack various other information is provided such as the IP address and
Port of the Attack.

Figure 10 Example of attack detection result

4.2.2. Data Collection and preprocessing

The data collection phase will involve executing multiple distinct attacks e.g. Denial-of-Service
(DoS) attacks across the CERTH testbed, capturing both malicious and normal traffic to create a
representative and balanced dataset. Protocols such as TCP, UDP, and SCTP will be included to
encompass a wide range of network applications, including those relevant to 5G technologies.
Traffic data is captured in the PCAP format and pre-processed by removing identifying
information to avoid training bias. Flows are then extracted based on 4-tuple identifiers. To
address real-time detection challenges, PCAP files are segmented by time intervals—beginning
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at one second and doubling with each subsequent segment—thus facilitating better file
management and more practical flow identification, especially for UDP.

Once flows are identified, three categories of features are extracted per session: statistical
features, embeddings, and image representations, as shown schematically in Figure 10.

Statistical features provide insights into traffic behaviour over time, highlighting anomalies
through deviations from expected norms. These features, adapted from CICFlowMeter, are
selected for their protocol independence to maintain adaptability. A total of 57 features were
extracted for bidirectional flows and 19 for unidirectional flows. Embedding extraction, on the
other hand, involves processing the hexadecimal packet data from each flow, converting byte
pairs to integers, and standardizing the input to 1024 bytes through trimming or zero-padding.
This transformation allows sequential models to interpret the hex stream as time-based input for
Al-driven classification.

Image extraction followed a similar preprocessing path as embeddings. After converting the hex
stream to integer values and ensuring a consistent length, the data were reshaped into 32x32
pixel grayscale images. These visual representations capture flow characteristics in a format
conducive to convolutional neural networks (CNNs) or other image-based Al models. Each of the
three feature types—statistical, embedding, and image—is processed through dedicated Al
models. The final IDS decision is produced by fusing the outputs of these models using learnable
parameters, providing a robust and flexible detection mechanism suitable for a range of cyber
threats in both traditional and next-generation network environments.

4.3. Al-Driven Multi-Agent System for Real-Time Threat Intelligence and
Automated Response in 5G Networks

Latest generation networks (b5G/6G) introduce complex security challenges stemming from their
highly distributed, software-defined, and service-based nature. Addressing these challenges
requires intelligent, scalable, and adaptive security systems that go beyond static rule-based
models. The following section presents the high-level overview of an Al-driven, multi-agent
architecture for real-time threat intelligence and automated response in 5G environments. The
system is built around a secure, modular foundation using the Model Context Protocol (MCP)
[104] and leverages advanced deep learning and large language model (LLM) mechanisms.
Furthermore, the system is carefully mapped to the 3GPP security framework to ensure
architectural compliance and operational synergy with established telecommunications
standards.
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4.3.1. System Architecture

The architecture consists of a collection of intelligent agents, each operating in a Dockerized
environment to ensure high scalability, modular integration, and secure deployment. These
agents are orchestrated using MCP, a communication protocol that enables the dynamic
construction of agent workflows on top of LLMs while ensuring contextual data integrity and
access control. The following subsections present details on the MCP and the functionalities of
four different Agents.

4.3.1.1. Model Context Protocol

The Model Context Protocol (MCP) serves as the foundational communication and coordination
layer that enables context-aware interactions among intelligent agents and large language
models (LLMs) within a distributed Al system. It is particularly suited for high-stakes
environments such as 5G cybersecurity, where secure, interpretable, and composable workflows
are necessary for effective real-time decision-making [104][105].

At its core, MCP introduces a structured mechanism for maintaining and transmitting so called
“context objects” i.e. semantically annotated data containers that encapsulate both the inputs
and outputs of agent interactions. These objects persist across different stages of an Al-driven
workflow, allowing downstream agents or models to reason with awareness of the full context
in which prior decisions were made.

MCP ensures that all data shared between agents is bound to a secure, queryable context which
is persistent and formally defined. MCP supports declarative workflow composition, enabling
agents to be linked into arbitrarily complex configurations—such as chains, trees, or feedback
loops—without losing context fidelity. This composability allows agents to collaborate on multi-
step reasoning tasks, well suited to the tasks of the proposed system. An example of a multi-step
reasoning in the discussed context is “receive information concerning threat - evaluate impact
- generate report - select mitigation” in a traceable and consistent manner.

To protect these interactions, MCP incorporates a secure multi-agent messaging system where
all communications are encrypted, time-stamped, and authenticated. Role-based access controls
ensure that only authorized agents can read from or write to a given context, and temporal
scopes define the lifetime and expiry conditions of context data. This ensures strict compliance
with security and privacy policies, which are particularly critical in telecommunications
environments governed by regulatory standards.

A key strength of MCP lies in its native integration with large language models. By treating LLMs
as first-class agents, MCP allows dynamic retrieval and injection of context into prompts, as well
as bidirectional reasoning between structured data and natural language outputs. This makes it
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possible to support hybrid workflows that combine statistical learning (e.g., deep anomaly
detection) with symbolic reasoning and narrative synthesis.

Furthermore, MCP maintains complete provenance for all context exchanges. Every decision,
transformation and output are logged with agent identifiers, decision justifications (when
extracted from LLM chains), and associated metadata. This audit trail is invaluable for post-
incident analysis, model refinement, and regulatory compliance.

In the multi-agent system described in this section, MCP acts as the cohesive tissue that binds
together specialized security agents—those performing threat detection, |0C correlation,
response selection, and orchestration—into a coherent, resilient, and transparent decision-
making system suitable for securing next generation networks.

- Threat Intelligence Agents

Two distinct Al-enabled agents will be developed to handle the following tasks: gathering,
correlating, and interpreting threat intelligence data.

I0C Correlation Agent

This agent uses a two-stage Al pipeline to correlate indicators of compromise (IOC) across
network functions to detected coordinated attacks or evolving threats.

The first stage utilizes a stacked autoencoder deep neural network (DNN) [106]. It has
multimodal data input, including security logs, network traffic and resource related data. The
model will be trained using data extracted using normal network operations. This type of DNN
extracts and compresses relevant latent features from these inputs and uses these to recreate
the original inputs. This characteristic allows the DNN to handle new inputs and utilizing them to
classify the condition of the network as normal or abnormal at a given time.

Once abnormalities are discovered, the mechanisms of the second stage is activated: An LLM-
based analytical layer then consumes resource consumption and security related data of network
functions (e.g., AMF, SMF, UPF), to perform cross-domain correlation across the network,
identifying indicators of compromise (I0Cs) and uncovering potential patterns that e.g. might be
associated with coordinated, multi-vector attacks.

Threat Reporting and Insight Agent

This agent utilizes two subsystems. The first is a retrieval-augmented generation (RAG)
framework that connects a fine-tuned LLM to a domain-specific knowledge base. This knowledge
base includes a) Historical incident data b) Cybersecurity whitepapers c) Relevant standards and
best practices [107]. The LLM synthesizes this information to generate real-time, human-
readable threat intelligence reports tailored to specific network zones (e.g., RAN vs. Core) or
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operator roles (e.g., SOC analyst vs. compliance officer) of every threat or attacks detected. These
reports will include multiple aspects of security related information such as severity scores,
impacted assets, root cause analysis, and recommended actions.

A second LLM is utilized to receive the outputs from a) the I0C Correlation Agent and b) the RAG
to create the final output for this agent, i.e. reports for different time granularities e.g. a daily or
weekly digest etc.

- Automated Response Agents

The response subsystem consists of two Al-empowered agents responsible for determining and
executing adaptive mitigative actions to handle threats and attacks against the system.

KPI-Driven Response Selector Agent

The first agent is a KPI-Driven Response Selector. It utilizes a pointer neural network [108] that
picks the optimal selection against a set of predefined response actions (e.g., rerouting,
guarantine, rate limiting) by performing multi-objective optimization based on the values of
several key performance indicators (KPIs). These KPIs are evaluated in real time based on network
telemetry and risk metrics. The agent will interface with the appropriate network endpoints to
trigger enforcement actions via secure APIs.

Orchestration Coordination Agent

The second agent handles Orchestration Coordination. This agent employs an LLM that interacts
with Security Orchestration, Automation, and Response (SOAR) tools/platforms to perform
complex mitigation tasks such as a) Patching vulnerable services, b) Updating firewall
configurations c) Adjusting access control lists (ACLs) and d) Modifying slice-level security
policies. It ensures end-to-end execution traceability and feedback incorporation into the agent
network for closed-loop adaptation. A second LLM is utilized to document all decisions in a
human readable format.

Figure 11 presents the high-level architecture of the proposed solution.
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Figure 11 High level overview of the proposed Architecture

4.4. Real-time monitoring and centralised response to network threats

4.4.1. Technology summary

The device is based on FPGA technology and comes in the form of a PCle SmartNIC card, designed
to be integrated into existing network infrastructure. Its primary role is to detect Distributed
Denial of Service (DDoS) attacks in real time by analysing network traffic at very high speed. To
achieve this, it combines several advanced technologies such as FPGA-accelerated hardware
processing, machine learning algorithms to identify malicious behaviours, and fine-grained
customisation enabled by P4 programming. This combination ensures intelligent and adaptable
packet inspection with minimal latency.

This device features multiple interfaces, for instance a 10 Gbps Ethernet interface for intercepting
traffic, a PCle interface for communicating with the host machine via an API, and a 1 Gbps
Ethernet interface for management and configuration. Through its API, it can also provide alerts,
detailed measurements and actionable recommendations to management systems or the host
machine.
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4.4.2. Benefits for the network

In a distributed network architecture, multiple FPGA-based devices can be deployed at strategic
points in the infrastructure, each performing local threat detection and analysis. These devices
operate autonomously to inspect traffic in real time where they are installed, but their full
potential is realised when they are integrated into a centralised monitoring system. Each device
exposes an API that allows data to be sent to a global dashboard responsible for collecting,
aggregating, and analysing information about the entire network.

This centralised dashboard plays a key role in correlating security events: it can detect distributed
attack patterns, such as coordinated DDoS campaigns, by comparing suspicious flows observed
on different devices. Using the API, the dashboard receives real-time alerts, detailed metrics, and
event logs, giving network administrators a unified dynamic view of the overall security level of
the network.

Beyond simple monitoring, the dashboard can also play an active role in incident response. Using
APls exposed by each device, it can emit commands to update detection rules, isolate
compromised network segments, or block malicious flows close to the source. This centralised
coordination enables a rapid and consistent response to threats, significantly enhancing the
overall resilience and security of the infrastructure.

4.4.3. Implementation in the field

Devices are deployed across the network, each equipped with real-time traffic analysis
capabilities. These devices generate security alerts based on suspicious activity and expose an
APl through their PCle interface. This API allows for the dynamic configuration of detection rules
and machine learning models, enabling rapid response and adaptation to emerging threats.

A centralised monitoring system, as shown schematically in Figure 11, hosted securely, collects
and consolidates data from all deployed devices. This dashboard regularly queries each device
through its APl and is also capable of receiving push webhooks when critical events occur. Local
alerts and identified suspicious traffic are transmitted to the central system in structured
message formats. The dashboard then aggregates, stores, correlates, and visualises these events
using graphical tools such as Grafana.

The system offers more than just visualisation. Through the same device APls, the dashboard can
issue remote commands for orchestration and response. For instance, it can block suspicious
flows across multiple devices, update detection models or thresholds in real-time, and even
isolate network segments where infected containers are detected. It can also disseminate
blacklists to all devices through the central controller. Every command sent and event received
is logged, ensuring full traceability and enabling comprehensive security audits and efficient
incident response.
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Security and scalability are integral to the system’s design. All API communications are secured
using mutual TLS authentication and encrypted over HTTPS. The architecture supports horizontal
scalability through load balancers, allowing it to manage from dozens to hundreds of devices
efficiently. Auto-discovery features and integration with orchestrators further enhance the
system by automating the enrolment and configuration of new devices.

Operating system

Centralised monitoring system

FPGA-based device

Figure 12: Example of centralized monitoring.
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5. Blockchain-based Trust Establishment

The rapid utilization of l1oT devices in their integration in 5G networks has introduced new
demands for scalable, low-latency, and secure trust establishment approaches. In modern 5G
environments, devices often require access not just to network services but also to third-party
service providers across diverse ecosystems. This shift calls for an authentication model that goes
beyond traditional, centralized approaches—one that can offer trust, privacy, and
interoperability at scale. The ZT and blockchain-based trust management approaches are two
critical strategies for securing 5G networks. zero trust architecture removes implicit trust from
any system component, mandating active authentication for all network entities, both internal
and external. This method improves security by enforcing continuous verification and minimizing
attack surfaces through access control. However, its downside is the potential performance
degradation in ultra-low latency applications due to the overhead of continuous verification.

Blockchain-based trust management, on the other hand, uses decentralized ledgers to ensure
transparency and immutability, offering a trust framework without relying on central authorities.
This decentralization is beneficial for the dynamic nature of 5G networks with many devices but
introduces challenges related to the scalability and privacy of a large, decentralized network. The
complexity of managing such a system and ensuring secure, efficient smart contracts can also
impact system performance and increase the risk of attacks, such as de-anonymization. Several
additional security strategies complement these approaches. Advanced authentication
mechanisms, such as elliptic curve cryptosystem-based attribute-based encryption (ABE), help
minimize computational overhead while maintaining robust security for loT devices in 5G
networks. However, these methods must balance security with efficiency to avoid excessive
energy consumption or processing delays, particularly in resource-constrained environments like
drones. Moreover, the integration of Multi-Access Edge Computing (MEC) and Device-to-Device
(D2D) communications enhances specific use cases like smart manufacturing but can introduce
bottlenecks if intermediate nodes become overloaded.

Current 5G authentication mechanisms during trust establishment rely heavily on involving
network functions within the core network, such as the AMF and AUSF. While these network
functions provide robust security for network access, they are not optimized for repeated or
federated end to end validation when devices interact with multiple external service providers.
This centralization introduces potential bottlenecks and unnecessary latency—especially in trust-
sensitive and end to end loT use cases such as smart manufacturing and smart cities. To address
these challenges, NATWORK includes a security management service that integrates blockchain
technology with the 5G authentication process, enabling decentralized and transparent trust
establishment. This service allows devices to prove their authenticity directly to service
providers—without needing repeated interaction with the 5G Core. This approach aligns with the
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principles of zero-trust networking and supports scalable, trust less access control, particularly in

distributed loT environments.

The service leverages both standard and newly introduced components to enable blockchain-
based trust establishment. It is built on the standard 5G Core architecture, preserving its native
functions and the 5G Core Network as the baseline infrastructure). As shown in Figure 13, the

main players are as follows:

UE Device: The UE device is an loT node that aims to join the network and utilizes the
services provided by the loT service provider. It initiates the process by interacting with
the gNB node and requesting to join the network and later accessing services.

gNB Node: The gNB nodes reside in access plane and act as an intermediary node
between the UE on one side, the core network, and the service provider on the side. The
node facilitates part of the UE registration and trust establishment.

Core Network: Through the involved NFs, including the AMF and AUSF, it provides the
initial registration of UE in the network. Additionally, it generated the tokens and stored
in the blockchain.

Service Provider: The node provides services to the authenticated and authorized UE in
which the trust with them has been established and grants access based on
authorization properties.

! .
' O openscs
¢ ()
rv —
Blockchain gNB
(Ethe'reUmI) UERANSIM Core Network

Service Provider VE

Figure 13 High level overview

Additionally, the following two other framework components enable the decentralized

authentication and access control in an loT environment:

Blockchain: The traditional authorization database is replaced with an Ethereum-
compatible permissioned blockchain. This provides a decentralized, transparent, and
integrity-safeguarded mechanism for device authentication management. It consists of
a permissioned Ethereum Blockchain and a smart contract.
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e Bridge: Itis a vital component of the trust establishment which acts as a communication
bridge between the 5G core network and the blockchain. The main function of this
bridge is to listen to the log of the AMF function inside the 5G core, derive the
pseudonym associated with the registration, and to write authentication and access
control status to the blockchain via Web3 interfaces.

UE registers with the 5G network and, simultaneously, a pseudonym is generated from its SUPI
and recorded on the blockchain. RAN node that manages the wireless link, facilitating UE
registration and service requests. AMF oversees device registration and mobility and triggers the
blockchain-based process by emitting logs, which are monitored externally. AUSF and UDM
conduct standard identity checks and enable initial network-level trust. SMF and UPF handle
session setup and data flow, routing traffic to the data network (DN), where external services
reside. DN is the logical endpoint for external services. Here, further authentication happens
through blockchain mechanisms.

The Service Provider Module simulates an application or external service. Though centralized in
its design, it uses the blockchain for offloading identity verification. Its key operations include:
Receiving authentication requests from UEs, verifying pseudonyms through a blockchain smart
contract (Auth5G), and performing challenge-response with the UE using cryptographic
signatures, and issuing short-term tokens for low-latency access without repeated authentication

Instead of relying on internal databases for identity storage, this service utilizes a permissioned
blockchain (Ethereum-Compatible with Smart Contracts) to manage device credentials. Auth5G
Smart Contract manages access control, stores pseudonym records, validates service provider
identities, and handles access policy checks. Device pseudonyms, timestamps, validity periods,
and access control hashes are stored in the network. The service guarantees verifiable,
immutable identity assertions with reduced reliance on centralized control.

The 5G-Blockchain Bridge in this service facilitates the interaction between the 5G Core and the
blockchain. It monitors AMF logs for successful device registrations, and extracts SUPIs and
derives pseudonyms using time windows and deployment-specific salts [75]. Finally, it submits
authentication records to the blockchain via Web3 interfaces. This bridge ensures seamless
communication between otherwise separate infrastructures, while respecting existing 5G
standards.

To maintain user privacy while supporting trust, UEs are identified on-chain via pseudonymes.
These are generated as follows: First it combines the UE’s SUPI, a X-hour time window, and a
deployment-specific salt. Then, it hashes the result and produces an unlinkable identifier. Finally,
it stores the pseudonym on the blockchain with metadata such as expiry time and access policy
reference. This allows the service provider to validate the UE without learning or storing the
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original identity. When a UE requests access to a service, the service provider queries the
blockchain to check the pseudonym’s status, verifies the UE’s cryptographic signature, and issues
a service token for future access without repeating blockchain queries. This design reduces
latency, enhances trust decentralization, and supports stateless verification aligned with zero-
trust principles.

5.1. Blockchain Authentication Mechanism

This service integrates a blockchain-assisted authentication mechanism, where both the UE and
the service provider are represented through verifiable identities recorded on-chain, aiming to
enable secure and transparent trust decisions. The blockchain authentication process contains
the following.

5.1.1. Pseudonym Generation

For representing UE identity on-chain, a pseudonym-based UE identity is employed. Each UE is
identified with a pseudonym after a successful registration with the Core network. The
pseudonym is the hashed long-term Subscription Permanent Identifier (SUPI) and serves as a
privacy-preserving on-chain identity, being deterministically generated by integrating also a time
window, and a salt. The combination is then hashed with the Keccak256 algorithm [76] to obtain
a fixed-length pseudonym that is unlinkable to the original SUPI and is compliant with any
blockchain identity representation.

Once the pseudonym has been generated, it is recorded on-chain via a transaction to the smart
contract. In this case, the transaction includes: the pseudonym being used as the identity
reference, a validity duration of 12 hours after which the pseudonym needs to be regenerated
and re-authenticated, and a hashed access policy that is derived from the UE’s network slice and
session parameters that are retrieved from the 5G subscription database.

5.1.2. Service Provider Registration:

Similarly to UE authentication, each service provider must be explicitly registered on the
blockchain to take part in the authentication process. This is done in parallel to UE identity
management, and each service provider is identified by its blockchain address, and registration
is performed by the smart contract deployed by the network operator. The smart contract will
maintain an indexed list of accepted service providers, and for each service provider, it stores the
metadata, including the registration time and current status. This is to allow the service provider
to be approved before it can issue an authentication challenge or verify UE credentials. Only the
service provider recognized on-chain can call the authentication records decentralized.
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5.1.3. Pseudonym Verification

When a UE interacts with a service provider, the provider needs to verify the UE’s pseudonym on
the blockchain. In the verification process, the service provider checks if the pseudonym has been
authenticated and is currently active, at the same time, the authentication record of the
pseudonym to make sure it is still within the valid lifetime, then, the authentication record of the
pseudonym to make sure the service scope of the service provider includes the associated access

policy.

The end-to-end trust establishment in NATWORK delivers several key advantages for loT and 5G
security. First, it shifts trust from centralized 5G Core entities to blockchain-enabled mechanisms.
Also, it uses cryptographic pseudonyms and verifiable smart contracts to enforce strict access
controls, and minimizes repeated interactions with the 5G Core, improving response times for
external services. This component works alongside existing 5G infrastructure without modifying
native components. By combining blockchain’s integrity with 5G’s flexibility, this component
enables a scalable and resilient trust layer for loT services.

5.2. Main Phases

Generally, the component has three main phases. Figure 14 illustrates the process in more
details.
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Figure 14 Main phases.

In the following, the phases have been briefly described.
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UE Registration: The UE initiates the process by sending a request to register with the gNB node,
which will be directed to AMF in the Core for initial authentication. AMF performs the
authentication and security procedures with UE. Simultaneously, the registration will be
observed by the Bridge and based on that the pseudonym will be generated and stored in the
Blockchain. Finally, the Core network responds with an initial registration response, confirming
that UE is registered in the network.

Token Issuance: When a UE tries to access a service provider for the first time within the validity
window of the pseudonym, the UE can be fully verified through the registered pseudonym. The
service provider issues a random cryptographic challenge to the UE. The UE signs the challenge
with its own private key of the blockchain wallet. The service provider then sends the challenge
and the signature to the blockchain, where the verify’Authentication function is called on the
smart contract to verify the authenticity of the UE. The function will check if the pseudonym
exists and has been recorded on-chain, the current timestamp is below the expired time, and the
pseudonym’s UE’s associated access policy hash equals the one required by the service provider.

Subsequent Authentication: During the subsequent authentication and access, the UE will
present the service token issued in the previous step to the service provider, the service provider
then performs an offline, local verification of the token, without contacting the blockchain again.
This design significantly reduces authentication latency and supports scalable, high-frequency
access patterns. The service provider recomputes the token hash from the cached payload and
compares it with the token received to ensure the integrity and authenticity. The service provider
checks the expiration timestamp embedded within the token to make sure its validity. To
optimize the performance of the authentication, the service provider maintains a lightweight in-
memory token cache with efficient lookup and automatic cleanup of expired entries. This allows
for rapid and reliable access control for trusted UE, without any additional blockchain cost,
thereby ensuring low-latency authentication in time-sensitive environments such as loT-based
services.
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6. Explainable Al

With the growing complexity of ML models, it is becoming more crucial to be able to understand
the decisions or predictions made by Al-based systems. The black-box nature of such models
becomes even more of a serious concern when there is an automated Al-powered system that
can take actions without requiring human input. In these cases, the system owners or developers
would prefer to have a means to interpret (i.e., “explain”) why a certain decision is made by an
Al model. Such transparency not only allows system owners to foresee future decisions under
similar circumstances but also enables them to adjust their current knowledge depending on the
past actions. Moreover, by providing Explainable Al (XAl) solutions, the decision-making
processes can be made accountable, ensuring the compliance to certain legal standards.

In the scope of NATWORK project, XAl has a significant importance for delivering high-quality and
trustworthy solutions. The envisioned 6G architecture relies heavily on Al-powered components,
leveraging advanced ML methods across edge-to-cloud continuum. By following the seamless
orchestration and integration approach provided by 5G standards, mainly NFV and ZSM, 6G
networks will also decrease the need for human input for continuous operation and allocation of
resources. Therefore, achieving reliable, accountable, and transparent decision-making
processes is critical for every service of the project. In addition, these beneficial features would
help the operators to investigate potential issues in case of unexpected decisions performed by
automated models. For this purpose, XAl is the key concept to unravel the black-box nature of
the underlying Al mechanisms, by either making the models intrinsically interpretable (i.e.,
intrinsic XAl models) or developing separate explainability components (i.e., post-hoc XAl
models), as previously explained in 2.4. This section explains the specific XAl techniques utilized
by each applicable NATWORK component, which differ based on the underlying mechanisms or
the requirements of the relevant service.

6.1. XAl extension for Multimodal Network IDS with PCAP Monitoring

This sub-module aims to enhance the transparency of the Al-based Intrusion Detection Systems
(IDS) module presented in section 4.2. It will introduce explainability features aimed at making
the model's decision-making process more interpretable for users. The complexity of many deep
learning models, often referred to as their “black box” nature, limits user trust and hinders
adequate validation. Addressing this issue is particularly important in cybersecurity contexts,
where understanding the rationale behind alerts is crucial for operational response and model
improvement.

A major challenge in explainability arises from the nature of payload data. Payloads contain
complex and often noisy patterns that are inherently difficult to interpret. This complexity is
compounded by the high volume of data processed by IDS models, making it challenging to
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isolate meaningful features or causes behind detections. As a result, raw payload analysis
frequently falls short in providing transparent or actionable insights into the system’s behaviour.

To overcome these limitations, statistical features are employed to support model explainability.
These features, such as bytes per second or flow duration, enhance human readability and offer
a clearer decision path that can be logically traced. Their structured and interpretable nature also
facilitates model debugging and the identification of erroneous or misleading behaviours. In this
context, SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic
Explanations) are proposed as algorithmic tools to identify explainability patterns within flow
payloads, further contributing to a more interpretable and trustworthy IDS framework.

The submodule will provide the following explainability elements based on the statistical
features:

e Graphic depictions of feature contributions
e A set of decision rules that underly the Al tools utilized
e Traces of the path followed for each decision of the IDS

6.2. X-MORL — Explainable Multi-Objective deep-RL

The security of 6G/NextG networks can be strengthened by MTD, increasing the uncertainty for
attackers and reducing their chances of success. However, enforcing MTD operations can also
impact network performance and come with additional operational costs and energy
consumption. Therefore, smart and dynamic control of MTD following a cognitive paradigm (i.e.,
following the ETSI ZSM closed-loop methodology as previously described in Section 3.1)
considering security requirements, security gains, overhead, and feasibility is crucial. These are
multiple objectives to be considered that often do not overlap, and conflicts might arise when
performing MTD operations, favouring one goal to the detriment of the other.

Forinstance, moving a VNF from a remote Virtual Infrastructure Manager (VIM) to an edge node's
VIM for communication optimization may be a poor choice security-wise, since an attacker can
easily predict that action. A purely random placement, instead, improves security by reducing its
predictability but can hinder the network's performance and QoS of the moved service.

In the scenario of MTD operations in the telco edge-to-cloud continuum, moving a VNF to a closer
edge VIM may improve latency, but it may also weaken security since its position and movement
becomes predictable to attackers following traffic loads. Conversely, a completely random move
aimed at enhancing security could negatively affect the network and service performance.

Consequently, the Al-based MTD service provided in this project uses Multi-Objective Markov
Decision Process (MOMDP) to monitor and model the state of a Telco Cloud network (i.e., B5G
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ant NextG networks) and train a deep-RL model to tackles the multi-objective optimization
problem, in which three main objectives are quantified and considered:

1. To find the optimal balanced strategy to maximize security (i.e., minimize threats and
reduce their likelihood to succeed)
To minimize its operational cost (overhead in the consumption of physical resources)
To alleviate the impact on QoS and service availability (i.e., reducing service downtime
and network overhead)

An important requirement is for the decisions made by such ML model to be humanly
explainable, as it makes decisions affecting critical infrastructures and potentially moving and
reconfiguring critical services running on the telco network. However, the integration of
explainable Al into MTD remains an open and unexplored research question. In this context, the
X-MORL (eXplainable Multi-Objective RL) module is designed and implemented to provide
explainable MORL models using reward decomposition [74]. With this method, rewards can be
classified according to semantically meaningful reward types, which fits well with the multi-
objective nature of the MTD optimization problem.

6.2.1. Deep-RL and MORL

RL agents learn by interacting with their environment, observed and modelled as a Markov
Decision Process (MDP) -- a tuple (S, A, P, R, y) where S is the set of states of the environment, A
is the set of actions that the agent can take, P is the transition probability matrix defining the
probability that an action aj changes a state s; to a new specific state s;j, R is a set of reward values
for all (aj, si) pairs and y is the discount factor defining the importance of the immediate rewards
over the future rewards.

The agent's goal is to learn an optimal policy that maximizes the cumulative reward. RL has seen
evolutionary advances through the usage of deep neural networks (DNN) leading to deep-RL
algorithm [116]. Conventional deep-RL algorithms, however, are designed for single-objective
optimization and used with the scalarization of the different rewards corresponding to the
different objectives into one reward value. This scalarization can be part of the missing
information we want to learn, i.e., the best trade-off among objectives to maximize the overall
return. If the optimization occurs for only one fixed weighted sum, the result produced would be
suboptimal as other weight sums are not explored.

Specific to the explainability of the deep-RL model, the single scalarized value can be semantically
meaningless as multiple objectives be fundamentally different in nature. For instance, one of the
three MTD obijectives is to reduce an economic cost metric, measured in a monetary unit, while
another objective is to improve proactive security, which is measured in terms of the attack

rojctfundec by
Co-funded by @ oo oo [U, W UK Research Page 62 of 113
the European Union et ety =4 N and Innovation




NRT:..

D4.3 Intelligent networking, CTI & explainability.rl
W.ALRK

success probability (ASP) reduction of a threat. Merging both measures gives a value that is hard
to interpret and leads to decisions that are also hard to explain.

MORL is a new category of RL algorithms that keeps different interpretable reward functions,
one for each objective, and iterates the optimization process on different weighted sums,
avoiding suboptimal solutions and approximating the set of optimal policies for all scalarizations
(see Figure 15). This solution set is defined as the coverage set (CS), which, for monotonically
increasing reward functions, is reduced to the Pareto Front (PF). PF is the set of undominated
solutions, where each solution is optimal with respect to a specific scalarization. MORL's
interactions to retrieve the PF occurs with a MOMDP, where the main difference with respect to
the MDP's definition is that R is now a vector R comprising the reward values of the multiple
objectives defined in the model.

A 008 (s;) — Pareto Front
(O Weighted sum (one objective)
0 [[] Dominated solutions
** DD % Multi-objective method
5@ * [ o O o O cost (s;)
*ox K E * o=
@) *, % *
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x *
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Figure 15: Pareto front for three objectives showing the benefits of MO methods over weighted sum optimization methods.

6.2.2. MORL reward decomposition

The deep-RL training brings the model to define a value function v(sq), or Q-function, estimating
the value of performing an action a at a state s in terms of reward acquisition, and following the
policy thereafter. Reward decomposition decomposes the reward function into a vector R and
then calculates the decomposed value function, which sum leads to the original Q-function when
summing the value functions based on a scalar defined to unify the rewards of the different
objectives. The decomposed Q-function then provides statistical explanations on which objective
affected a specific action g at state s the most.
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In order to do that, X-MORL defines three Q-functions: Qc, Qq, and Qs, where Q. represents the
Q-function related to the objective of reducing the operational cost of MTD actions, Qs the Q-
function related to the objective of reducing the impact on the availability of the protected NFs,
and Qsthe Q-function related to increasing the proactive security of MTD operations (measured
as reducing the likelihood of exploitation of NFs attack surface). The three Q functions are
calculated with the decomposed reward Q-learning (drQ) algorithm [117], which guarantees the
convergence of the estimated values towards the value function of a learned policy. Finally, to
understand why the MORL agent took an action a; instead of other actions a;, we calculate the
difference between values Q. qs(a1) and Qcqs(a1), i.e, the values Aas(az, ai), and then derive a
reward difference explanation (RDX), that shows the objectives that a; improves over the other
actions leading to the MORL agent’s decision.

6.3. Explainable Ensemble Graph Attention Networks

Cell-level Key Performance Indicator (KPI) monitoring has an importance to ensure reliability in
future networks. Cell-level KPIs are not independent of each other: the behavior of one cell is
strongly conditioned by what happens in the neighbouring cells. Flattening this structure into a
tabular form discards precisely the interactions that a root-cause analysis (RCA) needs. For
instance, two adjacent cells that share spectrum or whose coverage areas overlap can degrade
one another’s throughput, yet such cross-cell effects vanish once the features are aggregated.

Graph-based learning avoids this pitfall by treating each cell as a node and each inter-cell relation
(e.g., interference, hand-over adjacency, shared feeder) as an edge. Among the many flavours of
Graph Neural Networks (GNNs) [119], Graph Attention Networks (GATs) [120] are especially
attractive for telecom data because their attention mechanism assigns content-dependent
weights to every neighbour. Unlike spectral GCNs, where aggregation weights are fixed by the
Laplacian, a GAT can learn that, for example, a high-load neighbour matters more than an idle
one.

6.3.1. Ensemble GAT model

Our data consists of daily snapshots of the same physical network taken at different times. Peak-
hour snapshots resemble each other (high load, many degradations) and differ markedly from
off-peak snapshots. A single GNN trained on the union of all snapshots must compromise
between these regimes, and it quickly becomes compute-heavy as the number of snapshots
grows. Aggregating the snapshots first is faster but erases temporal diversity. Therefore, we have
implemented the following ensemble learning steps: 1) Partition the snapshots into
homogeneous subsets (e.g., morning, afternoon, and night). 2) Train one GAT on each subset. 3)
Combine the base estimators in a gradient-boosted meta-model (XGBoost). This Ensemble GAT
retains snapshot-specific knowledge while benefiting from the bias—variance reduction typical of
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ensembles. Figure 16 illustrates the prediction and explainability process of the Ensemble GAT
model.
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Figure 16: High-level overview of the Ensemble GAT model

The detailed description of the method can be found in [35].

6.3.2. Explaining the ensemble GAT model

The proposed explainability and root cause analysis method has two key components, answering
two complementary questions:

e Ensembled GraphLime quantifies how each feature contributes,
o Neighbour Perturbation isolates which cells in the vicinity drive the prediction.

We tackle each question at the level of the base GATs and then fuse the explanations using the
same XGBoost gains that are used to fuse the predictions.

To determine the feature importances, we apply GraphLime [144] that builds a Hilbert—Schmidt
Independence Criterion Lasso (HSIC-Lasso) surrogate on the N-hop ego-subgraph of the target
node, returning a coefficient vector ¥ = ( 1(i), e ,Ei)) for the i-th base GAT. Let g; be that
model’s gain in the XGBoost combiner. The ensemble-level importance is then the weighted

average Pgns = X1, 9: B .
emphasizes the explanations of the more influential base models, yielding more stable

Weighting by g; (rather than using an unweighted mean)

attributions. We refer to this procedure as Ensembled GraphLime.
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While Ensembled GraphLime tells us which features are essential, it cannot reveal which
neighbors matter. To handle this orthogonal aspect, we propose the Neighbour Perturbation
method illustrated in Figure 17.

T e

Joriginal_prediction - new_prediction1| loriginal_prediction - new_prediction2| ~ « + -
0
cluster 1 cluster 2 cluster 3

Figure 17: Main steps of the neighbour perturbation method
The method consists of the following main steps:

Edge deletion: For every neighbour v of the target node u , create a perturbed graph by
removing an edge (u, v).

Prediction difference: Pass the perturbed graph through the model and record the prediction

difference: A, = |yruy — y;‘glwrbed , Where yz;; is the prediction based on the complete graph

and yzﬁ';ltwbed is the prediction based on the perturbed graph, where the links to the neighbour

v have been removed.

Clustering: Finally, we apply the clustering method X-means [82] to the vector {A, }yeneighbors)-
Then the automatically selected cluster with the highest mean A is deemed the critical neighbor

set. For the ensemble, we again compute Al(,i) for every base GAT and aggregate them with the

XGBoost gains: AE"S= YT g; Al(,i). We then run clustering on {AE"S} delivering a concise, gain-
aware summary of the neighbour influence.

Graph-structured telemetry is not limited to radio access networks; the same idea applies to
cybersecurity, where hosts (or 10T devices, user accounts, files, etc.) form nodes and their
interactions (flows, authentications, API calls) form edges. In the next phase of the project, we
will investigate how the Ensemble GAT model and its XAl approach can be applied to different
security scenarios like intrusion detection and botnet/malware detection, in addition to KPI
prediction.
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6.4. Random Forest and XGBoost in FPGA context

Previous sections of this deliverable have discussed the main concepts related to the
explainability of artificial intelligence (XAl), including approaches such as SHAP and LIME, which
enable the transparent interpretation of model decisions. In the current project, artificial
intelligence is applied at multiple levels, combining offline and online processing in demanding
contexts, such as 5G networks.

In the first phase, Al is employed offline for model training using representative datasets such as
CIC-DD0S201 [121], renowned for its diversity of attacks (SYN flooding, UDP flooding, DNS
amplification, etc.) and its structuring by network flow. This phase facilitates the extraction and
selection of relevant features using pre-processing techniques, including dimensionality
reduction (PCA), variable encoding, and, in some cases, oversampling to balance classes.

The Al is then utilized online once the models are deployed on-site, as part of a detection-action
mechanism (DetAction), to identify and neutralize malicious attacks in real-time. This phase
imposes strict constraints in terms of latency, processing capacity, and hardware integration.
Although artificial intelligence is a vast field, it would be a mistake to assume that increasingly
complex models inherently guarantee superior performance. For example, exploratory
techniques such as PCA, while effective at visualising models or reducing complexity, are ill-suited
to production environments where every microsecond is critical. Similarly, specific deep learning
models such as RNN or LSTM, although powerful on sequential data, have inference times and
computing requirements that are incompatible with the constraints of embedded systems,
particularly in an FPGA context.

In this context, several areas of Al research are currently being explored at the HES-SO, with a
particular focus on lightweight, efficient, and explainable solutions that can be deployed in
infrastructures with limited resources. The objective is clear: to combine detection accuracy, low
energy consumption, and ease of hardware integration. With this in mind, we are developing a
network traffic monitoring tool based on a PCle SmartNIC equipped with an FPGA, positioned in
parallel with the central server. This SmartNIC functions as an active probe, capable of analysing
a duplicated traffic flow in real-time.

The solution incorporates two key components:

e A programmable P4 packet processing unit, enabling rapid, modular analysis of network
headers.

e A module dedicated to Al model inference, responsible for detecting anomalies or
suspicious behaviour online.
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Figure 19 The left image shows the top 15 features used by the XGBoost classifier for attack detection, ranked by their
importance scores. The left image presents the confusion matrix, illustrating the model’s classification performance in
distinguishing between benign and malicious network packets.

In this demanding context, where speed and responsiveness are crucial, our choice fell on the
Random Forest model (cf. Figure 18), recognised for its real-time efficiency, small memory
footprint, and ease of implementation in embedded architectures such as FPGAs. This model was
trained on the CIC-DD0S2019 dataset, after transforming the PCAP files into flow data using

CICFlowMeter, and cleaning up the features to reduce complexity while preserving relevance.

The tests showed that Random Forest met the system's requirements with an overall accuracy
of 93%, although performance was lower on rare classes. To improve robustness, XGBoost was
also evaluated. The latter model, which is known to handle unbalanced datasets more effectively,
achieved 94% accuracy, with only 79 misclassified flows out of 86,275, while maintaining a
relatively compact architecture (cf. Figure 18). By contrast, more complex models, such as deep
neural networks (DNN, LSTM, etc.), despite their effectiveness in the laboratory, do not
guarantee significant gains in real-life conditions and are too resource-intensive (in terms of
computing time, memory, and energy consumption) to be integrated into an embedded
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environment. Additionally, their limited explicability makes auditing and validation more
challenging in a critical context. Random Forest and XGBoost, therefore, appear to be well-
balanced solutions, offering good accuracy, satisfactory responsiveness, and easy integration into
an embedded system dedicated to real-time traffic supervision. Both XGBoost and Random
Forest provide a degree of explainability by default. They offer global feature importance
measures and allow inspection of individual decision trees within the ensemble. This enables the
understanding of which features most significantly influence the model's predictions overall.
However, while they support some level of interpretation natively, neither model provides
detailed per-sample explanations out of the box. For more granular, local explainability—such as
understanding why a specific prediction was made—external tools like SHAP are commonly used
and well-supported for both algorithms.

6.5. Explainable IDS via SHAP

The evolution of 5G and the emergence of 6G networks are enabling groundbreaking applications
such as autonomous vehicles, smart manufacturing, and e-healthcare. These innovations are
made possible by features like ultra-low latency, massive device connectivity, and significantly
higher data rates. However, the rapid advancement of these technologies also introduces new
and complex cybersecurity challenges. Threats such as Distributed Denial-of-Service (DDoS)
attacks, Man-in-the-Middle (MITM) attacks, and Advanced Persistent Threats (APT) are becoming
more sophisticated and severe. Artificial Intelligence (Al)-based Intrusion Detection Systems have
shown great promise in bolstering network security by identifying and responding to these
threats. Nevertheless, a major limitation of many Al-based systems is their lack of interpretability.
This opacity raises critical concerns regarding trust, accountability, and regulatory compliance,
especially in a high-stakes environment like a 5G network [84]. XAl addresses this issue by
providing tools and techniques that make Al decision-making processes more transparent and
understandable. XAl is particularly crucial in cybersecurity, where stakeholders must trust and
audit the system's responses to potential threats. Techniques such as SHAP, LIME, and Grad-CAM
(Gradient-weighted Class Activation Mapping) offer promising solutions by elucidating how Al
models reach specific conclusions. We aim to investigate and integrate XAl methods into Al-
driven intrusion detection systems tailored for the 5G environment. By enhancing not only the
detection accuracy but also the interpretability of these systems, we can significantly improve
real-time response, system transparency, and user trust in the face of evolving cyber threats.

The integration of SHAP into the intrusion detection pipeline not only demystifies the internal
decision-making process of the model but also yields actionable insights that enhance the overall
understanding of traffic behaviours in both legacy and modern 5G environments. Through local
interpretability, SHAP enables per-sample analysis identifying which features, and in what
magnitude, influenced the classification of an individual network flow as benign or malicious. For
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instance, in the 5G-NIDD dataset [85][85], features such as Offset and Sum exhibited strong
negative contributions to the classifier’s output, effectively steering the prediction toward a
benign label. Conversely, features like sHops were shown to positively contribute to malicious
classification, albeit not strongly enough to override the dominant benign indicators. This type of
granular insight allows security analysts to understand not only what the model predicted but
why is an invaluable asset when validating alerts or conducting forensic analysis. At a broader
scale, global SHAP summary plots offer a cumulative view of feature importance across the
dataset, effectively revealing the most influential variables in shaping the model’s overall
behavior. In the case of the 5G-NIDD dataset, top predictors included sTtl (source Time to Live),
State, and sMeanPktSz (source mean packet size). These features align well with known
characteristics of legitimate 5G control-plane traffic, where a higher TTL value typically signifies
longer, valid packet traversal. On the other hand, unusually low TTLs or irregular state transitions
may signal anomalies, such as packet injection or spoofing attempts. In the CIC-IDS2017 dataset
[86][86], which primarily contains IP-based traffic, features like Min Packet Length, ACK Flag
Count, and Bwd Packet Length Min surfaced as highly indicative of malicious behavior. These
findings highlight how explainability tools can adaptively distinguish attack patterns that are
specific to different networking paradigms, be it traditional IP or emerging 5G protocols.

As Figure 20a and Figure 20b show, local explanations unveil how a single feature influences the
classifier’s prediction for sample flows. For the 5G-NIDD example (Figure 20a), features like Offset
and Sum have a strong negative impact, pushing the prediction towards the benign class. While
the sHops feature makes a positive contribution, it is not enough to counteract the negative
contributions to produce a final classification of normal traffic. This result confirms the
significance of timing and routing features in defining 5G control-plane traffic. By contrast, the
CIC-IDS2017 instance (Figure 20b) displays a model of consistently positive contributions.
Avenues such as Min Packet Length, Average Packet Size, and Bwd Packet Length Max all point
prediction sharply in the attack-class direction, meaning payload-size abnormalities are critical in
legacy IP traffic. The behavior of global models is exhibited by Figure 20c and Figure 20d, with
SHAP summary plots that cumulate feature impacts across the initial 30 test-set flows.

Beyond model validation, the insights offered by SHAP explanations can directly inform system-
level improvements. Feature importance metrics derived from SHAP can guide the selection or
engineering of input features, reducing dimensionality while retaining high-informative
attributes. Additionally, anomalous patterns repeatedly flagged by SHAP across samples may hint
at previously unknown or under-documented threat signatures, prompting further investigation
or updates to the threat detection policies. From a practical standpoint, the ability to visually
communicate why a specific flow was classified as an attack builds trust with stakeholders and
supports compliance with regulatory frameworks that demand transparency and accountability
in automated decision systems. In this light, SHAP serves not only as a diagnostic tool but as a
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cornerstone for deploying intelligent, explainable, and human-aligned cybersecurity solutions in
next-generation networks.

In the case of 5G-NIDD (Figure 20c), top predictors are sTtl, State, and sMeanPktSz. High values
of sTtl will tend predictions towards benign, as would be expected with greater traversal by
legitimate control packets, while unusually low TTLs or high hop counts indicate suspicious traffic
behavior. In the CIC-IDS2017 dataset (Figure 20 d), the strongest features are Min Packet Length,
ACK Flag Count, and Bwd Packet Length Min. High values in these statistics are strongly correlated
with attack streams, i.e., port scanning or DoS, while normal traffic is described by small, regular
packet lengths and normal TCP flag patterns.

Beyond model validation, the insights offered by SHAP explanations can directly inform system-
level improvements. Feature importance metrics derived from SHAP can guide the selection or
engineering of input features, reducing dimensionality while retaining high-informative
attributes. Additionally, anomalous patterns repeatedly flagged by SHAP across samples may hint
at previously unknown or under-documented threat signatures, prompting further investigation
or updates to the threat detection policies. From a practical standpoint, the ability to visually
communicate why a specific flow was classified as an attack builds trust with stakeholders and
supports compliance with regulatory frameworks that demand transparency and accountability
in automated decision systems. In this light, SHAP serves not only as a diagnostic tool but as a
cornerstone for deploying intelligent, explainable, and human-aligned cybersecurity solutions in
next-generation networks.
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(d) SHAP summary plot for the first 30 samples from the test
set of the CIC-IDS2017 dataset. The selected samples include
both benign and attack instances.

(c) SHAP summary plot for the first 30 samples from the test
set of the 5G-NIDD dataset. The selected samples include both
benign and attack instances.

Figure 20: SHAP Results
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7.Cyber Threat Intelligence

The rapid evolution of 6G networks promises unprecedented levels of connectivity, intelligence,
and automation. However, this technological advancement also introduces a wide array of new
cybersecurity risks, fuelled by the scale, heterogeneity, and complexity of emerging
infrastructures. In this context, Cyber Threat Intelligence (CTl) becomes a foundational element
for the secure operation of 6G systems. CTl refers to the systematic collection, analysis, and
dissemination of information about existing and emerging cyber threats—including malicious
actors, their capabilities, and their attack strategies. When operationalized effectively, CTI
enables organizations to anticipate, detect, and respond to threats in a timely and informed
manner.

In traditional networks, CTl has often played a reactive role—focused on analysing incidents after
they occur. However, the distributed, software-defined, and highly dynamic nature of 6G
networks demands a proactive, automated, and context-aware CTl architecture. The
convergence of telecommunications, cloud-native infrastructures, edge computing, and Al-
driven services amplifies the attack surface and creates conditions where manual or static threat
intelligence processes are no longer sufficient. This calls for CTI systems capable of operating
autonomously at scale, adapting to constantly shifting threat environments, and integrating
seamlessly with other network defence components.

Within the scope of the NATWORK project, CTl is positioned as a strategic enabler of self-resilient
and self-adaptive network security. It serves as a critical input to several core capabilities
envisioned in NATWORK, including intent-based orchestration, generative Al for system
adaptation, and autonomous service resilience. By embedding CTI at the heart of the
architecture, NATWORK aims to create an intelligence-driven framework in which threat
information is not only collected and stored, but also continuously analysed, contextualized, and
acted upon across the edge-cloud continuum.

The project’s CTl framework is built on three foundational pillars:

e Multi-source threat data collection: Integrating diverse sources—including honeypots,
darknet traffic, OSINT, social media, and intrusion detection systems—to build a broad
and deep threat visibility layer.

e LLM-powered intelligence automation: Using generative Al to convert unstructured
threat data into actionable intelligence, produce STIX-compliant bundles, and support
automated reasoning and documentation.

e Edge-cloud observability and integration: Ensuring that infrastructure monitoring,
telemetry, and behavioural analytics from Kubernetes-based 6G environments feed into
the CTI pipeline, enabling real-time and context-rich insights.
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These components work together to enhance the security posture of 6G networks by enabling
continuous threat monitoring, early warning systems, and dynamic security policy enforcement.
NATWORK’s approach to CTl also contributes to broader cybersecurity objectives at the
European level by addressing long-standing challenges such as the automation of threat report
analysis, the standardization of threat knowledge using STIX, and the reduction of manual
overhead in threat intelligence workflows.

This section presents the specific contributions of NATWORK to the field of CTI, ranging from
architectural frameworks and threat data processing engines to generative Al-based CTI
extraction and infrastructure monitoring. Together, these innovations lay the foundation for an
advanced, scalable, and explainable CTI infrastructure tailored to the needs of secure and
trustworthy 6G systems.

7.1. Multi-Source CTI Framework for Proactive Network Defense and
LLM-Powered Intelligence

In today's rapidly evolving cyber landscape, organizations face persistent and sophisticated
threats originating from a wide array of sources, including botnets, attackers, and malicious
actors lurking in hidden corners of the internet. To address this challenge, we propose a
Comprehensive Cyber Threat Intelligence (CTI) Solution that leverages a diverse set of threat
detection mechanisms to ensure robust protection for individual users and enterprise networks
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Figure 21: Overall architecture of CTI Framework for Proactive Network Defense and LLM-Powered Intelligence
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The proposed architecture in Figure 21 provides a comprehensive solution for detecting,
analysing, and mitigating cyber threats in real time. It integrates multiple Cyber Threat
Intelligence (CTI) sources into a unified Threat Engine, which processes and prioritizes threat data
to feed defence mechanisms like firewalls and an LLM-powered CTl documenting component.
This layered defence strategy ensures that both individual users and enterprise networks are
protected from malicious actors such as botnets and attackers. The architecture not only blocks
threats but also generates actionable intelligence to improve security awareness and response
capabilities across the organization.

7.1.1. CTI Collection

Avariety of CTl sources feed threat information into the system. Figure 22 illustrates the different
types of CTl sources, which we discuss in detail below.

e Honeypots: Decoy systems or networks are deliberately deployed to lure attackers and
observe their behaviour. It can take various forms, such as a counterfeit website, a
simulated server, or a virtual environment designed to resemble real systems, often
configured with intentionally unpatched vulnerabilities to entice malicious actors. When
attackers engage with a honeypot, they inadvertently reveal critical information about
their tactics, techniques, and procedures (TTPs), offering valuable intelligence to
defenders. Our threat intelligence framework employs over 20 distinct types of
honeypots, each strategically deployed to capture a wide variety of malicious activities
across different protocols and threat vectors. Among these are well-established and
widely used honeypots such as Cowrie (SSH/Telnet interaction honeypot), Glastopf (web
application honeypot designed to detect web attacks), Heralding (credential capturing
honeypot for various services), and Dionaea (designed to capture malware).

e Darknet Probes: A darknet or network telescope refers to an Autonomous System
Number (ASN), a segment of an ASN not allocated by IANA, or an otherwise unused
portion of the IP address space. Any traffic directed to these addresses is generally
unsolicited and typically malicious, often consisting of scanning attempts, DDoS
backscatter, or other nefarious activities. As part of the H2020-SISSDEN project, MONT
has collected approximately 1GB of sample darknet traffic, providing valuable insights
into global malicious activities. In contrast, the dark web (sometimes also referred to as
"darknet" in casual use) represents a hidden segment of the internet not indexed by
conventional search engines and accessible only through specialized tools, such as the Tor
browser [122]. This environment often serves as a marketplace for illicit trade and other
illegal operations. Monitoring both darknet traffic and dark web activities can be highly
useful for gaining intelligence on illegal behaviour, emerging threats, and attacker
methodologies.
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Figure 22: Examples of CTI sources

Downloadable Lists (Offline Sources) and Realtime APl (Online Sources): Offline sources
typically consist of precompiled lists, curated and updated periodically by trusted security
organizations. These lists include the most active attacking subnets and IP addresses,
often identified through global traffic monitoring initiatives. They also provide specialized
datasets focused on particular types of threats, such as botnet command-and-control
servers, compromised hosts distributing malware, and known spam sources. The
inclusion of curated drop and block lists from reputable entities further strengthens the
CTl system's ability to detect and block malicious actors effectively. Whilst, real-time and
near-real-time online feeds are crucial for maintaining an updated defence posture.
Threat intelligence feeds generated by intrusion detection systems (IDS) and security
monitoring platforms provide dynamic information about ongoing threats. For instance,
platforms like the SANS Internet Storm Center [123] distribute feeds containing details on
malware activities, spam campaigns, and network scanning attempts. Similarly, blacklists
maintained by IDS solutions such as Suricata[124] offer valuable data on botnet-related
communications, unsolicited network traffic, and emerging threats. Furthermore,
community-driven databases, including resources like AbuselPDB [125] and Onyphe
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[126], contribute user-reported information on abusive IP addresses, further enriching
the CTl ecosystem with relevant and timely indicators.

e Other Sources: These include Intrusion Detection Systems (IDS) such as MMT, Suricata,
and Snort, which continuously analyse network traffic and report security issues or
anomalies in real time. They inspect packets for suspicious patterns, malicious payloads,
or policy violations. Unlike external CTI feeds that report on global threat activities, IDS
solutions offer localized intelligence, detecting attacks as they unfold within the
monitored network perimeter. MMT, Suricata, and Snort employ advanced detection
techniques, including signature-based analysis, anomaly detection, and protocol
decoding, to identify a wide range of threats. These may include malware infections,
unauthorized access attempts, reconnaissance scans, and exploitation of vulnerabilities.
The alerts and logs generated by IDS systems are then fed into the CTI framework,
enriching it with highly relevant and contextual data about current threats targeting the
specific environment.

These sources ensure the CTI system has both breadth and depth in threat visibility, capturing
diverse and evolving threat indicators.

7.1.2. Processing CTl Reports in Threat Engine

Once ingested, the cyber threat intelligence (CTl) data is processed by the Threat Engine, a core
component responsible for transforming raw information into actionable insights. This module
performs several essential functions that enable the CTI system to operate efficiently and
effectively. The first of these is aggregation, which involves collecting and consolidating threat
data from a diverse array of sources. These may include honeypots, darknet probes, intrusion
detection systems, and external threat feeds. By bringing together intelligence from various
origins, the Threat Engine ensures comprehensive visibility across the threat landscape.

Following aggregation, the system undertakes correlation to identify meaningful relationships
between seemingly disparate data points. This step is crucial for detecting patterns and linking
indicators that may signify coordinated or distributed attack campaigns. Through correlation, the
Threat Engine is able to move beyond isolated alerts and provide a more holistic understanding
of complex threat activities, such as multi-stage attacks or widespread scanning efforts.

The next function is analysis, where advanced analytical techniques are applied to interpret the
aggregated and correlated data. This process involves contextualizing the detected threats,
assessing their potential relevance, and determining whether they pose a genuine risk to the
protected environment. By examining factors such as the nature of the attack, historical
behaviours, and known tactics, techniques, and procedures (TTPs), the Threat Engine can
distinguish between benign anomalies and serious security incidents.
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Finally, the system performs prioritization, which ranks the identified threats based on several
critical criteria, including severity, likelihood of exploitation, and potential impact on
organizational assets. This prioritization process is essential for optimizing incident response
efforts, ensuring that security resources are focused on the most pressing and potentially
damaging threats first.

Through these integrated processes, the Threat Engine plays a pivotal role in refining raw CTl into
validated and relevant threat indicators. Only after undergoing aggregation, correlation, analysis,
and prioritization are these indicators forwarded to enforcement mechanisms and intelligence-
sharing components. This approach reduces unnecessary noise, enhances operational efficiency,
and ensures that the organization's defensive posture is based on accurate and actionable
intelligence.

7.1.3. Application

e Firewall/ CTI Portal

The processed and prioritized threat indicators are systematically fed into a Firewall, which acts
as the primary enforcement mechanism within the security architecture. This firewall
dynamically updates its ruleset based on the intelligence generated by the Threat Engine,
allowing it to block identified malicious hosts and prevent harmful traffic from reaching end users
and critical corporate assets. By proactively filtering threats at the network perimeter, the system
ensures that both individual users and the company’s local network remain safeguarded against
a wide spectrum of known attacks, ranging from malware distribution and phishing attempts to
command-and-control communications and reconnaissance scans.

Beyond its fundamental role in traffic filtering, the firewall component is integrated into a
broader threat management platform offering advanced features designed to enhance usability
and responsiveness. One key capability is the subscription model, which allows users to configure
personalized alerting rules. Through this mechanism, subscribers can receive timely notifications
related to specific IP addresses, Autonomous System Numbers (ASNs), or other relevant
indicators of interest. This ensures that security teams and stakeholders remain informed about
potential threats targeting their organization or critical infrastructure in near real time.

Another significant functionality is the platform's advanced search interface, which enables users
to query the threat database with precision. Users can search for information related to IP
addresses or prefixes, domain names, hostnames, URLs, ASNs, countries, organizations, or even
upload files in CSV format containing multiple entries for batch processing. This powerful search
capability provides flexible access to historical and current threat data, supporting incident
investigations, threat hunting activities, and compliance requirements.
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To facilitate seamless integration with external systems and automate security workflows, the
platform also offers a comprehensive Application Programming Interface (API). Through this API,
users can programmatically retrieve threat intelligence, submit queries, and receive updates,
which significantly enhances the scalability and adaptability of the solution across various
organizational environments.

Moreover, the system delivers real-time notifications to alert subscribers when activities
associated with specific IPs or ASNs are detected. This ensures that defenders are immediately
informed of emerging threats and can respond without delay. To support informed decision-
making, each reported entity is assigned a reputation score, which is calculated by aggregating
intelligence from multiple independent sources. This scoring mechanism provides valuable
context, helping users to assess the risk level associated with a given indicator and prioritize their
mitigation efforts accordingly.

Through this comprehensive set of capabilities, the firewall and its supporting platform not only
offer automated threat blocking but also serve as an interactive and intelligent interface for
managing and responding to evolving cyber threats in real time.

e LLM-powered CTI Documenting

In parallel to threat detection and enforcement mechanisms, the curated threat data is leveraged
by the LLM-powered CTl documenting component, which plays a critical role in transforming raw
and often complex threat indicators into actionable and comprehensible intelligence. This
advanced module harnesses the capabilities of large language models to automatically interpret
technical details and produce clear, human-readable reports. These reports are tailored to meet
the needs of various stakeholders, including technical teams who require in-depth analysis,
management who benefit from executive summaries, and broader security communities seeking
situational awareness.

In addition to reporting, the component serves an essential function in supporting cybersecurity
training and preparedness. By summarizing both ongoing and historical threat activities, it
provides valuable input for cyber ranges, which are controlled environments designed to
simulate real-world cyberattacks. These simulations are used to train cybersecurity professionals,
helping them to develop and refine their defensive skills in response to realistic scenarios derived
from actual threat intelligence.

Furthermore, the LLM-powered system enables intuitive interaction through natural language
qguerying. This feature allows security analysts and incident responders to obtain contextual
explanations and insights on demand, improving decision-making and reducing the time required
to understand complex threat landscapes. By offering accessible and context-rich intelligence,
this LLM-driven layer effectively bridges the gap between technical threat data and the diverse
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information needs of its users, facilitating clear and efficient communication across all levels of
an organization.

7.2. Advanced generative Al powered CTI data collection for 6G
Networks

A substantial volume of valuable Cyber Threat Intelligence (CTI) is disseminated in unstructured
formats. These include open-source intelligence (OSINT), social media posts, dark web forums,
industry whitepapers, news reports, government-issued threat bulletins, and detailed incident
response documentation. While these sources are rich in context and threat-related information,
their unstructured nature presents significant challenges for efficient storage, classification, and
automated analysis. The lack of standardized formatting prevents direct ingestion by security
systems and forces human analysts to painstakingly read and interpret lengthy texts, which is
both time-consuming and error prone.

As a result, one of the core tasks of security analysts is to manually extract relevant intelligence
from these heterogeneous data sources and convert it into a structured format that can support
automated correlation, querying, reasoning, and integration with existing threat detection or
response systems. This manual translation process, however, is increasingly unsustainable in
modern threat environments characterized by high-volume, high-velocity data and the growing
complexity of multi-vector attacks—especially in highly dynamic environments such as 6G
networks.

To address this challenge, the cybersecurity community has increasingly turned toward
structured representation formats, such as the Structured Threat Information eXpression (STIX)
standard [127]. STIX has emerged as one of the most widely adopted standards for representing
CTl in a machine-readable form. In the STIX framework, each individual report—referred to as a
bundle—is modelled as a knowledge graph, comprising interconnected entities and their
relationships. These entities encapsulate key concepts such as threat actors, malware samples,
system vulnerabilities, and tactics or techniques, while relationships express interactions
between them (e.g., a threat actor uses a specific piece of malware or targets a particular
organization).
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Figure 23: A subset of the STIX ontology, including all entities

Figure 23 illustrates a subset of the STIX ontology as applied to our dataset, capturing the core
entities and relationships that appear in real-world CTI records. Among the primary entity types
included in the ontology are:

e Threat Actor: Individuals or groups responsible for cyber attacks.

e Malware: Malicious software or code used to carry out attacks.

e Vulnerability: Known weaknesses in software, hardware, or configurations that attackers
can exploit.

e Attack Pattern: The method or strategy employed during the attack.

¢ Indicator: Observables or signals that point to malicious activity (e.g., IP addresses, file
hashes, domain names).

The ontology also supports semantic relations between entities, such as uses, targets, exploits,
and attributed-to, enabling a detailed and contextualized representation of threat intelligence.

To demonstrate how analysts extract STIX-compliant bundles from unstructured reports, we
present in the following subsection a representative example and outline the core extraction
tasks typically performed. In particular, analysts focus on identifying and structuring the most
commonly reported aspects of an incident:

e Who conducted the attack (e.g., the Threat Actor entity),

e Against whom the attack was carried out (e.g., the Identity entity, linked through a
targets relationship),

e How the attack was executed (e.g., via Malware and Attack Pattern entities).
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This subset of the STIX ontology covers the majority of critical information found in practical CTI
reports. For instance, in our dataset, 75% of reports contain at least one Malware entity, while
54% reference a Threat Actor. This selection of entity types is also consistently supported across
state-of-the-art information extraction tools and previous work, providing a stable foundation
for benchmarking, evaluation, and integration efforts.

As we explore in the next part of this section, the advent of generative Al—particularly large
language models (LLMs) and multi-agent frameworks—holds immense potential for automating
the extraction of these entities and relations directly from unstructured CTI sources. By
leveraging these technologies, the NATWORK architecture aims to close the gap between high-
volume raw threat intelligence and actionable, structured insights tailored for self-resilient 6G
environments.

7.2.1. Structured CTI Extraction

Figure 24: An example of a report published by Palo Alto Networks.

(While Indicators of Compromise are easy to extract being collected at the end of the report, extracting Threat Actor, Malware,
Attack Pattern and the other STIX's entities requires security experts to perform manual analysis)

To concretely illustrate the task of structured CTI extraction, we examine a technical blog post

published by Palo Alto Networks on the HelloXD ransomware campaign [128]. A snapshot of this

report is shown in Figure 24. Like many industry-grade threat intelligence reports, it presents a

dense and information-rich narrative: approximately 3,700 words, 24 figures, three detailed

tables, and a dedicated section summarizing Indicators of Compromise (loCs).

The report discusses the attribution of the HelloXD ransomware to a threat actor known as x4k
and outlines the tactics, techniques, and procedures (TTPs) observed in related campaigns. It
provides an in-depth analysis of the malware’s functionality, explores its behavioural indicators,
and presents several clues linking the malware to the threat actor. It also details aspects of the
adversary’s infrastructure and operational approach.
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Figure 25: A STIX bundle describing the report from previous figure.
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The aim of structured CTI extraction is to convert such a report into a STIX-compliant bundle,
suitable for automated analysis and integration into cyber defence systems. Figure 25 depicts the
resulting STIX bundle derived from this report. It includes key entities such as a Threat Actor node
for x4k, a Malware node for HelloXD, multiple Attack Pattern entities describing the adversary’s
TTPs, and several Indicator entities from the loC section of the report.

Generating this structured representation is far from trivial. Producing a complete and accurate
STIX bundle typically requires between three and ten hours of dedicated analysis by experienced
CTI professionals. This is supported by previous studies; for instance, Park et al. [129] report that
annotating just 133 reports required three full-time annotators working over a five-month
period. Similarly, the annotation of the 204 reports used in our evaluation took several months
of sustained work by our team of CTl analysts.

One reason for this high annotation cost is the nuanced and implicit nature of much of the
information contained in CTI reports. Even basic tasks—such as identifying malware names or
linking threat actors to attack campaigns—require careful interpretation and contextual
reasoning. The challenges include ambiguities in terminology, the use of aliases, and uncertainty
in attribution.

A typical first step in the extraction process involves identifying the malware involved, the
responsible threat actor, and any targeted identities. This may appear straightforward, but CTI
reports often describe threats in subtle, context-dependent ways. For instance, entities may
share names (e.g., a threat actor and a malware family both named similarly), or a single malware
may be referenced using multiple aliases. Attribution is also frequently qualified or speculative,
requiring analysts to distinguish between confirmed and hypothetical associations.

In our example report, HelloXD is clearly the central malware being described. However, the text
also mentions other ransomware families—LockBit 2.0 and Babuk/Babyk—which are not part of
the HelloXD campaign. Their inclusion in the report is purely illustrative, used to draw
comparisons or highlight common tactics.
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Consider the following excerpt:

The ransom note also instructs victims to download Tox and provides
a Tox Chat ID to reach the threat actor. Tox is a peer-to-peer
instant messaging protocol that offers end-to-end encryption and
has been observed being used by other ransomware groups for
negotiations. For example, LockBit 2.0 leverages Tox Chat for
threat actor communications.

Although LockBit 2.0 is referenced here, it is not directly connected to the HelloXD ransomware
or the actor x4k. As such, it should not be included in the corresponding STIX bundle. This type
of disambiguation is critical to ensure accurate modelling of the threat landscape and to avoid
polluting CTI databases with unrelated or tangential information.

These examples highlight why manual annotation is so time-consuming and why fully automating
this process remains a challenge. However, advances in natural language processing—
particularly in generative Al and large language models—offer promising capabilities to support
or accelerate this task.

A second critical step in constructing structured CTl is the identification of attack patterns—that
is, the tactics, techniques, and procedures (TTPs) employed by the threat actor during the
execution of the attack. This process introduces another layer of complexity: unlike discrete
entities such as malware names or indicators, attack patterns are typically descriptive
behaviours, often embedded across multiple paragraphs within a report.

These behaviours must not only be detected but also classified according to standardized
taxonomies, such as the MITRE ATT&CK® Matrix [130], which is widely adopted for mapping
adversarial behaviour. The ATT&CK framework includes over 190 techniques and more than 400
sub-techniques, covering a broad spectrum of activities across different stages of an attack
lifecycle—from initial access and execution to exfiltration and impact. As a result, mapping
natural language descriptions from threat reports to specific MITRE techniques requires both
deep reading comprehension and extensive domain knowledge.

For example, the following excerpt, taken from a report by Proofpoint [131], illustrates how an
attack pattern may be embedded in narrative text:

TA416 has updated the payload by changing both its encoding method
and expanding the payload’s configuration capabilities.

An analyst must first detect this behaviour, and then correctly map it to a relevant MITRE
technique. In this case, the appropriate mapping is T1027: Obfuscated Files or Information,
described in the MITRE ATT&CK framework as:
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Adversaries may attempt to make an executable or file difficult to
discover or analyze by encrypting, encoding, or otherwise
obfuscating its contents on the system or in transit.

This example demonstrates the layered reasoning required in structured CTI extraction:
identifying the behavioural action, resolving its technical implications, and linking it to an
appropriate standardized concept. Errors in this process can lead to incorrect or incomplete STIX
bundles, weakening the ability to correlate CTI across sources or automate detection.

In the case of our HelloXD report, the analysis resulted in the extraction of 18 distinct attack
patterns, each requiring close reading and interpretation. Some were explicit (e.g., the use of a
peer-to-peer communication channel for ransom negotiation), while others required inferring
intent or behaviour from context. Notably, this stage is particularly challenging to automate with
classical rule-based systems or shallow machine learning approaches, making it a promising
application area for generative Al systems capable of deeper semantic understanding.

A further consideration during the extraction process is the relevance of the information.
Analysts must make expert decisions about which elements to include in the final bundle and
which to omit. This requires evaluating not only the technical accuracy of the information, but
also its salience to the core narrative of the report and the confidence with which the
information is presented.

For instance, the HelloXD report includes tangential references to other activities associated with
the threat actor x4k, such as the deployment of Cobalt Strike Beacon and the development of
custom Kali Linux distributions. While potentially interesting, these activities are not discussed
in detail and are not central to the campaign under analysis. Therefore, they are omitted from
the final STIX bundle to maintain a clear and focused representation.

This judgment-based filtering is essential to ensure that the resulting structured intelligence
remains precise, actionable, and free from noise. However, it further contributes to the time and
expertise required for high-quality CTl annotation.

7.2.2. Existing solutions

Given the significant complexity and time investment required for manual structured CTI
extraction, a range of automated solutions has been proposed in recent vyears
[132][133][134][135][136].These efforts span from narrowly focused systems targeting specific
subtasks—such as the identification of attack patterns or indicators—to more ambitious
approaches that aim to automate the entire pipeline of CTl extraction from unstructured sources.
Despite these advances, the practical utility of such tools remains limited: most still require
considerable human oversight and post-processing to produce high-quality, actionable threat
intelligence.
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This gap between theoretical capabilities and practical usability is reinforced by our own
experience. The empirical results from our CTI analyst team confirm that none of the existing
tools offer a fully reliable or scalable solution, particularly when applied to realistic, high-
variability datasets. The persistence of this challenge suggests that the limitations are not purely
technical, but also methodological.

One contributing factor is the absence of robust benchmarks that truly reflect the nature and
complexity of the structured CTl extraction task. Many existing solutions rely on machine learning
techniques—particularly from the natural language processing (NLP) domain—but are evaluated
using standard NLP metrics that do not align with the specific requirements and goals of CTI
practitioners.

To illustrate this misalignment, consider the task of Named Entity Recognition (NER). In the NLP
field, a model is typically evaluated based on its ability to correctly identify every mention of an
entity in the text. For example, if the malware HelloXD is mentioned ten times in a report and
correctly labelled on each occasion, a word-level (or more precisely, token-level) evaluation
metric would count this as ten correct outputs. This leads to what we refer to as word-level
labelling, which may overstate a system's performance when applied to the CTI domain.

From a CTI perspective, however, the goal is to extract the unique entities that are relevant to
the security event being described—regardless of how many times they are mentioned. Whether
HelloXD appears once or ten times, it constitutes a single relevant malware entity in the context
of a structured STIX bundle. Furthermore, as shown in our earlier example involving LockBit 2.0,
not all entities identified by a generic NER tool are contextually relevant for structured CTI. A
named entity may be correctly labelled from an NLP standpoint but should be excluded from a
CTl bundle if it is not directly connected to the campaign or threat being analysed.

These discrepancies become even more pronounced in the evaluation of Attack Pattern
extraction. Most current approaches rely on sentence-level classification tasks, where the goal is
to determine whether a given sentence contains an attack pattern and, if so, assign it to the
appropriate category. This sentence-level labelling strategy, while useful for training classifiers,
does not capture the full complexity of real-world CTl extraction. In practice, what matters is the
ability to identify all relevant attack patterns scattered across a document, accurately classify
them according to taxonomies like MITRE ATT&CK, and correctly attribute them to the associated
entities (e.g., malware or threat actor).

In essence, NLP-derived metrics often assess syntactic accuracy, while structured CTI extraction
demands semantic relevance and contextual correctness. The failure to differentiate between
these two levels of evaluation risks inflating perceived system performance and conceals the true
limitations of current approaches.
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This misalignment highlights a broader need for domain-specific metrics—what we refer to as
CTl-metrics—which evaluate a system’s ability to reconstruct accurate, coherent, and relevant
threat intelligence bundles from unstructured inputs. These metrics must account not just for
precision and recall at the sentence or token level, but also for the correctness and relevance of
the resulting structured knowledge graph.

Table 2: Overview of manually annotated CTI datasets.

(In some cases, the annotated reports represent a small, labelled subset of a much larger corpus (total size in parentheses).
Asterisks (*) indicate that annotations are made at the sentence level rather than across entire reports. A checkmark (V) in the
'Public’ column denotes datasets that are only partially released as open-source.)

Dataset Entities & Relations Attack Patterns CTI Metrics Public

SeclE 133 133 -

CASIE 1k - - v
ThreatKG | 141 (149k) 141 (149Kk) -

LADDER | 150 (12k) 150 (12k) 5 (V)
SecBERT | — 14.4k* 6 v
TRAM - 1.5k* - N4
TTPDrill | - 80 (17k) 80

AttacKkG | — 16 (1.5k) 16

rcATT - 1.5k - Vi

Table 2 summarizes a selection of datasets used in prior work to evaluate structured CTI
extraction methods. These datasets vary in scope, granularity, and coverage, particularly with
respect to the annotation of complex entity types such as Attack Pattern. For this reason, we
distinguish attack pattern extraction from simpler entity types (e.g., Malware, Threat Actor,
Identity), given its higher semantic complexity and the additional requirement of mapping
behavioural descriptions to formal taxonomies such as MITRE ATT&CK.

Several studies report the use of large datasets to evaluate their models using conventional
natural language processing (NLP) metrics, such as the frequency and accuracy of extracted
entity mentions. However, these large corpora are often only partially annotated and are
typically accompanied by much smaller manually labelled subsets when evaluations are
performed using CTI-specific metrics. The principal reason cited for the limited size of these
subsets is the high cost associated with manual annotation, which requires expert input from
trained CTI analysts. To contextualize the limitations of current datasets, we analyse them
through two evaluation frameworks:

NLP-metrics. Datasets such as those used in SeclE[137], ThreatKG [135], and LADDER [134]
provide word-level or sentence-level annotations, making them suitable for traditional NLP
evaluation tasks like NER or sentence classification. Similarly, CASIE [132] offers a large corpus
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annotated at the word level, though it does not include attack pattern annotations. The TRAM
[147] and rcATT [136] datasets are focused on attack patterns but are also limited to sentence-
level labelling, which does not support full structured extraction workflows.

CTl-metrics. Only a handful of works provide annotations suitable for evaluating CTI extraction
methods from an operational, graph-based perspective. TTPDrill [133] and AttacKG [94] both
include manually labelled datasets of 80 and 16 full reports, respectively, and adopt a CTl-centric
evaluation approach. However, neither dataset is publicly released, and both are restricted to
attack pattern extraction. SecBERT [135] performs a two-stage evaluation: it first assesses model
performance on a large sentence-level dataset, then conducts a CTI-metrics evaluation on only
six annotated reports. Likewise, LADDER [134] includes an evaluation of attack pattern extraction
using CTI metrics on five reports, but these are also not shared publicly.

7.2.3. Creating a new dataset

The absence of a sufficiently large, open-access dataset specifically designed for structured CTI
extraction has long hindered the ability to evaluate and compare existing approaches in a
consistent and meaningful way. Without such a benchmark, it becomes difficult to assess
progress beyond surface-level NLP metrics or to ensure that proposed methods are applicable in
real-world CTI workflows.

To address this limitation, we rely on a dataset that was previously created by our team,
consisting of 204 manually annotated CTI reports collected over a 12-month period starting in
February 2022. Each report has been paired with a corresponding STIX-compliant bundle,
meticulously constructed by expert CTl analysts to capture the relevant entities, relationships,
and attack patterns described in the original text. This dataset, developed independently prior to
the NATWORK project, is designed specifically to support evaluation based on CTI metrics,
offering a realistic and high-quality benchmark for structured threat intelligence extraction. Its
use in this work enables a more rigorous and operationally relevant assessment of generative Al-
based approaches for CTl automation.

The remainder of this section provides information about the dataset creation methodology and
introduces high-level statistics about the data.

7.2.3.1.  Methodology

Our organization includes a dedicated team of Cyber Threat Intelligence (CTI) analysts whose
primary responsibility is the structured extraction of threat intelligence from publicly available
sources. Leveraging their expertise and established internal methodology, we use a dataset
previously created by this team, comprising 204 manually annotated CTI reports, each paired
with its corresponding STIX bundle. These reports, collected over a 12-month period starting in
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February 2022, originate from well-known and reputable sources (cf. Section 7.2.3.2) and have
been further reviewed to ensure classification quality.

Structured CTI extraction in this context is performed manually, following a rigorous multi-step
process, carried out by three independent analyst groups, each with clearly defined roles:

Group A is responsible for selecting the reports to be processed. These reports are chosen based
on analyst expertise and awareness of global threat trends. This group typically consists of two
to four people and focuses on ensuring the relevance and diversity of the collected intelligence.

Group B carries out the core extraction process. Their workflow involves several sequential steps:

1. Initial Parsing: The selected report is processed using custom-built parsers to extract raw
text from the original web source. These parsers are developed in-house by the CTl team
to handle new formats or sources as needed.

2. Text Segmentation: The extracted text is segmented into blocks of sentences, which are
manually refined - analysts may merge, split, or discard segments to improve clarity and
focus.

3. Entity Extraction: Pre-labelling is performed using automated Named Entity Recognition
(NER) tools. Analysts then manually verify and adjust these labels, adding or removing
entities based on contextual relevance. Automated tools speed up the process by visually
highlighting candidate entities, allowing analysts to focus on semantic validation.

4. Attack Pattern Extraction: The same text blocks are processed using a logistic regression
model from TRAM [147], which flags likely attack-pattern-related sentences. These are
quickly verified by the analyst, while remaining ambiguous or uncovered text is reviewed
manually. This tiered approach reduces the volume of text requiring deep manual analysis
and helps disambiguate edge cases.

5. STIX Bundle Assembly: Using a custom-built graphical interface, the analyst assembles
the final STIX bundle. This includes not only verified entities but also correct attribution
through STIX relationships (e.g., uses, targets).

Group B consists of two analysts who alternate roles, each working on different reports.

Group C independently reviews the STIX bundles produced by Group B. This group inspects the
intermediate steps and either accepts or requests revisions to the submitted bundle. Group C
also consists of two analysts, and all members of Groups B and C rotate roles between analyst
and reviewer across different reports to ensure impartiality and reduce annotation bias.

This entire process is supported by a web-based software infrastructure specifically developed
to streamline structured CTIl annotation. Analysts access a unified toolchain via this platform,
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which tracks their interactions, roles (e.g., analyst vs reviewer), and time spent on each stage of
the process. For the dataset used in this study, the average time required to complete the full
structured CTI extraction for a single report (excluding selection by Group A) was approximately
4.5 hours, with Group B responsible for the majority of the workload (~3 hours per report).

To further ensure annotation quality and consistency, an additional validation phase was
conducted. A team of two independent researchers reviewed a subset of the 204 reports
previously processed by Groups B and C. They re-labelled the selected reports from scratch and
compared results with the existing annotations. This process confirmed unanimous agreement
across both analyst teams and researchers. During validation, researchers accessed the original
web sources directly—bypassing the automated parsers used during Group B's initial
processing—to eliminate even the slightest possibility of parser-induced errors.

This multi-tiered approach ensures that the resulting dataset not only reflects real-world
intelligence extraction practices, but also meets a high standard of annotation quality, providing
a robust foundation for evaluating structured CTI extraction techniques based on CTI-specific
metrics.

7.2.3.2.  Dataset Summary

The dataset used in this work comprises 204 CTI reports, each manually annotated with a
corresponding STIX bundle. The reports are sourced from 62 well-known public entities,
including organizations such as Palo Alto Networks [148], Trend Micro [149], and Fortinet [150].
On average, each source contributes 3.3 reports (see Table 3). Importantly, approximately 79%
of the sources are referenced by the MITRE ATT&CK® framework as external citations,
confirming the representativeness and relevance of the selected materials within the global CTI
landscape.

Table 3: Dataset statistics: number of reports per source, and report length in words and sentences.

Metric Min Avg 95p [\ EV
Reports per source 1 3.3 9 11

Words per report 504 2133.6 4015.8 6446
Sentences per report 11 86.3 172.5 358

The thematic focus of the dataset is summarized in Table 4. Roughly 75% of reports centre around
malware, with a significant portion also covering associated threat actors (30%). An additional
15% describe threat actors alone or in combination with vulnerabilities. A minority of reports
(10%) address broader topics such as cyber campaigns or threat infrastructure. This distribution
ensures coverage across multiple intelligence use cases.
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Table 4: Topics covered by the reports in the dataset.

Topic Quota Group

Malware 30%

Malware + Threat Actor 30%

Malware + Threat Actor + Vulnerability | 8%

Malware + Vulnerability 7% 75%
Threat Actor 11%

Threat Actor + Vulnerability 4% 15%
Others (e.g., campaigns, infrastructure) | 10% 10%

The dataset achieves wide coverage of the MITRE ATT&CK Matrix for Enterprise, encompassing
nearly 90% of its attack pattern classes. Furthermore, it includes all of the top 10 most prevalent
ATT&CK techniques used by adversaries in 2022 [153], with each technique appearing in
multiple reports. Overall, the dataset mentions 188 unique malware variants and 91 distinct
threat actors, ensuring robust diversity in threat representation.

Each of the 204 reports is associated with a STIX bundle, resulting in a total of 36.1k structured
entities and 13.6k semantic relations. The ontology derived from this data is visualized in Figure
23, covering 9 STIX entity types and 5 types of relations, and providing a structured foundation
for knowledge graph-based CTI processing.

Table 5 provides detailed statistics on the STIX bundles. On average, each bundle contains 177
STIX objects and 67 relations, with wide variance reflecting the richness of different reports. We
also report the distribution of key entity and relation types across the dataset. Notably, Malware
appears in 75% of bundles, Threat Actor in 54%, and Attack Pattern in 99%, reflecting their
prominence in CTl narratives.

Table 5: Dataset statistics by STIX bundle. Final column shows percentage of bundles containing each object or relation at least
once.

Metric / Type \ Min  Avg 95p Max \ Quota
STIX Objects 13 177.1 525.8 1255 -
STIX Relations 5 67.0 180.3 429 -
Malware 0 0.9 2.0 5 75%
Threat Actor 0 0.6 1.0 2 54%
Attack Pattern 0 21.8 40.0 63 99%
Identity 1 1.7 2.0 5 100%
Indicator 1 41.9 163.1 395 100%
Campaign 0 0.6 1.0 4 55%
Vulnerability 0 0.5 2.0 11 21%
Tool 0 0.1 1.0 10 6%
Course of Action 0 0.0 0.0 1 2%

P
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uses (relation) 1 23.6 48.8 64 100%
indicates (relation) 1 41.9 163.1 395 100%
targets (relation) 0 1.2 3.8 12 77%
attributed-to (relation) 0 0.3 1.0 2 26%
mitigates (relation) 0 0.0 0.0 2 2%

These statistics emphasize the richness and representativeness of the dataset, making it suitable
for evaluating the performance of automated systems in structured CTI extraction tasks. While
Table 5 is not used directly in our performance evaluation, it provides important context on the
volume and diversity of information present in the annotated STIX bundles.

7.3. Edge-Cloud Infrastructure Monitoring for CTI

Monitoring and observability are crucial for ensuring the resilience and security of distributed,
containerized systems, particularly in edge-cloud environments that support network slices. In
recent years, the shift toward cloud-native architectures—including microservices, containers,
and orchestration platforms like Kubernetes—has brought significant advantages in scalability
and flexibility. However, these architectures also introduce complexity, especially when deployed
across geographically distributed and highly dynamic edge-cloud infrastructures. This complexity
makes it more challenging to understand system behaviour and detect faults or threats in real
time. Traditional monitoring tools designed for monolithic or centralized systems fall short in this
context, such as Zabbix and Nagios [154] [155].

To address this challenge, as part of our contribution, we focus on developing and maintaining
an infrastructure for monitoring the health and behaviour of Kubernetes-based clusters and the
microservices within these clusters, supporting Cyber Threat Intelligence (CTI) and Al
frameworks. Our primary objective is to monitor workloads over Software-Defined Networking
(SDN) and to observe how microservices behave in virtualized ecosystems under different
conditions. To this end, we use Prometheus, a widely used open-source monitoring tool designed
for cloud-native systems [155][156]. Prometheus is integrated with our experimental testbeds to
collect metrics from various layers of the infrastructure. These include data on CPU and memory
consumption, disk I/0, container lifecycle events, pod-level statistics, bandwidth and latency, and
error rates across services and interfaces.

To make the collected metrics more accessible and actionable, we integrate Prometheus with
Grafana, a powerful open-source analytics and visualization platform. By configuring Prometheus
as a data source in Grafana [135], we can query, visualize, alert, and explore key metrics from
across our experimental VM and container testbeds. This integration significantly enhances
operational insight by providing interactive dashboards that display metrics in real time and
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across historical windows. As shown in Figure 26 and Figure 27, the system is designed to monitor
the overall health of the cluster as well as focus on service-level granularity.
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At the container level, we can monitor fine-grained performance metrics for individual
microservices. At the node level—including both control plane and worker nodes—we track
broader metrics, such as CPU load averages, memory usage, filesystem pressure, etc. We also
attempt to understand how the K8s scheduler on the control plane responds under unstable load
conditions, where oscillating request patterns cause rapid and repeated scaling decisions. These
fluctuations lead to increased control plane activity, driving up CPU usage and energy
consumption, affecting the service sustainability without any actual service failure. The term for
this kind of attack is called Denial of Sustainability, wherein rapid and repetitive pod scaling in
response to fluctuating workloads leads to increased energy consumption and operational costs,
degrading the Quality of Service [158].

Furthermore, we focus on the structured generation of time-series datasets that can feed Al-
based threat detection and CTI systems. Prometheus serves as the backbone for collecting
operational telemetry, enabling us to create labelled datasets that capture both routine and
anomalous system behaviours under varied workloads.

This work complements the broader architecture by ensuring the availability of accurate, time-
aligned, and context-rich observability data. This data serves long-term analytics and modelling
required by CTI frameworks and Al systems in 6G environments.
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8. Conclusions

Deliverable D4.3 has presented the foundational contributions of the NATWORK project in the
field of intelligent secure services for 6G networks. It brings together advancements in Al-driven
orchestration, real-time cybersecurity, trust mechanisms, explainability, and cyber threat
intelligence, developed within the scope of Work Package 4.

The document began in Section 2 with a comprehensive state-of-the-art analysis, establishing
the scientific and technological context for NATWORK’s innovations. It reviewed existing
approaches in zero-touch network management, Al-based threat detection, explainable artificial
intelligence (XAl), cyber threat intelligence (CTI), and blockchain for trust establishment,
identifying key challenges and research gaps that NATWORK addresses.

In Section 3, the deliverable introduced the first version of zero-touch network solutions, focusing
on the design of Al-driven orchestration mechanisms that minimize human intervention while
enabling autonomous, secure, and context-aware service deployment. This section outlined the
proposed architecture and the early design of modules capable of managing dynamic security
policies and adapting to runtime conditions.

Section 4 detailed the Al-driven real-time threat detection capabilities being developed in the
project. It presented the conceptual design of intelligent agents that process telemetry data and
threat indicators in real time, enabling proactive identification and response to malicious
activities across different network layers.

In Section 5, the document described the initial design of blockchain-based trust establishment
mechanisms, proposing a decentralized approach to support trust, data integrity, and secure
interactions among distributed network components. This section introduced the foundational
architecture and demonstrated how blockchain can enhance the transparency and reliability of
service orchestration.

Section 6 addressed one of the project’s key cross-cutting challenges: explainability. It explored
different models and technical strategies to ensure that the decisions made by Al modules—
particularly those related to security enforcement and service orchestration—are
understandable and interpretable by operators and auditors. Several explainability mechanisms,
ranging from visual tools to traceable decision models, were introduced.

Finally, Section 7 presented the first version of the Cyber Threat Intelligence (CTI) framework,
outlining the approach for collecting, analysing, and operationalizing multi-source threat data.
The CTI framework is designed to support both human analysts and automated agents,
enhancing situational awareness and enabling adaptive security responses across the network.
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Overall, this deliverable consolidates a wide range of technical contributions toward building an
intelligent, secure, and explainable orchestration environment for 6G networks. The components
and designs presented in D4.3 will serve as the basis for further integration and validation
activities in the next phase of the NATWORK project.
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Annex A

A.1 Annex — Classification of attacks

D4.3 Intelligent networking, CTI & explainability.rl

As part of the task 4.1, the NATWORK project continues to develop the attack datasets. Different partners are working on different
attacks, on HTTP2, TCP, UDP, AMF, among others. The partners have classified their attacks so that to facilitate data collection
activities, through uploading the generated datasets to a common repository provided by T4.5. A glimpse on the structure can be seen

in the following table:

Table 6: Classification of attacks

Attack Name \ Type of attack Target Protocol Target
ICMP
DoS attacks and port scans Denial of Service ubP Ser\(er deployed in the S5GTN MEC
TCP environment
HTTP
Al-DoS attack Denial of Service | TCP/SCTP/HTTP2/UDP AMF and SMF of CERTH's testbed
SCTP Session Flooding Denial of Service | SCTP AMF of CERTH's testbed
HTTP2 Ping Flooding attack Denial of Service | HTTP2 SMF of CERTH's testbed
HTTP2 Slow Get Flooding attack Denial of Service | HTTP2 SMF of CERTH's testbed
TCP SYN Flooding Denial of Service | TCP AMF or SMF of CERTH's testbed
UDP Flooding Denial of Service | UDP UPF of CERTH's testbed
SSH brute force attack SSH Brute Force SSH CERTH testbed
OT/ICS attacks (Log4Shell, Brute | SSH brute force SSH
MONT's testbed
Force attack) Log4Shell TCP / HTTP > testbe
Data Exfiltration Data Exfiltration Depend§ on the attack type CNFs/VNFs on 5G testbed
HTTP might be a target
Malware Infection Malw(?lre Depend.s on the attack type CNFs/VNFs on 5G testbed
Infection HTTP might be targets
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Attack Name \ Type of attack Target Protocol Target
DoSt Attack App HTTP HTTP CNFs/VNFs on 5G testbed
UDP generic uUDP
Mirai botnet attack TCP SYN TCP HES-SO's testbed
App HTTP HTTP
Jamming Attack Jamming IEEE 802.11.p CERTH testbed
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A.2 Al-DoS attack Tool - GORGO

As network infrastructures evolve toward 5G and 6G paradigms, their increasing complexity and
interconnectivity necessitate more advanced cybersecurity assessment methodologies.
Traditional penetration testing tools often fail to simulate the dynamic and adaptive nature of
real-world adversaries. In the following section GORGO, an Al-powered Denial-of-Service (DoS)
attack tool is introduced. GORGO is designed to autonomously identify and exploit vulnerabilities
in next-generation networks, providing a robust evaluation framework for system resilience.

A.2.1 System Architecture

GORGO employs a reinforcement learning framework, leveraging Deep Q-Learning agents
capable of simulating and orchestrating DoS attacks. These agents do not rely on pre-configured
datasets or manual tuning; instead, they learn and evolve through ongoing interaction with their
environment. This allows GORGO to model highly adaptive adversarial behaviours, aligning with
the dynamic nature of real-world cyber threats. Its design enables the tool to respond to network
conditions in real time, altering its methods of attack as the scenario evolves.

The technical foundation of GORGO supports an extensive range of features that contribute to
its effectiveness as a penetration testing instrument. The system is not limited to a single
protocol, as it can launch attacks using TCP, UDP, or SCTP, depending on the target and scenario.
Its intelligence enables it to determine the most disruptive strategy based on the specific service
or network component under attack. For instance, when targeting critical elements such as the
Access and Mobility Function (AMF) or an On-Board Unit (OBU) in vehicular networks, GORGO
adjusts its tactics accordingly.

The tool can conduct protocol-level fuzzing: It generates and manipulates network packets
autonomously to expose vulnerabilities that may not be detectable through standard testing
tools. Moreover, the system facilitates collaborative learning among multiple agents,
orchestrating synchronized attacks that are more difficult to detect and mitigate. By continually
analysing the impact of its actions on Quality-of-Service metrics, such as latency and throughput,
GORGO refines its strategy to enhance the overall effectiveness of the attack.

A.2.2 Experimental Setup and validation

An initial Validation and performance testing of GORGO was conducted using the CERTH 5G
testbed, which provides a cloud-native, containerized network environment. This infrastructure
includes a complete 5G core network implemented with Free5GC, along with simulated User
Equipment and eNodeB elements. Network functions are deployed across Docker containers and
interconnected through a software-defined networking architecture managed by Open vSwitch
and the Floodlight controller.

Project unded by
Co-funded by 0 e s |8 () UK Research Page 111 of 113
the European Union s ——— =4 N and Innovation




NRT:..

D4.3 Intelligent networking, CTI & explainability.rl
W.R:RK

We performed the following experiment: GORGO targeted the AMF component using SCTP over
port 38412, leading to a complete disruption of core services. The final results of this attack are
shown in Figure 28. The tool managed to disrupt the AMF functionalities after training on its
environment after performing unsupervised learning that required 2 days, 21 hours, 56 minutes.

The AMF cannot respond to new customer requests
as it has collapsed.

Although the Al attacked on the SCTP protocol, we
LR notice that the TCP protocol also affected.
When a new customer makes requests to the AMF,
they will receive an ABORT response for the SCTP
protocol and a RST for the TCP protocol.

Capturing from any

fle B0t View Go Captwre Analyze Statistics Telephony Wireless Tools Help
[ ] X A )Vl ONORORI
3.1 01 1p.Sts192.187.3.1) and (ip.6rc == 192.187.32 of Ip dite~192.1873.7)

Protocol Length info

.A Framse 23916: 76 bytes on wire (€68 bits), 76 bytes capturcd (608 bits) on interface any, id G . After the DQN mOdel'S attack, the AMF

» Linex cooked capture vi
+ Internct Protecol Version 4, Src: 102.167.3.1, Dst: 192.107.3.2
Trunsaission

Cuntrol Protecol, Sre Purt: 50664, Dat Pori: 1, Seq: 0, Len: has suffered a complete collapse.

The latency of the AMF service has
wwaEn undergone a 1000% increase compared to

” ai 2 bt a2 o7 8 aa when the attack first started. The same
e ! applies to Throughput and Packet Loss.
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Figure 28: Results of DoS attack against AMF component in real 5G testbed environment.

The validation strategy for the first evaluation experiments of GORGO was structured so that can
be extended to fit the scope of Use Case 3.2 of the NATWORK project. This use case focuses on
Al-enabled penetration testing for 5G and 6G infrastructures. The evaluation was conducted
through a three-stage scenario. Initially, GORGO launched a DoS attack while continuously
monitoring the impact on network performance. As the attack unfolded, the system received
feedback and dynamically optimized its approach to increase the level of disruption. The final
phase involved a complete breakdown in communication between key network functions,
effectively resulting in a full denial of service.

A.2.3 Future Steps

Further improvements to GORGO are planned to enhance its application before the end of the
project. These include expanding support to additional protocols such as HTTP/1.1 and HTTP/2.0,
which will allow GORGO to operate in a broader range of network environments. Techniques to
evade intrusion detection systems are also being explored, with the aim of making GORGO's
behaviour more difficult to detect. Recorded data from GORGO's activities will also be used to
train intelligent intrusion detection systems, creating a feedback loop between offensive testing
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and defensive development. These data collection activities will facilitate also the population of
the common NATWORK data repository, provided by T4.5, with attack generated datasets.
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