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Executive summary 
This deliverable, D4.3 – Intelligent Networking, CTI & Explainability.r1, presents the first results 

of Work Package 4 (WP4) of the NATWORK project, regarding the development of AI-powered 

security services for 6G networks. It focuses on integrating AI-based automation, cyber threat 

intelligence (CTI), and explainability into the orchestration and security management of 

distributed services. The document outlines the conceptual foundations, architectural models, 

and initial technical components developed to enable NATWORK’s vision of secure, self-adaptive, 

and trustworthy service environments. It addresses the technical challenges that arise when 

delegating critical security decisions to AI-driven systems, particularly in terms of real-time 

responsiveness, human interpretability, and integration with heterogeneous infrastructures. 

The work reported on this deliverable is the outcome of two complementary tasks. Task 4.3 

introduces the concept of AI-as-a-Security-Service (AIaaSecS), a paradigm in which modular AI 

components operate across the orchestration layers to detect threats, enforce dynamic policies, 

and autonomously adapt service configurations in response to changing risk conditions. Task 4.4 

focuses on two critical enablers: the integration of multi-source cyber threat intelligence and the 

design of mechanisms for explainability and observability in AI-based decision-making. Together, 

these efforts support the development of intelligent network services that are not only secure 

but also transparent, traceable, and responsive to evolving operational contexts. 

Section 2 of the document provides a thorough state-of-the-art review, situating the NATWORK 

approach about ongoing research in zero-touch orchestration, threat detection, blockchain for 

trust, and explainable AI. Building on this foundation, Section 3 introduces the initial design of 

NATWORK’s zero-touch solutions, which aim to automate the deployment and lifecycle 

management of services with minimal human input. Section 4 presents the architecture for real-

time threat detection based on AI agents that process telemetry and contextual information to 

identify attacks and abnormal behaviour. Section 5 outlines a decentralized trust framework 

based on blockchain technology, supporting secure data sharing and authentication across 

service components. Section 6 develops the explainability dimension, proposing techniques and 

tools to ensure that AI decisions—especially those related to security—are understandable and 

verifiable. Finally, Section 7 describes the NATWORK CTI framework, which enables the ingestion, 

processing, and operational use of diverse threat intelligence sources. 

The main conclusion of this deliverable is that NATWORK’s combined use of AI, CTI, and 

explainability represents a viable and forward-looking approach to securing the next generation 

of networked services. The architectural designs and early components presented here 

demonstrate strong technical feasibility and alignment with the project’s goals of building 

resilient, adaptive, and low-overhead cybersecurity solutions for 6G infrastructures. They also 
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provide a foundation for the deployment of intelligent orchestration platforms that can respond 

to threats in real-time while maintaining transparency and auditability. 

The purpose of Deliverable D4.3 is to consolidate the results of the first phase of technical work 

within WP4 and to establish a coherent baseline for further development, integration, and 

testing. It provides a shared reference for partners working on related tasks. It prepares the 

ground for the implementation and validation activities that will follow in the second half of the 

project. The final results will be documented in Deliverable D4.4, where the complete system 

integration and performance evaluation will be presented based on NATWORK’s use cases and 

scenarios. 
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1. Introduction  
The transition toward 6G networks is driving a profound rethinking of how security is designed, 

integrated, and delivered across digital infrastructures. As services become more distributed, 

automated, and context-aware, the traditional approaches to cybersecurity—often centralized, 

static, and reactive—are no longer sufficient. Emerging architectures must embed security by 

design, leveraging real-time intelligence and AI-driven capabilities to ensure resilience, 

adaptability, and trustworthiness in an increasingly complex and dynamic environment. 

Within this strategic vision, the NATWORK project proposes a bio-inspired, energy-aware, and 

self-adaptive framework that enables secure and autonomous orchestration of services across 

the 6G continuum. A core component of this vision is the ability to incorporate AI-powered 

security services that can proactively defend against threats while maintaining visibility, 

explainability, and operational accountability. Deliverable D4.3 contributes directly to this 

ambition, presenting the first major technical outcomes of Work Package 4 (WP4), which focuses 

on the research and development of such intelligent services. 

The work captured in this deliverable, stems from two tightly interrelated tasks. Task 4.3 

introduces the concept of AI-as-a-Security-Service (AIaaSecS)—a novel framework that leverages 

modular AI components to enable proactive and autonomous network defence. These AI agents 

operate within the orchestration layers of the network, dynamically assessing risks, enforcing 

security policies, and reacting to threat intelligence in real time. They are designed to interpret 

and integrate inputs from multiple sources, including CTI feeds, telemetry data, and contextual 

information, allowing them to anticipate vulnerabilities, detect ongoing attacks, and recommend 

or trigger appropriate mitigation measures. This marks a fundamental shift from post-facto 

security enforcement to preventive and adaptive protection embedded directly in service 

lifecycles. 

Task 4.4 complements this work by addressing two equally critical dimensions: cyber threat 

intelligence (CTI) integration and explainability of AI-driven decisions. On one hand, it focuses on 

enriching the CTI pipeline by designing mechanisms for the collection, correlation, and 

contextualization of threat data at different layers of the system—ranging from infrastructure-

level events to application and service-level indicators. This enables more precise and timely 

threat awareness, feeding both human operators and AI-based decision modules. On the other 

hand, Task 4.4 advances the explainability and observability of these intelligent systems. As AI 

agents gain control over sensitive decisions, it becomes essential to ensure that their actions are 

transparent, auditable, and understandable. The task therefore investigates and integrates 

explainable AI (XAI) techniques, observability frameworks, and tracing methods that can support 

accountability, foster user trust, and enable effective incident response and system debugging. 
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Together, these two tasks provide a robust foundation for embedding secure, intelligent, and 

interpretable functions into the NATWORK platform. Deliverable D4.3 represents the first major 

milestone in this process, consolidating the architectural designs, state-of-the-art analysis, and 

initial implementation activities related to both AIaaSecS and CTI-driven explainable intelligence. 

The components described herein will ultimately be integrated, tested, and validated in real-

world scenarios in the later stages of the project, with final results to be reported in D4.4. 

By aligning advanced AI technologies with cyber threat intelligence and explainability, this 

deliverable contributes to the overarching goals of NATWORK: to build resilient, energy-efficient, 

and trustworthy 6G infrastructures where services can self-adapt to threats and operate securely 

without constant human oversight. In this sense, D4.3 not only reflects significant technical 

progress but also lays the conceptual groundwork for the secure automation paradigm 

NATWORK seeks to achieve. 

1.1. Purpose and structure of the document 

This deliverable reports on the progress achieved within Work Package 4 (WP4) of the NATWORK 

project, which focuses on the design and development of intelligent secure services that 

integrate artificial intelligence, cyber threat intelligence, and explainability into next generation 

6G network architectures. In particular, Deliverable D4.3 presents the outcomes of the initial 

research, architectural design, and early implementation activities conducted under Tasks 4.3 

and 4.4. These tasks aim to enable proactive, autonomous, and trustworthy security mechanisms 

capable of operating within complex service orchestration environments. 

The main objective of this document is to outline how AI-based modules can be used to enhance 

network security through self-adaptive mechanisms, real-time threat awareness, and 

transparent decision-making. It also highlights the importance of explainability and 

accountability in the deployment of such intelligent services, as well as the role of cyber threat 

intelligence in supporting robust and informed decision processes. 

The structure of the document is as follows: 

• Section 2 provides a state-of-the-art analysis covering AI-driven network security, zero-

touch orchestration, threat intelligence, and explainable AI techniques, setting the 

foundation for the technical developments described in later sections. 
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• Section 3 presents the Zero-Touch Network Solutions, including the design of 

autonomous orchestration and AI-based secure service deployment mechanisms that 

reduce human intervention while maintaining operational integrity. 

• Section 4 describes the AI-Driven Real-Time Threat Detection capabilities being 

developed within the project, focusing on the integration of machine learning agents and 

proactive defence strategies to identify and mitigate cyber threats. 

• Section 5 introduces the Blockchain-Based Trust Establishment mechanisms that support 

data integrity, provenance tracking, and distributed trust for secure service orchestration. 

• Section 6 focuses on the Explainability Framework, detailing the different technical 

approaches developed to provide visibility, interpretability, and auditability of AI-driven 

decisions across the NATWORK platform. 

• Section 7 presents the Cyber Threat Intelligence (CTI) Framework, outlining how multi-

source intelligence is collected, processed, and used to feed both human users and AI-

based modules within the system. 

• Section 8 concludes the document by summarizing the main achievements to date and 

outlining the next steps toward full system integration and validation. 

• Section A.1 is an Annex that provides a classification of the examined attacks in 

NATWORK, that facilitate the development of intrusion detection mechanisms, while A.2 

presents updates on an attack tool that generates some of these attacks.  

This deliverable thus provides a comprehensive overview of the intelligent and secure service 

capabilities being developed in NATWORK, while preparing the path for further implementation 

and evaluation activities in the second phase of the project. 

1.2. Intended Audience 

This deliverable is classified as public and is intended for a broad audience that includes not only 

the members of the NATWORK consortium but also external stakeholders, such as researchers, 

practitioners, policy makers, and other European research and innovation projects working in the 

fields of network security, artificial intelligence, and 6G technologies. 

Deliverable D4.3 serves as a comprehensive reference for those interested in the design and 

development of intelligent secure services, AI-driven threat detection, explainable AI, cyber 

threat intelligence, and trust establishment mechanisms within the context of next-generation 

network infrastructures. The content is particularly relevant for academic and industrial 

communities engaged in the advancement of autonomous orchestration, cybersecurity 

automation, and AI trustworthiness. 

By sharing the architectural designs, conceptual models, and initial implementation strategies 

developed under Work Package 4, this document contributes to ongoing discourse in the fields 
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of secure and intelligent networking. It aims to foster knowledge exchange, cross-project 

collaboration, and alignment with related initiatives funded under the Horizon Europe 

framework. 

As a public deliverable, D4.3 also supports the transparency and openness objectives of the 

NATWORK project, offering insight into its technical vision and intermediate results while 

encouraging further collaboration and feedback from the broader research and innovation 

community. 

1.3. Interrelations 

The NATWORK consortium integrates a diverse and complementary set of competencies from 

academia, research institutions, SMEs, and large industrial partners, covering critical domains 

such as user-centric service design, AI-driven orchestration, cybersecurity, trust mechanisms, and 

secure-by-design network architectures. With fifteen partners across ten EU member states and 

associated countries (including the UK and Switzerland), NATWORK ensures broad geographical 

and technical representation in addressing the complex security and intelligence challenges 

posed by emerging 6G Smart Networks and Services. 

As a Horizon Europe Research and Innovation Action (RIA), the project is organized into seven 

interdependent work packages (WPs), each structured into focused tasks to facilitate 

specialization, cross-WP collaboration, and continuous alignment with overall project objectives. 

This approach ensures that knowledge and technologies developed in each part of the project 

are shared and leveraged across the consortium, enabling scientific and engineering innovation 

at scale. 

Deliverable D4.3 is a central output of Work Package 4 (WP4) – Intelligent Secure Services. It 

captures the progress in designing and implementing intelligent AI-based modules for proactive 

threat detection, explainability, and cyber threat intelligence integration. These components 

represent foundational elements for NATWORK’s overarching goal of enabling autonomous, 

secure, and trustworthy service orchestration in future 6G infrastructures. 

This deliverable is closely interrelated with the following project components and deliverables: 

• D4.5 – NATWORK Federated Repository for B5G/6G Networks: D4.3 contributes to the 

data generation processes that feed into the federated repository defined in D4.5, 

particularly datasets related to AI-based threat detection, CTI, and explainability. These 

data assets will support the training, evaluation, and reproducibility of NATWORK’s 

security models and frameworks. Furthermore, Annex A presents a brief output of T4.1, 

related to AI-based attack generation, that populates the data repository, and facilitates 

development activities under T4.3. 
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• D4.1 – Payload Security per Runtime, Intelligent Runtime Selection and Attestation: The 

intelligent components developed in D4.3 complement the runtime security mechanisms 

defined in D4.1 by enhancing their adaptability to threat contexts through CTI analysis 

and AI-driven decision-making. Moreover, explainability mechanisms from D4.3 provide 

critical transparency into how secure runtime selections and reactions are made.  

• All deliverables across the project involving AI-based decision-making: As explainability is 

a transversal requirement for building trust in AI-driven automation, D4.3 is inherently 

connected to every deliverable in NATWORK that integrates AI modules, particularly 

those involving orchestration, monitoring, actuation, and adaptive security. The methods, 

models, and tracing mechanisms defined here serve as a reference and technical input 

for ensuring that AI decisions are interpretable, auditable, and aligned with ethical and 

regulatory expectations across the project. 

In addition, D4.3 provides input to future integration and validation work in WP6 and aligns with 

WP2’s requirements and user-centric use cases. It supports coherence and reuse of developed 

assets while promoting a unified vision for intelligent and explainable cybersecurity in 

NATWORK’s system architecture.
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2. State of the art 

2.1. Zero-Touch Networking 

Intrusion Detection Systems (IDSs) are vital for the identification and mitigation of unauthorized 

network activities. The introduction of Artificial Intelligence (AI) has strengthened the IDS 

effectiveness. However, AI models are usually quite complex, and this often leads to a lack of 

transparency, making it hard for security professionals to trust and understand their AI-based 

decisions. To face this problem, Explainable AI (XAI) techniques have been developed that 

provide insights into AI-IDS actions [1]. 

Current XAI Techniques in IDS are the following: 

• Local Interpretable Model-agnostic Explanations (LIME), which provides explanations for 

individual predictions by locally approximating the AI model with an interpretable model. 

In the context of IDS, LIME assists security specialists in understanding the reasons behind 

specific alerts, enabling them to make more informed responses [2]. 

• SHapley Additive exPlanations (SHAP) assigns an essential value to each feature for a 

given prediction, providing a clear understanding of how each input impacts the output. 

This is especially useful in IDS for pinpointing the features that play the most significant 

role in detecting anomalies [3]. 

• Self-Organizing Maps (SOM) are neural networks that create a low-dimensional 

representation of the input data while preserving its topological properties. They are able 

to visualize complex data forms aiding this way in the interpretation of network 

behaviours and anomalies [4]. 

• Decision Trees and Random Forests are interpretable by constructions since they provide 

well defined decision paths. For IDS applications, they can be used to identify patterns 

related to unauthorized activities and at the same time provide clear explanations for 

their detections [5].   

Challenges and opportunities of XAI in IDS:  

• Balancing accuracy and interpretability is a constant challenge, as there is often a trade-

off between the complexity of an AI model and how easily it can be understood. AI models 

of higher complexity usually led to higher accuracy but this complexity negatively affects 

transparency. It is definitely a challenge to design accurate AI methods without sacrificing 

interpretability. 

• Real-Time explanations are essential for sufficient responses to adversary actions. Fast 

generation of these explanations without accuracy degradation is a challenging task.  
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• User-Centric explanations should be pursued for the XAI-IDS output to be actionable and 

comprehensible, whether the users are security analysts, network administrators or 

stakeholders.  

Future Research Directions: 

• Integrating XAI with Large Language Models (LLMs) will strengthen the IDS interpretability 

by providing natural language explanations allowing users to access complex detections 

more easily [6].  

• Development of comprehensive XAI frameworks specifically designed for intrusion 

detection systems (IDS) that can help standardize the generation and presentation of 

explanations, ensuring uniformity in how insights are delivered across different models 

and scenarios. This not only promotes interpretability but also enhances the reliability 

and trustworthiness of the system by reducing variability and ambiguity in the 

explanations provided [7] . 

Conclusively, the integration of XAI into IDS is progressing, providing more transparent and 

reliable AI-driven security solutions. Current research aims to improve the balance between 

model performance and interpretability i.e. making the models more user-centric, enabling 

security professionals to effectively understand and respond to AI-generated insights. 

2.2. AI-Driven Real-Time Threat Detection 

As network technology continues to evolve, in-network Machine Learning (ML) is expected to 

transform network operations by enabling real-time processing of data streams, including 

packets and flows, while eliminating the need for intermediate processing stages. Integrating ML 

directly into network infrastructure creates new opportunities for enhancing efficiency, security, 

and resource management. 

The application of Artificial Intelligence (AI) in real-time threat detection is an emerging field that 

utilizes in-network ML techniques to strengthen network security. Numerous research studies 

explore advancements in in-network functions and their implementations across various 

programmable architectures, such as P4-programmable [8] devices and Data Processing Units 

(DPUs). 

In-Network ML for Threat Detection Using P4: The shift toward self-driven next-generation 

networks [9] highlights the growing role of ML algorithms as key enablers in solving complex 

network management and optimization challenges. For instance, the work in [10] introduces 

SwitchTree, a system that embeds a configurable and reconfigurable Random Forest model 

inside a programmable switch. This design enables real-time flow analysis by extracting flow-level 

stateful features for network monitoring and attack detection. Experimental results confirm that 
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SwitchTree operates at line rate and achieves real-time attack detection with minimal resource 

overhead.  

Similarly, the study in [11] presents a machine learning technique that utilizes Decision Trees 

(DTs) to predict heavy network flows directly within the switch. Given the constraints of limited 

memory and computing power, the method relies on a specialized packet processing pipeline 

that integrates pre-trained DT models for in-network flow prediction, which has been evaluated 

on BMv2 and Tofino ASIC platforms.  

The author in [12] introduced IIsy, a framework that enables programmable switches to 

efficiently run machine learning classification models using an optimized encoding algorithm. By 

adopting a hybrid strategy, IIsy processes lightweight models on the switch while offloading 

complex computations to a backend server, achieving near-optimal classification accuracy and 

reducing backend load by 70%.  

Another recent work [13] introduced Planter, an open-source framework designed to integrate 

various trained ML models into different programmable network devices. Evaluations show that 

in-network ML using Planter achieves high performance in anomaly detection, operates at line 

rate with minimal latency impact, and efficiently manages resource constraints with negligible 

accuracy loss. 

Finally, an architecture leveraging programmable data plane switches to implement Binarized 

Neural Networks (BNNs) as switch functions has been proposed in [14], enabling line-rate packet 

classification at the edge. To ensure efficient training with minimal communication overhead, 

even in large-scale scenarios, the architecture adopts a federated learning approach. Their P4-

based prototype evaluation demonstrates significant latency and bandwidth improvements over 

conventional ML-based network architectures. 

In-network ML for DPU: Programmable DPUs and smart NICs are revolutionizing networking and 

computing by introducing advanced programmability for edge applications. The work in [15] 

introduces three DPU-driven edge use cases: a distributed network monitoring system for 5G, a 

power-efficient edge-to-cloud continuum, and security mechanisms integrated within DPUs. 

The work in [16] highlights Processing-in-Memory (PIM) as a promising accelerator for ML 

training, demonstrating significant performance gains over CPUs and GPUs in memory-intensive 

tasks. Like DPUs, PIM technology shifts computation closer to data, reducing bottlenecks and 

improving scalability for next-generation ML accelerators. 

The authors in [17] propose DLAU, a deep learning accelerator unit optimized for scalable deep 

learning networks using an FPGA-based architecture. The design integrates three pipelined 

processing units and tile-based techniques to enhance efficiency, achieving high-speed 

computation with minimal power consumption compared to traditional CPU implementations. 
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Multimodal AI based approaches:  The work in [18] introduces 5G-NIDD, a comprehensive and 

fully annotated dataset comprising both DoS attack traffic and normal traffic captured from a 

real 5G testbed. This dataset is specifically designed to facilitate the development and evaluation 

of AI-based security mechanisms. Their study demonstrates the dataset's utility in intrusion 

detection through extensive testing with standard machine learning (ML) models, achieving 

promising levels of detection accuracy.  [19] investigated the application of representation 

learning for malware traffic classification in Network Intrusion Detection Systems (NIDS). Using 

raw network traffic from two open-source datasets, they implemented a preprocessing pipeline 

that transforms PCAP files into images. This process includes session extraction, duplicate 

removal, and input normalization to ensure uniform image dimensions. Their approach, 

encapsulated in the USTC-TK2016 toolkit, employs convolutional neural networks (CNNs) to 

perform traffic classification. In [20], PayloadEmbeddings where proposed an innovative IDS 

approach based on generating vector embeddings from packet payloads. Inspired by Word2Vec, 

this method captures contextual relationships between bytes within a payload, enhancing the 

system’s ability to detect payload-based attacks such as SQL injection and cross-site scripting, 

which are often overlooked by traditional IDS techniques.  [21] presented a technique for 

classifying Tor traffic using time-based flow features between clients and entry nodes. Unlike 

conventional methods that rely on packet size or port numbers, their model focuses exclusively 

on temporal patterns. This approach enables the differentiation of eight categories of Tor traffic, 

contributing a novel perspective to encrypted traffic analysis. 

2.3. End to End Trust Establishment 

As 6G networks will connect a large number of devices, many of which may not be reliable, there 

are a number of significant security challenges to address. Traditional trust management systems 

are deemed inadequate for 6G applications due to their poor attack resiliency, relying on central 

authorities, and not functioning efficiently in the increasing number of users and devices of 6G 

networks [22][23]. This highlights the vital need for improved end-to-end security and trust 

management solutions in 6G networks, utilizing various technologies and approaches such as 

blockchain technology and zero trust approach [24]. The zero trust refers to eliminating any 

implicit trust in the various components and entities of the system, following the rule of “never 

trust, always verify”. It requires proper authentication during the trust establishment, and 

continuous verification of the involved entities and services [24]. Additionally, the involved 

entities are granted access to parts of the system, considering the minimal access policy to reduce 

the attack surface. The authentication, authorization, and attack detection need to be developed 

considering the trade-off between the high security level and system efficiency. Considering the 

trust management schemes, the main components and approaches of the trust management 

between entities in 6G environment are as follows: 
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Zero trust approach: It relies on the concept that no entity whether inside or outside the network 

should be trusted by default. An active authentication of all participating nodes is required before 

allowing access to resources. This feature is an important component considering the openness 

and diversity of 6G networks. 

Blockchain-Based Trust Management: The decentralized nature of blockchain technology and 

without relying on centralized authorities provides safe and transparent trust evaluation 

procedures through the employing of smart contracts and immutable ledgers. This 

decentralization is crucial for maintaining trustworthiness among the vast number of devices in 

6G networks. 

Access Control Management: Malicious or compromised nodes represent a serious risk in the 

network. This risk can be minimized by implementing access control policies which can be based 

on predefined or real-time assessments of devices' security metrics. 

Trust Evaluation and Security Monitoring: Ensuring security in 6G networks requires constant 

evaluation of the trustworthiness of network elements. This involves monitoring in real-time a 

number of variables, including compliance levels, in order to determine trust scores and respond 

effectively when trust thresholds are reached. 

Advanced Authentication Mechanisms: Strong authentication approaches are essential given 

the large number of devices in 6G networks. Approaches such as authentication and key 

agreement protocols guarantee mutual authentication between various nodes in the network. 

These mechanisms help prevent unauthorized network access and ensure that only legitimate 

devices participate in the network.   

Son et al. [25] introduced a zero-trust authentication scheme for 6G-enabled IoT environments. 

The proposed scheme provides continuous verification to ensure that all participating nodes 

within the network are authenticated independently of a secure channel. The scheme utilized 

the blockchain technology, which facilitates mutual authentication among network elements and 

provides the integrity and reliability of identity verification processes in a decentralized context. 

Additionally, a dynamic and fine-grained access control is achieved through the utilization of 

attribute-based encryption (ABE) [26]. The authors utilize a lightweight ABE method based on the 

elliptic curve cryptosystem (ECC), which minimizes computational overhead while improving the 

security. Through effective key management and access verification processes, the proposed 

approach guarantees effective defence against a range of security threats and provides adaptable 

access permissions based on real-time UE status. The authors provided a comprehensive security 

analysis using BAN logic and AVISPA [27] to validate the proposed approach, proving its resistance 

to potential attack vectors. A lightweight authentication scheme was proposed by the Rana et al. 

[28], designed for next-generation IoT infrastructures, specifically 6G networks. Mitigating 
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vulnerabilities such as user impersonation attacks was among the primary achievements of this 

work. The proposed scheme utilizes symmetric cryptographic algorithms to ensure mutual 

authentication between edge nodes and servers. This scheme ensures that only legitimate users 

can access services provided by the servers while protecting sensitive information transmitted 

over public channels.  

An authentication scheme, named REHAS, presented in [29], was specifically designed for the 

Internet of Drones (IoD). The scheme employed Hyperelliptic Curve Cryptography (HECC) [30] 

and utilizes an 80-bit key size for strong security. It performs fuzzy extractors for biometric data 

processing, enhancing user authentication and safeguarding against unauthorized access in case 

of device theft or loss. The scheme also utilizes a hash function, which balances the security and 

computational efficiency. By generating unique session keys for each communication session 

through a base station, the scheme mitigates the risk of replay attacks. Considering the resource 

constraints of drones, the scheme adds low computational overhead (approximately 6.7171 ms.), 

communication overhead (1696 bits), and energy consumption (22.5 mJ.). Choi et al. [31] 

provided a trust management scheme, considering drone security through the use of physical 

unclonable functions (PUFs). The integration of the proposed scheme improves the system’s 

resilience against specific attacks such as impersonation and stolen verifier threats. While 

schemes such as REHAS employ cryptography to ensure efficient trust management approach, 

the PUF-based scheme introduces a lightweight approach that addresses the vulnerabilities that 

such schemes may not fully cover, particularly concerning the physical security of drones and 

challenges posed by compromised cryptographic materials. By integrating PUF technology, the 

proposed scheme provides a more adaptable and responsive security solution that is better 

suited to the unique constraints and requirements of drone operations. However, increased 

complexity in the authentication phase which involves a higher number of message exchanges 

potentially lead to greater communication overhead and latency, which may affect the 

responsiveness of drone operations in critical scenarios. 

The authors in [32] introduced a hierarchical architecture that integrates Multi-Access Edge 

Computing (MEC) and Device-to-Device (D2D) communications to enhance healthcare services 

in the 6G environment. This architecture comprises three layers: Sensing, Processing, and 

Storage, where Internet of Medical Things (IoMT) devices collect health data, Cluster Controller 

(CC) nodes process and relay the data to MEC servers, and MEC ensures secure storage. A key 

focus is on security and privacy, achieved through the development of a lightweight mutual 

authentication protocol named LiMAD, which employs strong encryption to defend against 

threats like replay and man-in-the-middle attacks. However, the reliance on Cluster Controller 

(CC) nodes to facilitate communication between IoMT devices and MEC servers introduces 

potential inefficiencies, particularly if the CCs become bottlenecks under high loads. Putra et al. 

[33] proposed a blockchain-based trust management framework that leverages the decentralized 
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nature of blockchain technology, which eliminates the reliance on a central trusted party and 

thus enhances overall security against malicious activities. Key cryptographic components of this 

framework include smart contracts [34], which automate the processes of trust evidence 

collection and score calculation, ensuring transparency and adherence to predefined rules. An 

immutable ledger stores all trust-related data securely, maintaining data integrity and enabling 

auditability. Furthermore, by employing pseudonymity through cryptographic identifiers, the 

system enhances user privacy, allowing participants to engage without revealing personal 

identities. The proposed framework continuously assesses and quantifies the trustworthiness of 

all network participants. However, the main drawback is the inherent challenges in ensuring 

privacy and security within a large-scale, decentralized system, particularly concerning the risk of 

de-anonymization attacks against users and potential vulnerabilities in complex smart contracts.  

A decentralized framework introduced in [35] for secure end-to-end (E2E) communications in 

Large-Scale Heterogeneous Networks. This proposed approach addressed critical vulnerabilities 

found in traditional E2E security systems that often rely on centralized nodes, identity privacy 

breaches, and extensive communication costs. Key components of this scheme include a 

blockchain-enabled UE registration and key management protocol. Additionally, the framework 

incorporates a privacy-preserving mutual authentication protocol leveraging bilinear pairing 

which allows users and serving networks to authenticate each other securely while safeguarding 

their identities. Moreover, it employs a Trusted Execution Environment (TEE) for efficient session 

key generation and distribution, ensuring secure communication channels between data senders 

and receivers. The implementation of blockchain in similar protocols should be designed carefully 

with minimizing the necessity of frequent access to the blockchain, as it can lead to increased 

computational and communication costs [23]. Additionally, the complexity of integrating a TEE 

within various devices raises concerns about compatibility and accessibility, potentially limiting 

the widespread adoption of such frameworks across different network infrastructures. 

 

2.4. Explainable AI 

Ever since the emergence of Artificial Intelligence (AI), specifically neural networks, researchers 

have been curious about the reasoning behind the decisions made by the complex ML models. 

This curiosity has motivated various studies for providing human interpretations on the output 

of AI models, reaching back to 1980s with a focus on rule-based expert systems [36], [38]. At the 

time, numerous works were conducted to develop rule extraction techniques as a form of 

producing explanations for artificial neural network-based systems [39], [40], [41], along with 

survey papers to design taxonomies for such techniques [42], [43]. 
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Over time, with the resurgence of deep learning and advancement in computation power, the 

focus of interpretability studies shifted into these highly accurate “black box” models, which are 

basically deep neural networks [44], [45].  Numerous research papers were conducted for human 

interpretations of such black box models, trying to explain the reasoning behind their predictions 

using various methods, such as additive structures [46], sensitivity analysis [47], randomization 

techniques [48] and so on. 

While the studies on the interpretation of complex AI models continued, the focus of the relevant 

research shifted more into the concept of “Explainable AI (XAI)” after DARPA formulated their 4-

year XAI program in 2015 [49]. Many researchers, tackling the trade-off between interpretability 

and accuracy, produced output on the explainability of different ML models, mostly working on 

inherently explainable models, such as generalized additive models [50], logistic regression [51] 

or linear integer models [52], which are model-specific explainability techniques. On the other 

hand, as a different approach, a novel and flexible model-agnostic technique called LIME (Local 

Interpretable Model-agnostic Explanations) [53] was proposed in 2016, which provided a formal 

way to explain specific predictions in addition to the global understanding of the model. 

Moreover, the enforcement of EU General Data Protection Regulation (GDPR) in 2018 has 

granted people the “right to explanation” for autonomous systems [54]. This legal binding has 

also been a propelling factor towards further research on XAI. 

Following the impact of LIME, other model-agnostic explainability methods were developed 

throughout the years, some of them being widely adopted such as SHAP (Shapley Additive 

Explanations) [3] and counterfactual explanations [55]. In addition, some model-specific XAI 

methods were also proposed, namely saliency maps for neural networks [56], Grad-CAM for 

convolutional neural networks [57], and integrated gradients for deep networks [58]. These 

techniques are commonly utilized as the interpretability of many AI-based model in today’s 

problems.  

Although previously mentioned XAI methods cover plenty of scenarios and support various ML 

algorithms, some techniques have also been developed to interpret specific models. For instance, 

reinforcement learning is a unique paradigm of machine learning which is significantly different 

than the supervised or unsupervised alternatives. In this approach, an agent is trained through 

the interaction with the environment and subsequent observations of events, enabling an 

autonomous learning process [59]. Although some model-agnostic methods such as LIME or 

SHAP can also be applied, special consideration is required for an enhanced Explainable 

Reinforcement Learning (XRL) concept, which is studied thoroughly in survey papers [60], [61]. 

To actualize XRL, PIRL (Programmatically Interpretable Reinforcement Learning) has emerged as 

an alternative to deep reinforcement learning paradigm and has become a widely used 

framework [62]. PIRL replaces the neural network-based policies in deep learning with high-level, 



 D4.3 Intelligent networking, CTI & explainability.r1  

 

Page 29 of 113 
 

domain-specific programming language, and thus, providing an intrinsic XAI capability. Another 

intrinsic XRL method provides interpretability via fuzzy policies [63]. In addition to inherently 

explainable RL techniques, some post-hoc methods have also been proposed for the XRL concept, 

such as genetic programming [64], reward decomposition [65], expected consequences [66], 

policy distillation [67], and so on. All of these studies provide invaluable contributions to help 

reinforcement learning process to be humanly interpretable. 

Methods explored so far have touched XRL for global explanations, since the interpretability of 

reinforcement learning mostly focuses on that aspect. Nevertheless, some work also has been 

conducted for the local interpretability of such models, to gain an insight into how an agent 

would perform under certain conditions. For instance, aiming to tackle a complex, multi-task 

reinforcement learning problem, a novel framework based on hierarchical policies was proposed 

[68]. In addition, other techniques such as interesting elements [69], autonomous self-

explanation [70], and structural causal model [71] were also presented as a form of explaining 

specific actions performed by the agents. Furthermore, the recent proliferation of large language 

models (LLMs) empowers the reinforcement learning process in various ways [72]. Some studies 

propose to leverage LLM-based policy interpreters as a form of achieving XLR [73], [77]. Although 

the use of LLMs for XLR is quite limited, it seems like a promising future research direction. 

Apart from reinforcement learning, another special group of ML models that could benefit from 

XAI techniques is Graph Neural Networks (GNNs), which are a special type of neural network 

[78]. GNNs are similar to convolutional neural networks, however; unlike the latter models which 

work on images, GNNs operate on graph-structured data. This uniqueness results in a need for 

special XAI techniques for the interpretability of such models. One of the first developed methods 

for GNN explainability is called GNNExplainer [79], which is still widely adopted nowadays. 

GNNExplainer is a post-hoc, model-agnostic approach that works on any GNN-based model with 

any type of task, supporting both node classification and edge prediction. Inspired by 

GNNExplainer, many studies developed their own techniques for explainable GNN models. One 

such instance is CFGExplainer [80], which is a deep learning-based model-agnostic explainer, 

aiming to interpret control flow graph-based malware classification. Another work namely 

RCExplainer [81] focuses primarily on GNNs in the class of piecewise linear neural networks and 

provides robust counterfactual explanations. With an emphasis on cybersecurity, ILLUMINATI 

[83] is a post-hoc XAI method for GNNs, providing human-interpretable explanations by jointly 

considering nodes, edges, and attributes.  Botnet detection is also a popular topic for the usage 

of GNN, motivating researchers to come up with XAI techniques for GNNs in this specific area. 

Both XG-BoT [87] and BD-GNNExplainer [88] are methods that tackle the issue of over-

smoothing and high number of abnormal edges, respectively, in the botnet detection domain. 
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2.5. Cyber Threat Intelligence 

The work presented in [89] introduces VinciDecoder, an automated approach that leverages 

provenance analysis, machine translation, and machine learning techniques to generate high-

quality natural language reports from provenance graphs. VinciDecoder is not a CTI tool per se, 

but an attack forensic tool. VinciDecoder is designed to address the challenge of identifying the 

root cause of security incidents in large-scale cloud infrastructures, which is crucial for enhancing 

security awareness and strengthening threat detection and prevention capabilities. The system 

comprises two main phases: during the training phase, suspicious paths and their corresponding 

reports are collected, and these paths are transformed into primitive sentences in an 

intermediate language using a model trained with Neural Machine Translation (NMT). In the 

report generation phase, the trained model and the PILT (Translation to Intermediary Language) 

algorithm are used to create forensic reports based on suspicious paths associated with detected 

incidents. This approach enables analysts to quickly understand the sequence of operations 

during a security incident, significantly reducing the time and effort required to compile these 

reports. 

The work in [90] provides a review of studies on the automatic extraction of cyber threat 

intelligence (CTI) from textual descriptions, highlighting its importance for proactive defence 

against cyber threats. CTI is defined as evidence-based knowledge that enables organizations to 

predict, prevent, or defend against cyberattacks, categorized into strategic, operational, tactical, 

and technical CTI. The authors emphasize the benefits of CTI, such as proactive and actionable 

defence, as well as the challenges, including the need for clean data and automated extraction 

methods to improve precision and relevance. Additionally, they address the importance of 

collaborations and automation in CTI exchange, building on a review of 34 previous studies and 

expanding their analysis to a larger number of publications, identifying three new purposes for 

CTI extraction and proposing a CTI extraction pipeline. The methodology involves searching six 

academic databases and selecting 20,922 relevant publications. 

STIXnet, a modular and scalable solution designed to extract entities and relationships from 

unstructured cyber threat intelligence reports, is introduced in [91]. It uses natural language 

processing techniques and an interactive knowledge base to achieve high F1 scores in entity and 

relationship extraction, standing out as the first system to extract all STIX entities, including 18 

entity types and over 100 relationships. The system consists of several modules, each specialized 

in different types of extraction, such as individual entities, novel entities, and Tactics, Techniques, 

and Procedures (TTPs), and employs a combination of rule-based and deep learning approaches 

to extract relationships between entities, producing a JSON file that can be processed by a 

graphical interface. Additionally, STIXnet includes a framework for submodule interaction that 
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avoids overlap during processing and merges results from different submodules into a single data 

structure, facilitating its integration into various information extraction scenarios. 

The authors in [92] introduce CTI-BERT, a BERT model trained from scratch using a high-quality 

cybersecurity corpus, which outperforms other general and security-specific domain models in 

sentence and token-level classification tasks. They emphasize the importance of training domain-

specific models with high-quality corpora to enhance precision in threat intelligence extraction. 

The authors compare their approach with models like CyBERT and SecureBERT and evaluate CTI-

BERT in sentence and token classification tasks, demonstrating superior performance. 

Additionally, they tested CTI-BERT and SecRoBERTa's ability to classify malware-related 

sentences, achieving excellent results. 

The study in [93] focuses on enhancing security professionals' ability to prioritize and defend 

against cyber-attacks by identifying temporal attack patterns from open-source CTI reports. The 

authors introduce ChronoCTI, a machine learning pipeline that employs a large language model 

to extract temporal relationships from CTI reports. Their evaluation on a large corpus of CTI 

reports revealed 124 temporal patterns across nine categories, with the most common involving 

tricking users into executing malicious code and evading malware protection systems. The study 

underscores the importance of educating users, implementing immutable operating systems, 

and requiring multi-user authentication to mitigate recurring attack patterns. 

AttacKG [94] is an innovative technique for automatically extracting structured attack behaviour 

graphs from cyber threat intelligence reports. This system identifies attack techniques and their 

dependencies, incorporating cyber threat intelligence to create technique knowledge graphs. 

Evaluated on 1,515 real reports, AttacKG demonstrates superior precision in identifying attack 

techniques and IoCs, outperforming current approaches. By automating the analysis of 

intelligence reports, AttacKG enhances the detection of advanced cyberattacks and provides 

knowledge graphs that assist in attack reconstruction and APT detection. Additionally, it 

compares favourably with other methods like TTPDrill, ChainSmith, and EXTRACTOR, highlighting 

its performance and effectiveness in extracting cyber threat intelligence. 

In [95] MALOnt is introduced as an open-source malware ontology that organizes extracted 

information into knowledge graphs centred around threat intelligence. This ontology provides a 

comprehensive dictionary encompassing attacks and correlated details, aiding security analysts 

in comprehending attack origins, goals, timelines, actors, and exploited vulnerabilities. MALOnt’s 

structural design includes classes and properties that characterize various malware-related 

aspects, including behavior and affected targets, promoting efficient information extraction and 

the establishment of new connections. Through its flexible framework, MALOnt captures and 

analyses malware threat intelligence while offering pathways for extracting significant insights 

from threat reports. 
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The work in [96] presents GoodFATR, an innovative methodology developed for the comparative 

analysis of indicator extraction tools within cyber threat intelligence. Utilizing a majority voting 

scheme, GoodFATR offers a more thorough and reliable performance evaluation of these tools 

without necessitating a manually curated ground truth dataset. The effectiveness of GoodFATR 

was established through a series of rigorous experiments, underscoring its advancements over 

traditional methodologies. Moreover, the work introduces a new platform dedicated to 

systematically collecting and extracting indicators from threat reports, ensuring traceability 

throughout its operational pipeline and enabling analysts to accurately identify the underlying 

document sources for each extracted indicator. 

[97] explores commercial threat intelligence (TI) services and contrasts their advantages and 

limitations vis-à-vis open-source alternatives. While commercial services tend to provide superior 

quality, contextualization, and expansive threat coverage, they can often be costly and not 

universally accessible. The study advocates for a hybrid approach that harnesses the strengths of 

both models, revealing an overlap of indicator feeds between competing providers. The 

qualitative assessment of TI is also noted as primarily based on informal heuristics rather than 

strict metrics, indicating a gap in academic scrutiny of commercial TI compared to the existing 

focus on open-source intelligence. 

 The study in [98] "Vulnerability Disclosure in the Age of Social Media" explores the role of Twitter 

to forecast and recognize real-world vulnerability exploitations. Through the analysis of Twitter 

data patterns, the authors employ natural language processing and machine learning algorithms 

to classify tweets in relation to vulnerability exploits. This work establishes methodologies for 

early exploit detection via Twitter, identifying features that mark useful indicators of ongoing 

exploits, while also assessing the robustness of their detection system against adversarial 

manipulation. The contributions encompass a characterization of the vulnerability disclosure 

landscape, an introduction of techniques for early exploit detection, and the formulation of a 

problem-specific threat model against competitive interference. 

[99] introduces LogPrécis, a tool that employs language models (LMs) to scrutinize Unix shell 

attack logs, . By utilizing advanced LMs, LogPrécis effectively identifies attacker tactics associated 

with various components of shell sessions while condensing extensive logs into concise footprints 

conducive to identifying novel and similar attacks. The work validates that LogPrécis can enhance 

the defence response to cyber threats by employing pre-trained language models to evaluate 

Unix shell logs, classifying detection efforts based on attacker techniques and facilitating MITRE 

tactic identification. This comprehensive approach aims to enhance understanding of attackers' 

motives, improve threat identification capabilities, and streamline cybersecurity operations. 

[100] proposes CyberRel, a joint entity and relation extraction model tailored for cybersecurity 

concepts, positioning the extraction challenge as a multiple sequence labelling task. By leveraging 
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techniques such as BERT, BiGRU, and attention mechanisms, CyberRel attains an impressive F1 

score of 80.98% on Open-Source Intelligence (OSINT) data. The primary focus is on enhancing 

accuracy and efficiency in both entity and relation extraction within the cybersecurity domain 

while addressing overlaps between entities in the corpus. The paper discusses the construction 

of triples representative of cybersecurity knowledge and the model's ability to produce well-

structured outputs through advanced deep learning frameworks. 

The proposed method in [101], rcATT, aims to streamline the retrieval of ATT&CK tactics and 

techniques from cyber threat reports to bolster efficient threat hunting and risk assessment. This 

solution automates the extraction of Tactics, Techniques, and Procedures (TTPs) sourced from 

various references, organizing results within a STIX 2.0 structured format. The authors illustrate 

a machine learning model tailored for this task, encompassing processes such as data 

preprocessing, model selection, and performance evaluations, while accounting for challenges in 

text classification, including data rebalancing and augmentation strategies. 

[110] proposes a comprehensive system for creating cybersecurity knowledge graphs (CKG) 

sourced from after-action reports (AAR) to enhance cyber threat intelligence. Employing named 

entity recognition (NER) and relation extraction methodologies, the system effectively identifies 

entities and relationships, representing this information within a CKG via an ontology known as 

Unified Cybersecurity Ontology (UCO). The authors detail the functionality of their Malware 

Entity Extractor (MEE), Relation Extractor (RelExt), and CKG module, aimed at improving 

cybersecurity analyses by automatically identifying relevant relations within AARs, subsequently 

facilitating the visualization of intricate malware details and enhancing overall security 

operations. 

[111]  introduces ATLAS, a novel sequential learning model tailored for investigating attacks 

within complex and interconnected systems, leveraging a combination of sequence mining 

techniques and machine learning to classify attack patterns in network traffic. Evaluation with 

real attack datasets displays ATLAS's proficiency in identifying attack entities, achieving a 

significant average precision of 91.06% and a recall of 97.29%. This flexible approach effectively 

addresses challenges related to contemporary network security assessments and enables a more 

streamlined understanding of attacks through causal graph generation, thereby enhancing 

operational investigation capabilities. 

[112] presents CyNER, a Python library focused on named entity recognition (NER) specific to 

cybersecurity, adept at extracting entities and indicators of compromise from unstructured data. 

By integrating transformer models, heuristics, and publicly available NER solutions, CyNER 

presents a versatile threat intelligence discovery tool, tailored for efficient processing and 

analysis of cybersecurity information. The library employs high accuracy techniques using existing 
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malware ontologies, benchmark datasets, and feature combinations, facilitating insightful 

information extraction aimed at bolstering cybersecurity operations. 

[113] presents an improved TTP (Tactics, Techniques, and Procedures) intelligence mining 

framework, termed TIM, enhanced by contextual threat factors to systematically extract and 

classify TTPs from unstructured threat datasets. By leveraging natural language processing in 

conjunction with threat context information, TIM meticulously organizes elements as STIX 2.1 

formatted descriptions for effective sharing. The framework showcases the TCENet (Threat 

Context Enhanced Network) model, evaluated on annotated datasets, emphasizing superior 

classification performance in TTP analysis, aiming to arm defenders with robust long-term threat 

detection capabilities and realistic threat simulations to enhance security postures. 

[114] compares various deep learning-based Named Entity Recognition (NER) algorithms using a 

cybersecurity dataset compiled from diverse sources such as the Microsoft Security Bulletin. The 

authors evaluate contemporary deep NER algorithms, including both established and novel 

methodologies, to identify the most effective model for recognizing entities within a 

cybersecurity corpus. Furthermore, the significance of embedding strategies in enhancing NER 

performance is discussed, providing a valuable resource for future researchers focusing on 

developing new cybersecurity information extraction algorithms. 

[115] introduces a groundbreaking method for automatically extracting named entities from CTI 

reports using a deep learning approach. By defining security-related keywords, including 

malware and vulnerabilities, the authors leverage a Conditional Random Field (CRF) integrated 

with a bidirectional Long Short-Term Memory (Bi-LSTM) network to achieve exemplary 

performance, attaining an average F1 score of 75.05%. Moreover, a labeled dataset containing 

498,000 entities is released to foster future research in the security domain, enhancing analysts' 

efficiency in scrutinizing CTI reports. 
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3. Zero-Touch Networking 
With the advent of management and orchestration of virtualized NFs in NFV environments, the 

objective of automating such tasks to obtain a self-managed self-healing telco system is a natural 

continuation and evolution of such environments. ETSI targets the standardization of such 

management automation with the Zero-Touch Network & Service Management (ZSM) industry 

specification group (ISG) [102]. This ISG adds standards complementing the NFV and MEC 

standards, with a focus on the definition of a new, future-proof, horizontal, and vertical end-to-

end operable framework and solutions to enable agile, efficient, and qualitative management 

and automation of emerging networks and services. 

ETSI ZSM defines different management domains in various parts of a telco network, namely in 

the radio access edge, the transport, and the core domains. ETSI uses a closed-loop mechanism 

for each of these domains, then follows with a higher level End-to-End (E2E) management of all 

these domains in a bigger closed-loop management framework. Closed-loop mechanisms are 

described in various models such as the Orient-Observe-Decide-Act (OODA) and Monitor-

Analyze-Plan-Execute-Know (MAPE-K) models [103]. Despite differences in step definitions, 

these models follow a similar high-level workflow: Monitoring, Analysing, Deciding, and Acting. 

In alignment with the ETSI ZSM vision of achieving closed-loop, autonomous management across 

various telco domains, there is a growing need for intelligent, high-performance components 

capable of executing decisions at the data plane with minimal latency. NATWORK aims to provide 

solutions towards this direction through: 1) ΜERLINS which provides a ZSM-compliant 

methodology for selecting and executing MTD actions based on real-time network assessments, 

thereby closing the loop from observation to automated remediation and 2) Wirespeed traffic 

analysis in the 5G transport network, where threat detection, anomaly classification, and 

adaptive response must occur without human intervention. 

 

Figure 1: ETSI exemplary Closed Loop Coordination timeline [109]. 
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3.1. AI-based MTD optimization 

Following the ETSI ZSM approach, NATWORK provides a closed-loop methodology used to 

manage Moving Target Defense (MTD) enforcement and optimization. As MTD provides a set of 

operations that are applied to VNFs and CNFs at different levels of a telco network, such as NF 

live migration, NF reinstantiation, and network reconfigurations (e.g., IP shuffling, port shuffling 

and dynamic vNIC), an automated system is required to select which MTD operation to perform, 

on what, when, where, and why, requiring  a complex decision-making system that determines 

the  MTD action based on what is observed in the network. This decision-making system is 

realized by designing and following a ZSM-compliant closed-loop security management 

methodology for MTD operations on NFV resources and over multiple edge domains, bridging 

ETSI NFV, ETSI MEC, and ETSI ZSM standards. This methodology is named MERLINS, and is 

composed of four chronological cyclic phases:  

A. Integration to the 5G/B5G network: this phase consists of having a passive and active 

interaction with the network. The passive interaction is the consistent and real-time 

observation and monitoring of the network. In contrast, the active interaction consists of 

the ability to operate on the networks' components, i.e., the VNFs/CNFs, NSs, NSIs, and 

VIMs of the different domains in the edge-to-cloud continuum, spanning from the 

multiple edge clusters or nodes to the core network. 

B. Network assessment and decision making: using the data obtained from the passive 

interactions and monitoring in the previous phase, this phase focuses on analysing data 

such as performance metrics, resource consumption analysis, and security evaluations to 

assess risks or detect attacks. This analysis then results in a decision on whether to 

enforce an MTD operation or not. This is where the modelling of the network in near real-

time to evaluate and assess its state is performed. AI/ML models then use such 

observations to evaluate and train its MTD strategies. 

C. MTD management/orchestration: in the advent of the decision to perform an MTD 

operation, this phase goes through the validation process, analysing whether the 

operation can be performed, with respect to technical feasibility, i.e., if the operation can 

be implemented on the specified target, and policy-based feasibility, i.e., if there is no 

other orchestrator with a conflicting policy and a higher hierarchical priority. 

D. MTD enforcement: at the validation of an MTD operation, this phase enforces and 

implements the MTD operation on the 5G network, also using the active interactions 

available in phase A, transitioning to this phase for the next iteration of the closed-loop 

methodology. 
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3.2. P4-based Network Analytics 

The evolving landscape of 5G and beyond necessitates a shift toward autonomous, adaptive 

network architectures. Zero-Touch Networking (ZTN) emerges as a critical paradigm in this 

context, emphasizing self-configuring, self-optimizing, and self-healing network functions with 

minimal human intervention. In NATWORK, the Wirespeed traffic analysis in the 5G transport 

network aligns seamlessly with the vision of ZTN, enabling fully automated, intelligent 

management of the 5G data plane. Figure 2 presents the architecture of this approach and how 

the different components interact with each other. This solution can be applied either between 

the gNB and 5G CORE Network (Ο1) or between the UPF function and the DN (Ο2).  

 

Figure 2: Wirespeed Traffic analysis Architecture 

Our proposed approach introduces a programmable, intelligent pipeline for enhancing the 

security and visibility of 5G transport networks. By leveraging P4-enabled SmartNICs (Netronome 

Agilio CX25Gbps, as shown in Figure 3), we enable real-time parsing and data preparation for 

feature extraction directly at the network interface. Parsed data is forwarded to an AI-augmented 

Intrusion Detection System (IDS), which classifies the traffic and identifies anomalies or threats 

in real time. The IDS utilizes well-established Large Language Models (LLMs) and has been trained 

to detect potential attacks based on packet traces. The insights produced by the IDS are then 

relayed to a centralized Software-Defined Networking (SDN) controller, which applies adaptive 
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control policies over the P4 based network. Finally, the SmartNIC enforces these policies via a P4 

match-action pipeline, ensuring low-latency, in-network mitigation of suspicious flows. 

 

Figure 3: P4 SmartNIC - Netronome Agilio CX25 

Figure 4 presents the internal architecture of O1 placement of the Wirespeed traffic analysis in 

5G transport network, and its main functionalities are detailed below: 

• Parse  the packets in P4 SmartNIC: Leveraging a P4-programmable SmartNIC, 5G 

transport network packets are being parsed enabling the analysis  of incoming network 

traffic and extraction of the relevant header fields, payloads, or metadata for further 

processing. Fine grained control of the data is possible, allowing at wirespeed to extract 

the data at different levels (e.g. specific host communicating over  the telecom network, 

specific connection from a host, or the entire transport interface between the RAN and 

the Core Network). 

• Send the packets to IDS for classification: Once parsed, the SmartNIC forwards either full 

packets or selectively extracted features (e.g., headers, flow keys, or metadata) to an 

Intrusion Detection System (IDS). The IDS conducts real-time deep packet inspection and 

behavioural analysis to classify traffic, identifying potential security threats such as 

anomalies, malicious payloads, or patterns indicative of attacks within the 5G network 

context. 

• Send inference to SDN Controller: Upon completing its analysis, the IDS generates 

actionable insights, inferences or decisions which are transmitted to the SDN controller. 

The controller which orchestrates network behavior based on centralized control logic, 

interprets these inferences to dynamically update forwarding behavior, access controls, 

or mitigation strategies across programmable network elements. These decisions are 

enforced directly on the card, allowing the control over specific flows over the network 

(e.g. dropping a single connection). 
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• Apply match-action pipelines: Based on the inferences from the IDS and instructions from 

the SDN Controller, the P4 pipeline on the SmartNIC executes context-aware match-

action rules. These pipelines consist of rules (match conditions) that determine how 

packets should be handled, such as forwarding, dropping, modifying, or mirroring them. 

This enables enforcement of fine-grained, stateful security and Quality of Service (QoS) 

policies at the data plane with minimal latency. 

 

Figure 4: System architecture of O1 placement of Wirespeed traffic analysis in 5G 

The communication between the IDS and the P4-RunTime has been defined, and a JSON 

file is created by the IDS after the completion of the inference. Figure 5 presents the 

template of the JSON file which is sent to the P4-RunTime in order to apply the match-

actions to the smartNIC and consequently the 5G network. 

 

Figure 5: JSON template for applying match-actions to P4 smartNIC 
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4. AI-Driven Real-Time Threat Detection  

4.1. AI-based behavioural analysis 

The increased complexity of modern computer networks has introduced significant challenges in 

ensuring performance, reliability, and security. These challenges are further amplified by the 

rapid growth of cloud computing, virtualization, and multi-tenant architectures, where diverse 

applications and users share infrastructure across multiple domains. In such environments, 

network monitoring plays a vital role in detecting anomalies, ensuring service quality, and 

defending against Cyber threats. 

However, traditional monitoring techniques are no longer adequate to meet the growing 

demands of advanced infrastructures, particularly with the emergence of AI-based behavioural 

analysis. This cutting-edge approach leverages machine learning and artificial intelligence to 

detect patterns, predict anomalies, and enhance network security in real-time. 

The effectiveness of AI models depends heavily on the availability of high-quality, fine-grained 

telemetry data from various points in the network. Emerging techniques, such as Postcard 

Telemetry and In-band Network Telemetry (INT), enable more detailed and real-time traffic 

analysis by leveraging programmable data planes, including those written in P4. These 

technologies allow the network to embed monitoring data within packets or generate trace 

messages at each hop. However, these methods often lack the flexibility required to adapt to the 

heterogeneous and rapidly evolving nature of modern networks. 

Decentralized Feature Extraction (DFE) Telemetry, enabled by P4-based data plane 

programmability, has been proposed as a novel solution that provides a flexible mechanism for 

supplying AI models with only the required packet information. This is achieved by selectively 

extracting specific features from packets associated with a particular flow, thereby enabling real-

time data processing, reducing bandwidth consumption, and preserving data privacy. 

4.1.1. Decentralized Feature Extraction Telemetry (DFET): 

The suggested DFE Telemetry module utilizes an offloaded data plane program, that can be 

deployed across multiple P4 switches of the monitored network, to configure and manage 

telemetry flows. Telemetry information can be dynamically tuned to adhere to specific 

monitoring purposes, enabling precise control over network visibility. This functionality of DFET 

is highly useful for AI-driven security techniques where the framework can recognize patterns 

and correlations in new attacks. 

Behavioural Model (BMv2) software switch has been used to deploy the P4 program of DFET 

module. The model follows several key stages: 
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• The parser: Represented as a finite state machine, where each state extracts data from a 

specific header structure and stores it into runtime variables. Transitions between states 

are conditional, depending on the values of the parsed header fields. 

• Ingress and Egress control blocks: These blocks include multiple match-action tables that 

inspect various header fields to trigger corresponding actions. A control function 

determines the sequence in which the tables are executed. The ingress block mainly 

handles packet forwarding, while the egress pipeline performs additional processing after 

the egress port has been selected. 

• Traffic Manager: It is responsible for queueing and scheduling packets between the 

Ingress and Egress pipelines. It guarantees efficient packet flow by managing buffering 

and preventing congestion. 

• The deparser: This final stage reconstructs the packet by serializing the modified headers, 

making the packet ready for forwarding to the next switch. 

The processing procedure begins when a packet arrives at the P4 switch, where it first enters the 

parsing stage. As illustrated in Figure 6, the parser extracts the Ethernet header, followed by the 

IPv4 header. Then based on the value of the protocol field in the IPv4 header, the parser 

determines whether to extract the UDP or TCP header.  

 

Figure 6: DFET pipeline 

Once parsing is complete, the packet moves into the ingress pipeline, where it is directed to one 

of two tables (Table_forward_UDP / Table_forward_TCP) according to the transport protocol 

(UDP or TCP). These tables match on the packet header fields – specifically, IP addresses and 

source UDP/TCP port – and invoke the corresponding action (Forward_UDP / Forward_TCP) that 
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determines the output port and mirrors the packet to enable report generation in later stages. 

Flows are identified based on source IP address, destination IP address, and source UDP/TCP 

port. 

It is essential to highlight that the DFET module enables the control plane to perform layer 

selection by specifying the header layers from which features should be retrieved. This selection 

is achieved by passing binary indicators (1 to activate extraction, 0 to deactivate extraction) as 

parameters to the relevant action associated with the forwarding table. The packet then 

proceeds through the egress pipeline, where only the cloned packet is subjected to additional 

processing in this stage, moving through a set of tables (Table_L1, Table_L2, Table_L3, 

Table_L4_UDP/Table_L4_TCP, Table_Metadata), one table for each layer. Each table checks 

whether the corresponding layer argument is activated for the current flow. If it is enabled, the 

DFET module allows the control plane to perform another level of flexibility by passing binary 

flags in the same order of the corresponding standard header fields to determine which fields 

are subjected to be retrieved from this header (by passing 1) and which not (by passing 0). A one 

field equivalent customer header is defined and activated for each field marked for extraction. 

Regarding the transport layer, two tables are defined for the extraction, and the packet is 

processed through one of them based on the transport layer protocol it carries. For the metadata 

extraction, the control plane provides a sequence of binary flags that determine which metadata 

fields to include. These flags are ordered as follows: ingress timestamp, egress timestamp, hop 

latency, enqueue timestamp, enqueue queue depth, dequeue time delta, and dequeue queue 

depth. At the end of the egress pipeline, the packet undergoes the stage of the report generation, 

where the destination of the report is defined by the control plane and the produced report is 

always a UDP packet despite the original transport protocol (TCP/UDP). 

 

4.1.2. Functional Validation: 

To validate the functionality of the proposed DFET module, the Mininet emulation environment 

was utilized for topology creation. Mininet enables the emulation of realistic network scenarios 

and facilitates the verification of the behaviour of inserted flow rules. Figure 7 demonstrates the 

network topology used for the operational verification, it consists of one P4 switch, three hosts 

and three collectors. Host H1 sends two flows (one UDP flow and one TCP flow) to host H2 and 

sends one UDP flow to H2.  The P4 switch has been instructed to monitor different features for 

each flow and forward the monitoring data to a specific collector as it is illustrated in Table 1. 
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Figure 7: Network Topology in Mininet 

 
Table 1: Test flows and corresponding DFE extraction parameters 

Flow Report To L2 Info L3 Info L4 Info Internal Info 

UDP C1 Src MAC, Dst 
MAC Ether Type 

  Src Port,  
Dst Port 

  

UDP C2   Version, 
Length 

    

TCP C3     Src Port,  
Dst Port 

Ingress 
Timestamp 

Figure 8 shows the packets captured by Wireshark at the P4 switch interfaces for each flow: the 

original received packet (length 2 bytes), the original forwarded packet (length 2 bytes), and 

three generated UDP reports. The sizes of the UDP reports vary depending on the amount of data 

extracted from each flow. As shown in Figure 8, the report length is 18 bytes for Flow 1, 3 bytes 

for Flow 2, and 8 bytes for Flow 3. Different colours are used to highlight the information 

contained in each report, which corresponds exactly to the information specified in Table 1. 

 

 

a. DFET report for the first UDP flow. 
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b. DFET report for the second UDP flow. 

 

c. DFET report for TCP flow. 

Figure 8: DFET reports for the three generated flows. 

 

The validation results demonstrate that the proposed Decentralized Feature Extraction 

Telemetry (DFET) mechanism functions as intended, successfully extracting varied information 

from multiple traffic flows and delivering it to designated destinations as configured by the 

control plane. 

 

4.2. Multimodal Network IDS with PCAP Monitoring  

This module offers a lightweight, AI-enabled Intrusion Detection System (IDS) for cloud-based 

services. It leverages Software-Defined Networking (SDN) for centralized data collection and 

control, in combination with artificial intelligence to deliver advanced threat detection and 

mitigation capabilities. This approach is motivated by the studies presented in section 2.2. It 

integrates three distinct representation methods through AI -Fusion methods. 

The main objective is to create a resource-efficient IDS capable of promptly identifying and 

responding to security threats—particularly Denial-of-Service (DoS) attacks—while maintaining 

high performance and adaptability within modern cloud infrastructures. 

The proposed IDS is grounded in a hybrid methodological approach that combines: 
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• Simple statistical machine learning models for rapid initial detection, using network data 

retrieved via the SDN infrastructure. 

• AI-based analytical modules for in-depth threat characterization and attack profiling. 

This dual-layer approach supports both speed and accuracy in detection while ensuring energy-

efficient system operation. The OpenFlow protocol plays a central role in enabling 

communication and control between the SDN controller and network devices. 

The proposed system will offer rapid Detection and Mitigation, which will be particularly effective 

in early-stage DoS attack scenarios along with detailed Threat Analysis. It is designed to provide 

insights into attack types and allows the identification of multiple malicious IP addresses. 

Moreover a lightweight design is proposed, optimized for minimal resource consumption, making 

it suitable for deployment in scalable cloud environments. 

4.2.1. High Level overview 

To enhance detection coverage and accuracy, multimodal architecture based on packet capture 

(PCAP) file analysis has been developed. The module aims to enable the extraction and evaluation 

of multiple data modalities from network flows. It offers deep packet inspection (DPI) alongside 

statistical session analysis.  The module is protocol independent, meaning that it will support all 

standard communication protocols and is readily adaptable to new or evolving ones. It operates 

as an End-to-End AI Pipeline, eliminating the need for manual or domain-specific feature 

engineering. 

The module processes network traffic captured in PCAP format that is pre-processed and filtered 

in a time efficient manner. Then it extracts three types of features from each flow detected:  

• Image-based representations 

• Feature Embeddings 

• Statistical Attributes 

Each feature type is processed by a dedicated AI model. Their outputs are then fused in a final 

decision module, allowing for robust detection of known and unknown attack patterns. Once a 

malicious flow is detected, the system triggers an alert and logs relevant details about the attack 

and its source. The process is shown graphically in Figure 9.  
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Figure 9: High level overview of the proposed approach. 

Each type of feature is handled by a different AI model: Image-based representations are fed to 

a Convolutional Neural Network (CNN), Feature Embeddings are handled by a Long short-term 

memory Neural Network (LSTM) while Statistical Attributes are handled by a Multi-Layered 

Perceptron. 

Currently, after an anomaly is detected, the user is notified via a terminal as shown in Figure 10. 

Along with the type of attack various other information is provided such as the IP address and 

Port of the Attack. 

 

Figure 10 Example of attack detection result 

4.2.2. Data Collection and preprocessing  

The data collection phase will involve executing multiple distinct attacks e.g. Denial-of-Service 

(DoS) attacks across the CERTH testbed, capturing both malicious and normal traffic to create a 

representative and balanced dataset. Protocols such as TCP, UDP, and SCTP will be included to 

encompass a wide range of network applications, including those relevant to 5G technologies. 

Traffic data is captured in the PCAP format and pre-processed by removing identifying 

information to avoid training bias. Flows are then extracted based on 4-tuple identifiers. To 

address real-time detection challenges, PCAP files are segmented by time intervals—beginning 
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at one second and doubling with each subsequent segment—thus facilitating better file 

management and more practical flow identification, especially for UDP. 

Once flows are identified, three categories of features are extracted per session: statistical 

features, embeddings, and image representations, as shown schematically in Figure 10. 

 Statistical features provide insights into traffic behaviour over time, highlighting anomalies 

through deviations from expected norms. These features, adapted from CICFlowMeter, are 

selected for their protocol independence to maintain adaptability. A total of 57 features were 

extracted for bidirectional flows and 19 for unidirectional flows. Embedding extraction, on the 

other hand, involves processing the hexadecimal packet data from each flow, converting byte 

pairs to integers, and standardizing the input to 1024 bytes through trimming or zero-padding. 

This transformation allows sequential models to interpret the hex stream as time-based input for 

AI-driven classification. 

Image extraction followed a similar preprocessing path as embeddings. After converting the hex 

stream to integer values and ensuring a consistent length, the data were reshaped into 32×32 

pixel grayscale images. These visual representations capture flow characteristics in a format 

conducive to convolutional neural networks (CNNs) or other image-based AI models. Each of the 

three feature types—statistical, embedding, and image—is processed through dedicated AI 

models. The final IDS decision is produced by fusing the outputs of these models using learnable 

parameters, providing a robust and flexible detection mechanism suitable for a range of cyber 

threats in both traditional and next-generation network environments. 

4.3. AI-Driven Multi-Agent System for Real-Time Threat Intelligence and 

Automated Response in 5G Networks 

Latest generation networks (b5G/6G) introduce complex security challenges stemming from their 

highly distributed, software-defined, and service-based nature. Addressing these challenges 

requires intelligent, scalable, and adaptive security systems that go beyond static rule-based 

models. The following section presents the high-level overview of an AI-driven, multi-agent 

architecture for real-time threat intelligence and automated response in 5G environments. The 

system is built around a secure, modular foundation using the Model Context Protocol (MCP) 

[104] and leverages advanced deep learning and large language model (LLM) mechanisms. 

Furthermore, the system is carefully mapped to the 3GPP security framework to ensure 

architectural compliance and operational synergy with established telecommunications 

standards. 
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4.3.1. System Architecture 

The architecture consists of a collection of intelligent agents, each operating in a Dockerized 

environment to ensure high scalability, modular integration, and secure deployment. These 

agents are orchestrated using MCP, a communication protocol that enables the dynamic 

construction of agent workflows on top of LLMs while ensuring contextual data integrity and 

access control. The following subsections present details on the MCP and the functionalities of 

four different Agents. 

4.3.1.1. Model Context Protocol 

The Model Context Protocol (MCP) serves as the foundational communication and coordination 

layer that enables context-aware interactions among intelligent agents and large language 

models (LLMs) within a distributed AI system. It is particularly suited for high-stakes 

environments such as 5G cybersecurity, where secure, interpretable, and composable workflows 

are necessary for effective real-time decision-making [104][105]. 

At its core, MCP introduces a structured mechanism for maintaining and transmitting so called 

“context objects” i.e. semantically annotated data containers that encapsulate both the inputs 

and outputs of agent interactions. These objects persist across different stages of an AI-driven 

workflow, allowing downstream agents or models to reason with awareness of the full context 

in which prior decisions were made. 

MCP ensures that all data shared between agents is bound to a secure, queryable context which 

is persistent and formally defined. MCP supports declarative workflow composition, enabling 

agents to be linked into arbitrarily complex configurations—such as chains, trees, or feedback 

loops—without losing context fidelity. This composability allows agents to collaborate on multi-

step reasoning tasks, well suited to the tasks of the proposed system. An example of a multi-step 

reasoning in the discussed context is “receive information concerning threat → evaluate impact 

→ generate report → select mitigation” in a traceable and consistent manner. 

To protect these interactions, MCP incorporates a secure multi-agent messaging system where 

all communications are encrypted, time-stamped, and authenticated. Role-based access controls 

ensure that only authorized agents can read from or write to a given context, and temporal 

scopes define the lifetime and expiry conditions of context data. This ensures strict compliance 

with security and privacy policies, which are particularly critical in telecommunications 

environments governed by regulatory standards. 

A key strength of MCP lies in its native integration with large language models. By treating LLMs 

as first-class agents, MCP allows dynamic retrieval and injection of context into prompts, as well 

as bidirectional reasoning between structured data and natural language outputs. This makes it 
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possible to support hybrid workflows that combine statistical learning (e.g., deep anomaly 

detection) with symbolic reasoning and narrative synthesis. 

Furthermore, MCP maintains complete provenance for all context exchanges. Every decision, 

transformation and output are logged with agent identifiers, decision justifications (when 

extracted from LLM chains), and associated metadata. This audit trail is invaluable for post-

incident analysis, model refinement, and regulatory compliance. 

In the multi-agent system described in this section, MCP acts as the cohesive tissue that binds 

together specialized security agents—those performing threat detection, IOC correlation, 

response selection, and orchestration—into a coherent, resilient, and transparent decision-

making system suitable for securing next generation networks. 

- Threat Intelligence Agents 

Two distinct AI-enabled agents will be developed to handle the following tasks: gathering, 

correlating, and interpreting threat intelligence data. 

IOC Correlation Agent 

This agent uses a two-stage AI pipeline to correlate indicators of compromise (IOC) across 

network functions to detected coordinated attacks or evolving threats.  

The first stage utilizes a stacked autoencoder deep neural network (DNN) [106].  It has 

multimodal data input, including security logs, network traffic and resource related data. The 

model will be trained using data extracted using normal network operations. This type of DNN 

extracts and compresses relevant latent features from these inputs and uses these to recreate 

the original inputs. This characteristic allows the DNN to handle new inputs and utilizing them to 

classify the condition of the network as normal or abnormal at a given time. 

Once abnormalities are discovered, the mechanisms of the second stage is activated: An LLM-

based analytical layer then consumes resource consumption and security related data of network 

functions (e.g., AMF, SMF, UPF), to perform cross-domain correlation across the network,  

identifying indicators of compromise (IOCs) and uncovering potential patterns that e.g. might be 

associated with coordinated, multi-vector attacks.  

Threat Reporting and Insight Agent 

This agent utilizes two subsystems. The first is a retrieval-augmented generation (RAG) 

framework that connects a fine-tuned LLM to a domain-specific knowledge base. This knowledge 

base includes a) Historical incident data b) Cybersecurity whitepapers c) Relevant standards and 

best practices [107]. The LLM synthesizes this information to generate real-time, human-

readable threat intelligence reports tailored to specific network zones (e.g., RAN vs. Core) or 
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operator roles (e.g., SOC analyst vs. compliance officer) of every threat or attacks detected. These 

reports will include multiple aspects of security related information such as severity scores, 

impacted assets, root cause analysis, and recommended actions. 

A second LLM is utilized to receive the outputs from a) the IOC Correlation Agent and b) the RAG 

to create the final output for this agent, i.e. reports for different time granularities e.g. a daily or 

weekly digest etc. 

- Automated Response Agents 

The response subsystem consists of two AI-empowered agents responsible for determining and 

executing adaptive mitigative actions to handle threats and attacks against the system. 

KPI-Driven Response Selector Agent 

The first agent is a KPI-Driven Response Selector. It utilizes a pointer neural network [108] that 

picks the optimal selection against a set of predefined response actions (e.g., rerouting, 

quarantine, rate limiting) by performing multi-objective optimization based on the values of 

several key performance indicators (KPIs). These KPIs are evaluated in real time based on network 

telemetry and risk metrics. The agent will interface with the appropriate network endpoints to 

trigger enforcement actions via secure APIs. 

Orchestration Coordination Agent 

The second agent handles Orchestration Coordination. This agent employs an LLM that interacts 

with Security Orchestration, Automation, and Response (SOAR) tools/platforms to perform 

complex mitigation tasks such as a) Patching vulnerable services, b) Updating firewall 

configurations c) Adjusting access control lists (ACLs) and d) Modifying slice-level security 

policies. It ensures end-to-end execution traceability and feedback incorporation into the agent 

network for closed-loop adaptation. A second LLM is utilized to document all decisions in a 

human readable format. 

Figure 11 presents the high-level architecture of the proposed solution. 
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Figure 11 High level overview of the proposed Architecture 

4.4. Real-time monitoring and centralised response to network threats 

4.4.1. Technology summary 

The device is based on FPGA technology and comes in the form of a PCIe SmartNIC card, designed 

to be integrated into existing network infrastructure. Its primary role is to detect Distributed 

Denial of Service (DDoS) attacks in real time by analysing network traffic at very high speed. To 

achieve this, it combines several advanced technologies such as FPGA-accelerated hardware 

processing, machine learning algorithms to identify malicious behaviours, and fine-grained 

customisation enabled by P4 programming. This combination ensures intelligent and adaptable 

packet inspection with minimal latency. 

This device features multiple interfaces, for instance a 10 Gbps Ethernet interface for intercepting 

traffic, a PCIe interface for communicating with the host machine via an API, and a 1 Gbps 

Ethernet interface for management and configuration. Through its API, it can also provide alerts, 

detailed measurements and actionable recommendations to management systems or the host 

machine. 
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4.4.2. Benefits for the network 

In a distributed network architecture, multiple FPGA-based devices can be deployed at strategic 

points in the infrastructure, each performing local threat detection and analysis. These devices 

operate autonomously to inspect traffic in real time where they are installed, but their full 

potential is realised when they are integrated into a centralised monitoring system. Each device 

exposes an API that allows data to be sent to a global dashboard responsible for collecting, 

aggregating, and analysing information about the entire network. 

This centralised dashboard plays a key role in correlating security events: it can detect distributed 

attack patterns, such as coordinated DDoS campaigns, by comparing suspicious flows observed 

on different devices. Using the API, the dashboard receives real-time alerts, detailed metrics, and 

event logs, giving network administrators a unified dynamic view of the overall security level of 

the network. 

Beyond simple monitoring, the dashboard can also play an active role in incident response. Using 

APIs exposed by each device, it can emit commands to update detection rules, isolate 

compromised network segments, or block malicious flows close to the source. This centralised 

coordination enables a rapid and consistent response to threats, significantly enhancing the 

overall resilience and security of the infrastructure. 

4.4.3. Implementation in the field 

Devices are deployed across the network, each equipped with real-time traffic analysis 

capabilities. These devices generate security alerts based on suspicious activity and expose an 

API through their PCIe interface. This API allows for the dynamic configuration of detection rules 

and machine learning models, enabling rapid response and adaptation to emerging threats. 

A centralised monitoring system, as shown schematically in Figure 11, hosted securely, collects 

and consolidates data from all deployed devices. This dashboard regularly queries each device 

through its API and is also capable of receiving push webhooks when critical events occur. Local 

alerts and identified suspicious traffic are transmitted to the central system in structured 

message formats. The dashboard then aggregates, stores, correlates, and visualises these events 

using graphical tools such as Grafana. 

The system offers more than just visualisation. Through the same device APIs, the dashboard can 

issue remote commands for orchestration and response. For instance, it can block suspicious 

flows across multiple devices, update detection models or thresholds in real-time, and even 

isolate network segments where infected containers are detected. It can also disseminate 

blacklists to all devices through the central controller. Every command sent and event received 

is logged, ensuring full traceability and enabling comprehensive security audits and efficient 

incident response. 



 D4.3 Intelligent networking, CTI & explainability.r1  

 

Page 53 of 113 
 

Security and scalability are integral to the system’s design. All API communications are secured 

using mutual TLS authentication and encrypted over HTTPS. The architecture supports horizontal 

scalability through load balancers, allowing it to manage from dozens to hundreds of devices 

efficiently. Auto-discovery features and integration with orchestrators further enhance the 

system by automating the enrolment and configuration of new devices. 

 

Figure 12: Example of centralized monitoring. 
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5. Blockchain-based Trust Establishment 
The rapid utilization of IoT devices in their integration in 5G networks has introduced new 

demands for scalable, low-latency, and secure trust establishment approaches. In modern 5G 

environments, devices often require access not just to network services but also to third-party 

service providers across diverse ecosystems. This shift calls for an authentication model that goes 

beyond traditional, centralized approaches—one that can offer trust, privacy, and 

interoperability at scale. The ZT and blockchain-based trust management approaches are two 

critical strategies for securing 5G networks. zero trust architecture removes implicit trust from 

any system component, mandating active authentication for all network entities, both internal 

and external. This method improves security by enforcing continuous verification and minimizing 

attack surfaces through access control. However, its downside is the potential performance 

degradation in ultra-low latency applications due to the overhead of continuous verification.  

Blockchain-based trust management, on the other hand, uses decentralized ledgers to ensure 

transparency and immutability, offering a trust framework without relying on central authorities. 

This decentralization is beneficial for the dynamic nature of 5G networks with many devices but 

introduces challenges related to the scalability and privacy of a large, decentralized network. The 

complexity of managing such a system and ensuring secure, efficient smart contracts can also 

impact system performance and increase the risk of attacks, such as de-anonymization. Several 

additional security strategies complement these approaches. Advanced authentication 

mechanisms, such as elliptic curve cryptosystem-based attribute-based encryption (ABE), help 

minimize computational overhead while maintaining robust security for IoT devices in 5G 

networks. However, these methods must balance security with efficiency to avoid excessive 

energy consumption or processing delays, particularly in resource-constrained environments like 

drones. Moreover, the integration of Multi-Access Edge Computing (MEC) and Device-to-Device 

(D2D) communications enhances specific use cases like smart manufacturing but can introduce 

bottlenecks if intermediate nodes become overloaded. 

Current 5G authentication mechanisms during trust establishment rely heavily on involving 

network functions within the core network, such as the AMF and AUSF. While these network 

functions provide robust security for network access, they are not optimized for repeated or 

federated end to end validation when devices interact with multiple external service providers. 

This centralization introduces potential bottlenecks and unnecessary latency—especially in trust-

sensitive and end to end IoT use cases such as smart manufacturing and smart cities. To address 

these challenges, NATWORK includes a security management service that integrates blockchain 

technology with the 5G authentication process, enabling decentralized and transparent trust 

establishment. This service allows devices to prove their authenticity directly to service 

providers—without needing repeated interaction with the 5G Core. This approach aligns with the 
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principles of zero-trust networking and supports scalable, trust less access control, particularly in 

distributed IoT environments. 

The service leverages both standard and newly introduced components to enable blockchain-

based trust establishment. It is built on the standard 5G Core architecture, preserving its native 

functions and the 5G Core Network as the baseline infrastructure). As shown in  Figure 13, the 

main players are as follows:  

• UE Device: The UE device is an IoT node that aims to join the network and utilizes the 

services provided by the IoT service provider. It initiates the process by interacting with 

the gNB node and requesting to join the network and later accessing services. 

• gNB Node: The gNB nodes reside in access plane and act as an intermediary node 

between the UE on one side, the core network, and the service provider on the side. The 

node facilitates part of the UE registration and trust establishment. 

• Core Network: Through the involved NFs, including the AMF and AUSF, it provides the 

initial registration of UE in the network. Additionally, it generated the tokens and stored 

in the blockchain. 

• Service Provider: The node provides services to the authenticated and authorized UE in 

which the trust with them has been established and grants access based on 

authorization properties.  

 

 

Figure 13 High level overview 

Additionally, the following two other framework components enable the decentralized 

authentication and access control in an IoT environment: 

• Blockchain: The traditional authorization database is replaced with an Ethereum-

compatible permissioned blockchain. This provides a decentralized, transparent, and 

integrity-safeguarded mechanism for device authentication management. It consists of 

a permissioned Ethereum Blockchain and a smart contract.  
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• Bridge: It is a vital component of the trust establishment which acts as a communication 

bridge between the 5G core network and the blockchain. The main function of this 

bridge is to listen to the log of the AMF function inside the 5G core, derive the 

pseudonym associated with the registration, and to write authentication and access 

control status to the blockchain via Web3 interfaces. 

UE registers with the 5G network and, simultaneously, a pseudonym is generated from its SUPI 

and recorded on the blockchain. RAN node that manages the wireless link, facilitating UE 

registration and service requests. AMF oversees device registration and mobility and triggers the 

blockchain-based process by emitting logs, which are monitored externally. AUSF and UDM 

conduct standard identity checks and enable initial network-level trust. SMF and UPF handle 

session setup and data flow, routing traffic to the data network (DN), where external services 

reside. DN is the logical endpoint for external services. Here, further authentication happens 

through blockchain mechanisms. 

The Service Provider Module simulates an application or external service. Though centralized in 

its design, it uses the blockchain for offloading identity verification. Its key operations include: 

Receiving authentication requests from UEs, verifying pseudonyms through a blockchain smart 

contract (Auth5G), and performing challenge-response with the UE using cryptographic 

signatures, and issuing short-term tokens for low-latency access without repeated authentication 

Instead of relying on internal databases for identity storage, this service utilizes a permissioned 

blockchain (Ethereum-Compatible with Smart Contracts) to manage device credentials. Auth5G 

Smart Contract manages access control, stores pseudonym records, validates service provider 

identities, and handles access policy checks. Device pseudonyms, timestamps, validity periods, 

and access control hashes are stored in the network. The service guarantees verifiable, 

immutable identity assertions with reduced reliance on centralized control.  

The 5G-Blockchain Bridge in this service facilitates the interaction between the 5G Core and the 

blockchain. It monitors AMF logs for successful device registrations, and extracts SUPIs and 

derives pseudonyms using time windows and deployment-specific salts  [75]. Finally, it submits 

authentication records to the blockchain via Web3 interfaces. This bridge ensures seamless 

communication between otherwise separate infrastructures, while respecting existing 5G 

standards.  

To maintain user privacy while supporting trust, UEs are identified on-chain via pseudonyms. 

These are generated as follows: First it combines the UE’s SUPI, a X-hour time window, and a 

deployment-specific salt. Then, it hashes the result and produces an unlinkable identifier. Finally, 

it stores the pseudonym on the blockchain with metadata such as expiry time and access policy 

reference. This allows the service provider to validate the UE without learning or storing the 
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original identity. When a UE requests access to a service, the service provider queries the 

blockchain to check the pseudonym’s status, verifies the UE’s cryptographic signature, and issues 

a service token for future access without repeating blockchain queries. This design reduces 

latency, enhances trust decentralization, and supports stateless verification aligned with zero-

trust principles.  

5.1. Blockchain Authentication Mechanism 

This service integrates a blockchain-assisted authentication mechanism, where both the UE and 

the service provider are represented through verifiable identities recorded on-chain, aiming to 

enable secure and transparent trust decisions. The blockchain authentication process contains 

the following. 

5.1.1. Pseudonym Generation 

For representing UE identity on-chain, a pseudonym-based UE identity is employed. Each UE is 

identified with a pseudonym after a successful registration with the Core network. The 

pseudonym is the hashed long-term Subscription Permanent Identifier (SUPI) and serves as a 

privacy-preserving on-chain identity, being deterministically generated by integrating also a time 

window, and a salt. The combination is then hashed with the Keccak256 algorithm [76] to obtain 

a fixed-length pseudonym that is unlinkable to the original SUPI and is compliant with any 

blockchain identity representation. 

Once the pseudonym has been generated, it is recorded on-chain via a transaction to the smart 

contract. In this case, the transaction includes: the pseudonym being used as the identity 

reference, a validity duration of 12 hours after which the pseudonym needs to be regenerated 

and re-authenticated, and a hashed access policy that is derived from the UE’s network slice and 

session parameters that are retrieved from the 5G subscription database. 

5.1.2. Service Provider Registration: 

Similarly to UE authentication, each service provider must be explicitly registered on the 

blockchain to take part in the authentication process. This is done in parallel to UE identity 

management, and each service provider is identified by its blockchain address, and registration 

is performed by the smart contract deployed by the network operator. The smart contract will 

maintain an indexed list of accepted service providers, and for each service provider, it stores the 

metadata, including the registration time and current status. This is to allow the service provider 

to be approved before it can issue an authentication challenge or verify UE credentials. Only the 

service provider recognized on-chain can call the authentication records decentralized. 
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5.1.3. Pseudonym Verification 

When a UE interacts with a service provider, the provider needs to verify the UE’s pseudonym on 

the blockchain. In the verification process, the service provider checks if the pseudonym has been 

authenticated and is currently active, at the same time, the authentication record of the 

pseudonym to make sure it is still within the valid lifetime, then, the authentication record of the 

pseudonym to make sure the service scope of the service provider includes the associated access 

policy.  

The end-to-end trust establishment in NATWORK delivers several key advantages for IoT and 5G 

security. First, it shifts trust from centralized 5G Core entities to blockchain-enabled mechanisms. 

Also, it uses cryptographic pseudonyms and verifiable smart contracts to enforce strict access 

controls, and minimizes repeated interactions with the 5G Core, improving response times for 

external services. This component works alongside existing 5G infrastructure without modifying 

native components. By combining blockchain’s integrity with 5G’s flexibility, this component 

enables a scalable and resilient trust layer for IoT services. 

5.2. Main Phases 

Generally, the component has three main phases. Figure 14 illustrates the process in more 

details.  

 

Figure 14 Main phases. 

 In the following, the phases have been briefly described. 
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UE Registration: The UE initiates the process by sending a request to register with the gNB node, 

which will be directed to AMF in the Core for initial authentication. AMF performs the 

authentication and security procedures with UE. Simultaneously, the registration will be 

observed by the Bridge and based on that the pseudonym will be generated and stored in the 

Blockchain. Finally, the Core network responds with an initial registration response, confirming 

that UE is registered in the network. 

Token Issuance: When a UE tries to access a service provider for the first time within the validity 

window of the pseudonym, the UE can be fully verified through the registered pseudonym. The 

service provider issues a random cryptographic challenge to the UE. The UE signs the challenge 

with its own private key of the blockchain wallet. The service provider then sends the challenge 

and the signature to the blockchain, where the verify˙Authentication function is called on the 

smart contract to verify the authenticity of the UE. The function will check if the pseudonym 

exists and has been recorded on-chain, the current timestamp is below the expired time, and the 

pseudonym’s UE’s associated access policy hash equals the one required by the service provider. 

Subsequent Authentication: During the subsequent authentication and access, the UE will 

present the service token issued in the previous step to the service provider, the service provider 

then performs an offline, local verification of the token, without contacting the blockchain again. 

This design significantly reduces authentication latency and supports scalable, high-frequency 

access patterns. The service provider recomputes the token hash from the cached payload and 

compares it with the token received to ensure the integrity and authenticity. The service provider 

checks the expiration timestamp embedded within the token to make sure its validity. To 

optimize the performance of the authentication, the service provider maintains a lightweight in-

memory token cache with efficient lookup and automatic cleanup of expired entries. This allows 

for rapid and reliable access control for trusted UE, without any additional blockchain cost, 

thereby ensuring low-latency authentication in time-sensitive environments such as IoT-based 

services. 
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6. Explainable AI 
With the growing complexity of ML models, it is becoming more crucial to be able to understand 

the decisions or predictions made by AI-based systems. The black-box nature of such models 

becomes even more of a serious concern when there is an automated AI-powered system that 

can take actions without requiring human input. In these cases, the system owners or developers 

would prefer to have a means to interpret (i.e., “explain”) why a certain decision is made by an 

AI model. Such transparency not only allows system owners to foresee future decisions under 

similar circumstances but also enables them to adjust their current knowledge depending on the 

past actions. Moreover, by providing Explainable AI (XAI) solutions, the decision-making 

processes can be made accountable, ensuring the compliance to certain legal standards. 

In the scope of NATWORK project, XAI has a significant importance for delivering high-quality and 

trustworthy solutions. The envisioned 6G architecture relies heavily on AI-powered components, 

leveraging advanced ML methods across edge-to-cloud continuum. By following the seamless 

orchestration and integration approach provided by 5G standards, mainly NFV and ZSM, 6G 

networks will also decrease the need for human input for continuous operation and allocation of 

resources. Therefore, achieving reliable, accountable, and transparent decision-making 

processes is critical for every service of the project. In addition, these beneficial features would 

help the operators to investigate potential issues in case of unexpected decisions performed by 

automated models. For this purpose, XAI is the key concept to unravel the black-box nature of 

the underlying AI mechanisms, by either making the models intrinsically interpretable (i.e., 

intrinsic XAI models) or developing separate explainability components (i.e., post-hoc XAI 

models), as previously explained in 2.4. This section explains the specific XAI techniques utilized 

by each applicable NATWORK component, which differ based on the underlying mechanisms or 

the requirements of the relevant service. 

6.1. XAI extension for Multimodal Network IDS with PCAP Monitoring  

This sub-module aims to enhance the transparency of the AI-based Intrusion Detection Systems 

(IDS) module presented in section 4.2. It will introduce explainability features aimed at making 

the model's decision-making process more interpretable for users. The complexity of many deep 

learning models, often referred to as their “black box” nature, limits user trust and hinders 

adequate validation. Addressing this issue is particularly important in cybersecurity contexts, 

where understanding the rationale behind alerts is crucial for operational response and model 

improvement. 

A major challenge in explainability arises from the nature of payload data. Payloads contain 

complex and often noisy patterns that are inherently difficult to interpret. This complexity is 

compounded by the high volume of data processed by IDS models, making it challenging to 
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isolate meaningful features or causes behind detections. As a result, raw payload analysis 

frequently falls short in providing transparent or actionable insights into the system’s behaviour. 

To overcome these limitations, statistical features are employed to support model explainability. 

These features, such as bytes per second or flow duration, enhance human readability and offer 

a clearer decision path that can be logically traced. Their structured and interpretable nature also 

facilitates model debugging and the identification of erroneous or misleading behaviours. In this 

context, SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations) are proposed as algorithmic tools to identify explainability patterns within flow 

payloads, further contributing to a more interpretable and trustworthy IDS framework. 

The submodule will provide the following explainability elements based on the statistical 

features: 

• Graphic depictions of feature contributions 

• A set of decision rules that underly the AI tools utilized 

• Traces of the path followed for each decision of the IDS  

6.2. X-MORL – Explainable Multi-Objective deep-RL 

The security of 6G/NextG networks can be strengthened by MTD, increasing the uncertainty for 

attackers and reducing their chances of success. However, enforcing MTD operations can also 

impact network performance and come with additional operational costs and energy 

consumption. Therefore, smart and dynamic control of MTD following a cognitive paradigm (i.e., 

following the ETSI ZSM closed-loop methodology as previously described in Section 3.1) 

considering security requirements, security gains, overhead, and feasibility is crucial. These are 

multiple objectives to be considered that often do not overlap, and conflicts might arise when 

performing MTD operations, favouring one goal to the detriment of the other. 

For instance, moving a VNF from a remote Virtual Infrastructure Manager (VIM) to an edge node's 

VIM for communication optimization may be a poor choice security-wise, since an attacker can 

easily predict that action. A purely random placement, instead, improves security by reducing its 

predictability but can hinder the network's performance and QoS of the moved service.  

In the scenario of MTD operations in the telco edge-to-cloud continuum, moving a VNF to a closer 

edge VIM may improve latency, but it may also weaken security since its position and movement 

becomes predictable to attackers following traffic loads. Conversely, a completely random move 

aimed at enhancing security could negatively affect the network and service performance. 

Consequently, the AI-based MTD service provided in this project uses Multi-Objective Markov 

Decision Process (MOMDP) to monitor and model the state of a Telco Cloud network (i.e., B5G 
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ant NextG networks) and train a deep-RL model to tackles the multi-objective optimization 

problem, in which three main objectives are quantified and considered: 

1. To find the optimal balanced strategy to maximize security (i.e., minimize threats and 

reduce their likelihood to succeed) 

2. To minimize its operational cost (overhead in the consumption of physical resources) 

3. To alleviate the impact on QoS and service availability (i.e., reducing service downtime 

and network overhead) 

An important requirement is for the decisions made by such ML model to be humanly 

explainable, as it makes decisions affecting critical infrastructures and potentially moving and 

reconfiguring critical services running on the telco network. However, the integration of 

explainable AI into MTD remains an open and unexplored research question. In this context, the 

X-MORL (eXplainable Multi-Objective RL) module is designed and implemented to provide 

explainable MORL models using reward decomposition [74]. With this method, rewards can be 

classified according to semantically meaningful reward types, which fits well with the multi-

objective nature of the MTD optimization problem. 

6.2.1. Deep-RL and MORL 

RL agents learn by interacting with their environment, observed and modelled as a Markov 

Decision Process (MDP) -- a tuple (S, A, P, R, ɣ) where S is the set of states of the environment, A 

is the set of actions that the agent can take, P is the transition probability matrix defining the 

probability that an action ai changes a state si to a new specific state sj, R is a set of reward values 

for all (ai, si) pairs and ɣ is the discount factor defining the importance of the immediate rewards 

over the future rewards.  

The agent's goal is to learn an optimal policy that maximizes the cumulative reward. RL has seen 

evolutionary advances through the usage of deep neural networks (DNN) leading to deep-RL 

algorithm [116]. Conventional deep-RL algorithms, however, are designed for single-objective 

optimization and used with the scalarization of the different rewards corresponding to the 

different objectives into one reward value. This scalarization can be part of the missing 

information we want to learn, i.e., the best trade-off among objectives to maximize the overall 

return. If the optimization occurs for only one fixed weighted sum, the result produced would be 

suboptimal as other weight sums are not explored.  

Specific to the explainability of the deep-RL model, the single scalarized value can be semantically 

meaningless as multiple objectives be fundamentally different in nature. For instance, one of the 

three MTD objectives is to reduce an economic cost metric, measured in a monetary unit, while 

another objective is to improve proactive security, which is measured in terms of the attack 
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success probability (ASP) reduction of a threat. Merging both measures gives a value that is hard 

to interpret and leads to decisions that are also hard to explain. 

 MORL is a new category of RL algorithms that keeps different interpretable reward functions, 

one for each objective, and iterates the optimization process on different weighted sums, 

avoiding suboptimal solutions and approximating the set of optimal policies for all scalarizations 

(see Figure 15). This solution set is defined as the coverage set (CS), which, for monotonically 

increasing reward functions, is reduced to the Pareto Front (PF). PF is the set of undominated 

solutions, where each solution is optimal with respect to a specific scalarization.  MORL's 

interactions to retrieve the PF occurs with a MOMDP, where the main difference with respect to 

the MDP's definition is that R is now a vector R̄ comprising the reward values of the multiple 

objectives defined in the model. 

 

Figure 15: Pareto front for three objectives showing the benefits of MO methods over weighted sum optimization methods. 

6.2.2. MORL reward decomposition 

The deep-RL training brings the model to define a value function v(s,a) , or Q-function, estimating 

the value of performing an action a at a state s in terms of reward acquisition, and following the 

policy thereafter. Reward decomposition decomposes the reward function into a vector R̄ and 

then calculates the decomposed value function, which sum leads to the original Q-function when 

summing the value functions based on a scalar defined to unify the rewards of the different 

objectives. The decomposed Q-function then provides statistical explanations on which objective 

affected a specific action a at state s the most. 



 D4.3 Intelligent networking, CTI & explainability.r1  

 

Page 64 of 113 
 

In order to do that, X-MORL defines three Q-functions: Qc, Qa, and Qs, where Qc represents the 

Q-function related to the objective of reducing the operational cost of MTD actions, Qa the Q-

function related to the objective of reducing the impact on the availability of the protected NFs, 

and  Qs the Q-function related to increasing the proactive security of MTD operations (measured 

as reducing the likelihood of exploitation of NFs attack surface). The three Q functions are 

calculated with the decomposed reward Q-learning (drQ) algorithm [117], which guarantees the 

convergence of the estimated values towards the value function of a learned policy. Finally, to 

understand why the MORL agent took an action a1 instead of other actions ai, we calculate the 

difference between values Qc,a,s(a1) and Qc,a,s(a1), i.e, the values ∆ c,a,s(a1 , ai), and then derive a 

reward difference explanation (RDX), that shows the objectives that a1 improves over the other 

actions leading to the MORL agent’s decision. 

6.3. Explainable Ensemble Graph Attention Networks 

Cell-level Key Performance Indicator (KPI) monitoring has an importance to ensure reliability in 

future networks. Cell-level KPIs are not independent of each other: the behavior of one cell is 

strongly conditioned by what happens in the neighbouring cells. Flattening this structure into a 

tabular form discards precisely the interactions that a root-cause analysis (RCA) needs. For 

instance, two adjacent cells that share spectrum or whose coverage areas overlap can degrade 

one another’s throughput, yet such cross-cell effects vanish once the features are aggregated. 

Graph-based learning avoids this pitfall by treating each cell as a node and each inter-cell relation 

(e.g., interference, hand-over adjacency, shared feeder) as an edge. Among the many flavours of 

Graph Neural Networks (GNNs) [119], Graph Attention Networks (GATs) [120] are especially 

attractive for telecom data because their attention mechanism assigns content-dependent 

weights to every neighbour. Unlike spectral GCNs, where aggregation weights are fixed by the 

Laplacian, a GAT can learn that, for example, a high-load neighbour matters more than an idle 

one. 

6.3.1. Ensemble GAT model 

Our data consists of daily snapshots of the same physical network taken at different times. Peak-

hour snapshots resemble each other (high load, many degradations) and differ markedly from 

off-peak snapshots. A single GNN trained on the union of all snapshots must compromise 

between these regimes, and it quickly becomes compute-heavy as the number of snapshots 

grows. Aggregating the snapshots first is faster but erases temporal diversity. Therefore, we have 

implemented the following ensemble learning steps: 1) Partition the snapshots into 

homogeneous subsets (e.g., morning, afternoon, and night). 2) Train one GAT on each subset. 3) 

Combine the base estimators in a gradient-boosted meta-model (XGBoost). This Ensemble GAT 

retains snapshot-specific knowledge while benefiting from the bias–variance reduction typical of 
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ensembles. Figure 16 illustrates the prediction and explainability process of the Ensemble GAT 

model. 

 

Figure 16: High-level overview of the Ensemble GAT model 

The detailed description of the method can be found in [35].  

6.3.2. Explaining the ensemble GAT model 

The proposed explainability and root cause analysis method has two key components, answering 

two complementary questions: 

• Ensembled GraphLime quantifies how each feature contributes, 

• Neighbour Perturbation isolates which cells in the vicinity drive the prediction. 

We tackle each question at the level of the base GATs and then fuse the explanations using the 

same XGBoost gains that are used to fuse the predictions. 

To determine the feature importances, we apply GraphLime [144] that builds a Hilbert–Schmidt 

Independence Criterion Lasso (HSIC-Lasso) surrogate on the N-hop ego-subgraph of the target 

node, returning a coefficient vector 𝛽(𝑖) = (𝛽1
(𝑖), … ,  𝛽𝑘

(𝑖)) for the i-th base GAT. Let 𝑔𝑖 be that 

model’s gain in the XGBoost combiner. The ensemble-level importance is then the weighted 

average 𝛽𝐸𝑛𝑠 = ∑ 𝑔𝑖
𝑛
𝑖=1 𝛽(𝑖) . Weighting by 𝑔𝑖  (rather than using an unweighted mean) 

emphasizes the explanations of the more influential base models, yielding more stable 

attributions. We refer to this procedure as Ensembled GraphLime. 
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While Ensembled GraphLime tells us which features are essential, it cannot reveal which 

neighbors matter. To handle this orthogonal aspect, we propose the Neighbour Perturbation 

method illustrated in Figure 17. 

 

Figure 17: Main steps of the neighbour perturbation method 

The method consists of the following main steps: 

Edge deletion: For every neighbour 𝑣  of the target node 𝑢 , create a perturbed graph by 

removing an edge (𝑢,  𝑣). 

Prediction difference: Pass the perturbed graph through the model and record the prediction 

difference: Δ𝑣 = |𝑦𝑓𝑢𝑙𝑙 − 𝑦𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑
(𝑣) |, where 𝑦𝑓𝑢𝑙𝑙 is the prediction based on the complete graph 

and 𝑦𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑
(𝑣)  is the prediction based on the perturbed graph, where the links to the neighbour 

𝑣  have been removed. 

Clustering: Finally, we apply the clustering method X-means [82] to the vector {Δ𝑣}𝑣∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢). 

Then the automatically selected cluster with the highest mean ∆  is deemed the critical neighbor 

set. For the ensemble, we again compute ∆𝑣
(𝑖)  for every base GAT and aggregate them with the 

XGBoost gains: ∆𝑣
𝐸𝑛𝑠= ∑ 𝑔𝑖

𝑛
𝑖=1 ∆𝑣

(𝑖)
. We then run clustering on {∆𝑣

𝐸𝑛𝑠} delivering a concise, gain-

aware summary of the neighbour influence.  

Graph-structured telemetry is not limited to radio access networks; the same idea applies to 

cybersecurity, where hosts (or IoT devices, user accounts, files, etc.) form nodes and their 

interactions (flows, authentications, API calls) form edges. In the next phase of the project, we 

will investigate how the Ensemble GAT model and its XAI approach can be applied to different 

security scenarios like intrusion detection and botnet/malware detection, in addition to KPI 

prediction.  
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6.4. Random Forest and XGBoost in FPGA context 

Previous sections of this deliverable have discussed the main concepts related to the 

explainability of artificial intelligence (XAI), including approaches such as SHAP and LIME, which 

enable the transparent interpretation of model decisions. In the current project, artificial 

intelligence is applied at multiple levels, combining offline and online processing in demanding 

contexts, such as 5G networks. 

In the first phase, AI is employed offline for model training using representative datasets such as 

CIC-DDoS201 [121], renowned for its diversity of attacks (SYN flooding, UDP flooding, DNS 

amplification, etc.) and its structuring by network flow. This phase facilitates the extraction and 

selection of relevant features using pre-processing techniques, including dimensionality 

reduction (PCA), variable encoding, and, in some cases, oversampling to balance classes. 

The AI is then utilized online once the models are deployed on-site, as part of a detection-action 

mechanism (DetAction), to identify and neutralize malicious attacks in real-time. This phase 

imposes strict constraints in terms of latency, processing capacity, and hardware integration. 

Although artificial intelligence is a vast field, it would be a mistake to assume that increasingly 

complex models inherently guarantee superior performance. For example, exploratory 

techniques such as PCA, while effective at visualising models or reducing complexity, are ill-suited 

to production environments where every microsecond is critical. Similarly, specific deep learning 

models such as RNN or LSTM, although powerful on sequential data, have inference times and 

computing requirements that are incompatible with the constraints of embedded systems, 

particularly in an FPGA context. 

In this context, several areas of AI research are currently being explored at the HES-SO, with a 

particular focus on lightweight, efficient, and explainable solutions that can be deployed in 

infrastructures with limited resources. The objective is clear: to combine detection accuracy, low 

energy consumption, and ease of hardware integration. With this in mind, we are developing a 

network traffic monitoring tool based on a PCIe SmartNIC equipped with an FPGA, positioned in 

parallel with the central server. This SmartNIC functions as an active probe, capable of analysing 

a duplicated traffic flow in real-time. 

The solution incorporates two key components: 

• A programmable P4 packet processing unit, enabling rapid, modular analysis of network 

headers. 

• A module dedicated to AI model inference, responsible for detecting anomalies or 

suspicious behaviour online. 
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Figure 18 Random Forest Classifier tree 

 
Figure 19 The left image shows the top 15 features used by the XGBoost classifier for attack detection, ranked by their 
importance scores. The left image presents the confusion matrix, illustrating the model’s classification performance in 

distinguishing between benign and malicious network packets. 

In this demanding context, where speed and responsiveness are crucial, our choice fell on the 

Random Forest model (cf. Figure 18), recognised for its real-time efficiency, small memory 

footprint, and ease of implementation in embedded architectures such as FPGAs. This model was 

trained on the CIC-DDoS2019 dataset, after transforming the PCAP files into flow data using 

CICFlowMeter, and cleaning up the features to reduce complexity while preserving relevance. 

The tests showed that Random Forest met the system's requirements with an overall accuracy 

of 93%, although performance was lower on rare classes. To improve robustness, XGBoost was 

also evaluated. The latter model, which is known to handle unbalanced datasets more effectively, 

achieved 94% accuracy, with only 79 misclassified flows out of 86,275, while maintaining a 

relatively compact architecture (cf. Figure 18). By contrast, more complex models, such as deep 

neural networks (DNN, LSTM, etc.), despite their effectiveness in the laboratory, do not 

guarantee significant gains in real-life conditions and are too resource-intensive (in terms of 

computing time, memory, and energy consumption) to be integrated into an embedded 
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environment. Additionally, their limited explicability makes auditing and validation more 

challenging in a critical context. Random Forest and XGBoost, therefore, appear to be well-

balanced solutions, offering good accuracy, satisfactory responsiveness, and easy integration into 

an embedded system dedicated to real-time traffic supervision. Both XGBoost and Random 

Forest provide a degree of explainability by default. They offer global feature importance 

measures and allow inspection of individual decision trees within the ensemble. This enables the 

understanding of which features most significantly influence the model's predictions overall. 

However, while they support some level of interpretation natively, neither model provides 

detailed per-sample explanations out of the box. For more granular, local explainability—such as 

understanding why a specific prediction was made—external tools like SHAP are commonly used 

and well-supported for both algorithms. 

6.5. Explainable IDS via SHAP  

The evolution of 5G and the emergence of 6G networks are enabling groundbreaking applications 

such as autonomous vehicles, smart manufacturing, and e-healthcare. These innovations are 

made possible by features like ultra-low latency, massive device connectivity, and significantly 

higher data rates. However, the rapid advancement of these technologies also introduces new 

and complex cybersecurity challenges. Threats such as Distributed Denial-of-Service (DDoS) 

attacks, Man-in-the-Middle (MITM) attacks, and Advanced Persistent Threats (APT) are becoming 

more sophisticated and severe. Artificial Intelligence (AI)-based Intrusion Detection Systems have 

shown great promise in bolstering network security by identifying and responding to these 

threats. Nevertheless, a major limitation of many AI-based systems is their lack of interpretability. 

This opacity raises critical concerns regarding trust, accountability, and regulatory compliance, 

especially in a high-stakes environment like a 5G network [84]. XAI addresses this issue by 

providing tools and techniques that make AI decision-making processes more transparent and 

understandable. XAI is particularly crucial in cybersecurity, where stakeholders must trust and 

audit the system's responses to potential threats. Techniques such as SHAP, LIME, and Grad-CAM 

(Gradient-weighted Class Activation Mapping) offer promising solutions by elucidating how AI 

models reach specific conclusions. We aim to investigate and integrate XAI methods into AI-

driven intrusion detection systems tailored for the 5G environment. By enhancing not only the 

detection accuracy but also the interpretability of these systems, we can significantly improve 

real-time response, system transparency, and user trust in the face of evolving cyber threats. 

The integration of SHAP into the intrusion detection pipeline not only demystifies the internal 

decision-making process of the model but also yields actionable insights that enhance the overall 

understanding of traffic behaviours in both legacy and modern 5G environments. Through local 

interpretability, SHAP enables per-sample analysis identifying which features, and in what 

magnitude, influenced the classification of an individual network flow as benign or malicious. For 
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instance, in the 5G-NIDD dataset [85][85], features such as Offset and Sum exhibited strong 

negative contributions to the classifier’s output, effectively steering the prediction toward a 

benign label. Conversely, features like sHops were shown to positively contribute to malicious 

classification, albeit not strongly enough to override the dominant benign indicators. This type of 

granular insight allows security analysts to understand not only what the model predicted but 

why is an invaluable asset when validating alerts or conducting forensic analysis. At a broader 

scale, global SHAP summary plots offer a cumulative view of feature importance across the 

dataset, effectively revealing the most influential variables in shaping the model’s overall 

behavior. In the case of the 5G-NIDD dataset, top predictors included sTtl (source Time to Live), 

State, and sMeanPktSz (source mean packet size). These features align well with known 

characteristics of legitimate 5G control-plane traffic, where a higher TTL value typically signifies 

longer, valid packet traversal. On the other hand, unusually low TTLs or irregular state transitions 

may signal anomalies, such as packet injection or spoofing attempts. In the CIC-IDS2017 dataset 

[86][86], which primarily contains IP-based traffic, features like Min Packet Length, ACK Flag 

Count, and Bwd Packet Length Min surfaced as highly indicative of malicious behavior. These 

findings highlight how explainability tools can adaptively distinguish attack patterns that are 

specific to different networking paradigms, be it traditional IP or emerging 5G protocols. 

As Figure 20a and Figure 20b show, local explanations unveil how a single feature influences the 

classifier’s prediction for sample flows. For the 5G-NIDD example (Figure 20a), features like Offset 

and Sum have a strong negative impact, pushing the prediction towards the benign class. While 

the sHops feature makes a positive contribution, it is not enough to counteract the negative 

contributions to produce a final classification of normal traffic. This result confirms the 

significance of timing and routing features in defining 5G control-plane traffic. By contrast, the 

CIC-IDS2017 instance (Figure 20b) displays a model of consistently positive contributions. 

Avenues such as Min Packet Length, Average Packet Size, and Bwd Packet Length Max all point 

prediction sharply in the attack-class direction, meaning payload-size abnormalities are critical in 

legacy IP traffic. The behavior of global models is exhibited by Figure 20c and Figure 20d, with 

SHAP summary plots that cumulate feature impacts across the initial 30 test-set flows. 

Beyond model validation, the insights offered by SHAP explanations can directly inform system-

level improvements. Feature importance metrics derived from SHAP can guide the selection or 

engineering of input features, reducing dimensionality while retaining high-informative 

attributes. Additionally, anomalous patterns repeatedly flagged by SHAP across samples may hint 

at previously unknown or under-documented threat signatures, prompting further investigation 

or updates to the threat detection policies. From a practical standpoint, the ability to visually 

communicate why a specific flow was classified as an attack builds trust with stakeholders and 

supports compliance with regulatory frameworks that demand transparency and accountability 

in automated decision systems. In this light, SHAP serves not only as a diagnostic tool but as a 



 D4.3 Intelligent networking, CTI & explainability.r1  

 

Page 71 of 113 
 

cornerstone for deploying intelligent, explainable, and human-aligned cybersecurity solutions in 

next-generation networks. 

In the case of 5G-NIDD (Figure 20c), top predictors are sTtl, State, and sMeanPktSz. High values 

of sTtl will tend predictions towards benign, as would be expected with greater traversal by 

legitimate control packets, while unusually low TTLs or high hop counts indicate suspicious traffic 

behavior. In the CIC-IDS2017 dataset (Figure 20 d), the strongest features are Min Packet Length, 

ACK Flag Count, and Bwd Packet Length Min. High values in these statistics are strongly correlated 

with attack streams, i.e., port scanning or DoS, while normal traffic is described by small, regular 

packet lengths and normal TCP flag patterns. 

Beyond model validation, the insights offered by SHAP explanations can directly inform system-

level improvements. Feature importance metrics derived from SHAP can guide the selection or 

engineering of input features, reducing dimensionality while retaining high-informative 

attributes. Additionally, anomalous patterns repeatedly flagged by SHAP across samples may hint 

at previously unknown or under-documented threat signatures, prompting further investigation 

or updates to the threat detection policies. From a practical standpoint, the ability to visually 

communicate why a specific flow was classified as an attack builds trust with stakeholders and 

supports compliance with regulatory frameworks that demand transparency and accountability 

in automated decision systems. In this light, SHAP serves not only as a diagnostic tool but as a 

cornerstone for deploying intelligent, explainable, and human-aligned cybersecurity solutions in 

next-generation networks. 
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Figure 20: SHAP Results 
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7. Cyber Threat Intelligence 
The rapid evolution of 6G networks promises unprecedented levels of connectivity, intelligence, 

and automation. However, this technological advancement also introduces a wide array of new 

cybersecurity risks, fuelled by the scale, heterogeneity, and complexity of emerging 

infrastructures. In this context, Cyber Threat Intelligence (CTI) becomes a foundational element 

for the secure operation of 6G systems. CTI refers to the systematic collection, analysis, and 

dissemination of information about existing and emerging cyber threats—including malicious 

actors, their capabilities, and their attack strategies. When operationalized effectively, CTI 

enables organizations to anticipate, detect, and respond to threats in a timely and informed 

manner. 

In traditional networks, CTI has often played a reactive role—focused on analysing incidents after 

they occur. However, the distributed, software-defined, and highly dynamic nature of 6G 

networks demands a proactive, automated, and context-aware CTI architecture. The 

convergence of telecommunications, cloud-native infrastructures, edge computing, and AI-

driven services amplifies the attack surface and creates conditions where manual or static threat 

intelligence processes are no longer sufficient. This calls for CTI systems capable of operating 

autonomously at scale, adapting to constantly shifting threat environments, and integrating 

seamlessly with other network defence components. 

Within the scope of the NATWORK project, CTI is positioned as a strategic enabler of self-resilient 

and self-adaptive network security. It serves as a critical input to several core capabilities 

envisioned in NATWORK, including intent-based orchestration, generative AI for system 

adaptation, and autonomous service resilience. By embedding CTI at the heart of the 

architecture, NATWORK aims to create an intelligence-driven framework in which threat 

information is not only collected and stored, but also continuously analysed, contextualized, and 

acted upon across the edge-cloud continuum. 

The project’s CTI framework is built on three foundational pillars: 

• Multi-source threat data collection: Integrating diverse sources—including honeypots, 

darknet traffic, OSINT, social media, and intrusion detection systems—to build a broad 

and deep threat visibility layer. 

• LLM-powered intelligence automation: Using generative AI to convert unstructured 

threat data into actionable intelligence, produce STIX-compliant bundles, and support 

automated reasoning and documentation. 

• Edge-cloud observability and integration: Ensuring that infrastructure monitoring, 

telemetry, and behavioural analytics from Kubernetes-based 6G environments feed into 

the CTI pipeline, enabling real-time and context-rich insights. 
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These components work together to enhance the security posture of 6G networks by enabling 

continuous threat monitoring, early warning systems, and dynamic security policy enforcement. 

NATWORK’s approach to CTI also contributes to broader cybersecurity objectives at the 

European level by addressing long-standing challenges such as the automation of threat report 

analysis, the standardization of threat knowledge using STIX, and the reduction of manual 

overhead in threat intelligence workflows. 

This section presents the specific contributions of NATWORK to the field of CTI, ranging from 

architectural frameworks and threat data processing engines to generative AI-based CTI 

extraction and infrastructure monitoring. Together, these innovations lay the foundation for an 

advanced, scalable, and explainable CTI infrastructure tailored to the needs of secure and 

trustworthy 6G systems. 

7.1. Multi-Source CTI Framework for Proactive Network Defense and 

LLM-Powered Intelligence 

In today's rapidly evolving cyber landscape, organizations face persistent and sophisticated 

threats originating from a wide array of sources, including botnets, attackers, and malicious 

actors lurking in hidden corners of the internet. To address this challenge, we propose a 

Comprehensive Cyber Threat Intelligence (CTI) Solution that leverages a diverse set of threat 

detection mechanisms to ensure robust protection for individual users and enterprise networks 

alike. 

 

Figure 21: Overall architecture of CTI Framework for Proactive Network Defense and LLM-Powered Intelligence 
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The proposed architecture in Figure 21 provides a comprehensive solution for detecting, 

analysing, and mitigating cyber threats in real time. It integrates multiple Cyber Threat 

Intelligence (CTI) sources into a unified Threat Engine, which processes and prioritizes threat data 

to feed defence mechanisms like firewalls and an LLM-powered CTI documenting component. 

This layered defence strategy ensures that both individual users and enterprise networks are 

protected from malicious actors such as botnets and attackers. The architecture not only blocks 

threats but also generates actionable intelligence to improve security awareness and response 

capabilities across the organization. 

7.1.1. CTI Collection 

A variety of CTI sources feed threat information into the system. Figure 22 illustrates the different 

types of CTI sources, which we discuss in detail below. 

• Honeypots: Decoy systems or networks are deliberately deployed to lure attackers and 

observe their behaviour. It can take various forms, such as a counterfeit website, a 

simulated server, or a virtual environment designed to resemble real systems, often 

configured with intentionally unpatched vulnerabilities to entice malicious actors. When 

attackers engage with a honeypot, they inadvertently reveal critical information about 

their tactics, techniques, and procedures (TTPs), offering valuable intelligence to 

defenders. Our threat intelligence framework employs over 20 distinct types of 

honeypots, each strategically deployed to capture a wide variety of malicious activities 

across different protocols and threat vectors. Among these are well-established and 

widely used honeypots such as Cowrie (SSH/Telnet interaction honeypot), Glastopf (web 

application honeypot designed to detect web attacks), Heralding (credential capturing 

honeypot for various services), and Dionaea (designed to capture malware). 

• Darknet Probes: A darknet or network telescope refers to an Autonomous System 

Number (ASN), a segment of an ASN not allocated by IANA, or an otherwise unused 

portion of the IP address space. Any traffic directed to these addresses is generally 

unsolicited and typically malicious, often consisting of scanning attempts, DDoS 

backscatter, or other nefarious activities. As part of the H2020-SISSDEN project, MONT 

has collected approximately 1GB of sample darknet traffic, providing valuable insights 

into global malicious activities. In contrast, the dark web (sometimes also referred to as 

"darknet" in casual use) represents a hidden segment of the internet not indexed by 

conventional search engines and accessible only through specialized tools, such as the Tor 

browser [122]. This environment often serves as a marketplace for illicit trade and other 

illegal operations. Monitoring both darknet traffic and dark web activities can be highly 

useful for gaining intelligence on illegal behaviour, emerging threats, and attacker 

methodologies. 
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Figure 22: Examples of CTI sources  

• Downloadable Lists (Offline Sources) and Realtime API (Online Sources): Offline sources 

typically consist of precompiled lists, curated and updated periodically by trusted security 

organizations. These lists include the most active attacking subnets and IP addresses, 

often identified through global traffic monitoring initiatives. They also provide specialized 

datasets focused on particular types of threats, such as botnet command-and-control 

servers, compromised hosts distributing malware, and known spam sources. The 

inclusion of curated drop and block lists from reputable entities further strengthens the 

CTI system's ability to detect and block malicious actors effectively. Whilst, real-time and 

near-real-time online feeds are crucial for maintaining an updated defence posture. 

Threat intelligence feeds generated by intrusion detection systems (IDS) and security 

monitoring platforms provide dynamic information about ongoing threats. For instance, 

platforms like the SANS Internet Storm Center [123] distribute feeds containing details on 

malware activities, spam campaigns, and network scanning attempts. Similarly, blacklists 

maintained by IDS solutions such as Suricata[124] offer valuable data on botnet-related 

communications, unsolicited network traffic, and emerging threats. Furthermore, 

community-driven databases, including resources like AbuseIPDB [125] and Onyphe 
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[126], contribute user-reported information on abusive IP addresses, further enriching 

the CTI ecosystem with relevant and timely indicators. 

• Other Sources: These include Intrusion Detection Systems (IDS) such as MMT, Suricata, 

and Snort, which continuously analyse network traffic and report security issues or 

anomalies in real time. They inspect packets for suspicious patterns, malicious payloads, 

or policy violations. Unlike external CTI feeds that report on global threat activities, IDS 

solutions offer localized intelligence, detecting attacks as they unfold within the 

monitored network perimeter. MMT, Suricata, and Snort employ advanced detection 

techniques, including signature-based analysis, anomaly detection, and protocol 

decoding, to identify a wide range of threats. These may include malware infections, 

unauthorized access attempts, reconnaissance scans, and exploitation of vulnerabilities. 

The alerts and logs generated by IDS systems are then fed into the CTI framework, 

enriching it with highly relevant and contextual data about current threats targeting the 

specific environment. 

These sources ensure the CTI system has both breadth and depth in threat visibility, capturing 

diverse and evolving threat indicators. 

7.1.2. Processing CTI Reports in Threat Engine  

Once ingested, the cyber threat intelligence (CTI) data is processed by the Threat Engine, a core 

component responsible for transforming raw information into actionable insights. This module 

performs several essential functions that enable the CTI system to operate efficiently and 

effectively. The first of these is aggregation, which involves collecting and consolidating threat 

data from a diverse array of sources. These may include honeypots, darknet probes, intrusion 

detection systems, and external threat feeds. By bringing together intelligence from various 

origins, the Threat Engine ensures comprehensive visibility across the threat landscape. 

Following aggregation, the system undertakes correlation to identify meaningful relationships 

between seemingly disparate data points. This step is crucial for detecting patterns and linking 

indicators that may signify coordinated or distributed attack campaigns. Through correlation, the 

Threat Engine is able to move beyond isolated alerts and provide a more holistic understanding 

of complex threat activities, such as multi-stage attacks or widespread scanning efforts. 

The next function is analysis, where advanced analytical techniques are applied to interpret the 

aggregated and correlated data. This process involves contextualizing the detected threats, 

assessing their potential relevance, and determining whether they pose a genuine risk to the 

protected environment. By examining factors such as the nature of the attack, historical 

behaviours, and known tactics, techniques, and procedures (TTPs), the Threat Engine can 

distinguish between benign anomalies and serious security incidents. 
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Finally, the system performs prioritization, which ranks the identified threats based on several 

critical criteria, including severity, likelihood of exploitation, and potential impact on 

organizational assets. This prioritization process is essential for optimizing incident response 

efforts, ensuring that security resources are focused on the most pressing and potentially 

damaging threats first. 

Through these integrated processes, the Threat Engine plays a pivotal role in refining raw CTI into 

validated and relevant threat indicators. Only after undergoing aggregation, correlation, analysis, 

and prioritization are these indicators forwarded to enforcement mechanisms and intelligence-

sharing components. This approach reduces unnecessary noise, enhances operational efficiency, 

and ensures that the organization's defensive posture is based on accurate and actionable 

intelligence. 

7.1.3. Application 

• Firewall/ CTI Portal 

The processed and prioritized threat indicators are systematically fed into a Firewall, which acts 

as the primary enforcement mechanism within the security architecture. This firewall 

dynamically updates its ruleset based on the intelligence generated by the Threat Engine, 

allowing it to block identified malicious hosts and prevent harmful traffic from reaching end users 

and critical corporate assets. By proactively filtering threats at the network perimeter, the system 

ensures that both individual users and the company’s local network remain safeguarded against 

a wide spectrum of known attacks, ranging from malware distribution and phishing attempts to 

command-and-control communications and reconnaissance scans. 

Beyond its fundamental role in traffic filtering, the firewall component is integrated into a 

broader threat management platform offering advanced features designed to enhance usability 

and responsiveness. One key capability is the subscription model, which allows users to configure 

personalized alerting rules. Through this mechanism, subscribers can receive timely notifications 

related to specific IP addresses, Autonomous System Numbers (ASNs), or other relevant 

indicators of interest. This ensures that security teams and stakeholders remain informed about 

potential threats targeting their organization or critical infrastructure in near real time. 

Another significant functionality is the platform's advanced search interface, which enables users 

to query the threat database with precision. Users can search for information related to IP 

addresses or prefixes, domain names, hostnames, URLs, ASNs, countries, organizations, or even 

upload files in CSV format containing multiple entries for batch processing. This powerful search 

capability provides flexible access to historical and current threat data, supporting incident 

investigations, threat hunting activities, and compliance requirements. 
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To facilitate seamless integration with external systems and automate security workflows, the 

platform also offers a comprehensive Application Programming Interface (API). Through this API, 

users can programmatically retrieve threat intelligence, submit queries, and receive updates, 

which significantly enhances the scalability and adaptability of the solution across various 

organizational environments. 

Moreover, the system delivers real-time notifications to alert subscribers when activities 

associated with specific IPs or ASNs are detected. This ensures that defenders are immediately 

informed of emerging threats and can respond without delay. To support informed decision-

making, each reported entity is assigned a reputation score, which is calculated by aggregating 

intelligence from multiple independent sources. This scoring mechanism provides valuable 

context, helping users to assess the risk level associated with a given indicator and prioritize their 

mitigation efforts accordingly. 

Through this comprehensive set of capabilities, the firewall and its supporting platform not only 

offer automated threat blocking but also serve as an interactive and intelligent interface for 

managing and responding to evolving cyber threats in real time. 

• LLM-powered CTI Documenting 

In parallel to threat detection and enforcement mechanisms, the curated threat data is leveraged 

by the LLM-powered CTI documenting component, which plays a critical role in transforming raw 

and often complex threat indicators into actionable and comprehensible intelligence. This 

advanced module harnesses the capabilities of large language models to automatically interpret 

technical details and produce clear, human-readable reports. These reports are tailored to meet 

the needs of various stakeholders, including technical teams who require in-depth analysis, 

management who benefit from executive summaries, and broader security communities seeking 

situational awareness. 

In addition to reporting, the component serves an essential function in supporting cybersecurity 

training and preparedness. By summarizing both ongoing and historical threat activities, it 

provides valuable input for cyber ranges, which are controlled environments designed to 

simulate real-world cyberattacks. These simulations are used to train cybersecurity professionals, 

helping them to develop and refine their defensive skills in response to realistic scenarios derived 

from actual threat intelligence. 

Furthermore, the LLM-powered system enables intuitive interaction through natural language 

querying. This feature allows security analysts and incident responders to obtain contextual 

explanations and insights on demand, improving decision-making and reducing the time required 

to understand complex threat landscapes. By offering accessible and context-rich intelligence, 

this LLM-driven layer effectively bridges the gap between technical threat data and the diverse 
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information needs of its users, facilitating clear and efficient communication across all levels of 

an organization. 

7.2. Advanced generative AI powered CTI data collection for 6G 

Networks 

A substantial volume of valuable Cyber Threat Intelligence (CTI) is disseminated in unstructured 

formats. These include open-source intelligence (OSINT), social media posts, dark web forums, 

industry whitepapers, news reports, government-issued threat bulletins, and detailed incident 

response documentation. While these sources are rich in context and threat-related information, 

their unstructured nature presents significant challenges for efficient storage, classification, and 

automated analysis. The lack of standardized formatting prevents direct ingestion by security 

systems and forces human analysts to painstakingly read and interpret lengthy texts, which is 

both time-consuming and error prone. 

As a result, one of the core tasks of security analysts is to manually extract relevant intelligence 

from these heterogeneous data sources and convert it into a structured format that can support 

automated correlation, querying, reasoning, and integration with existing threat detection or 

response systems. This manual translation process, however, is increasingly unsustainable in 

modern threat environments characterized by high-volume, high-velocity data and the growing 

complexity of multi-vector attacks—especially in highly dynamic environments such as 6G 

networks. 

To address this challenge, the cybersecurity community has increasingly turned toward 

structured representation formats, such as the Structured Threat Information eXpression (STIX) 

standard [127]. STIX has emerged as one of the most widely adopted standards for representing 

CTI in a machine-readable form. In the STIX framework, each individual report—referred to as a 

bundle—is modelled as a knowledge graph, comprising interconnected entities and their 

relationships. These entities encapsulate key concepts such as threat actors, malware samples, 

system vulnerabilities, and tactics or techniques, while relationships express interactions 

between them (e.g., a threat actor uses a specific piece of malware or targets a particular 

organization). 
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Figure 23: A subset of the STIX ontology, including all entities 

Figure 23 illustrates a subset of the STIX ontology as applied to our dataset, capturing the core 

entities and relationships that appear in real-world CTI records. Among the primary entity types 

included in the ontology are: 

• Threat Actor: Individuals or groups responsible for cyber attacks. 

• Malware: Malicious software or code used to carry out attacks. 

• Vulnerability: Known weaknesses in software, hardware, or configurations that attackers 

can exploit. 

• Attack Pattern: The method or strategy employed during the attack. 

• Indicator: Observables or signals that point to malicious activity (e.g., IP addresses, file 

hashes, domain names). 

The ontology also supports semantic relations between entities, such as uses, targets, exploits, 

and attributed-to, enabling a detailed and contextualized representation of threat intelligence. 

To demonstrate how analysts extract STIX-compliant bundles from unstructured reports, we 

present in the following subsection a representative example and outline the core extraction 

tasks typically performed. In particular, analysts focus on identifying and structuring the most 

commonly reported aspects of an incident: 

• Who conducted the attack (e.g., the Threat Actor entity), 

• Against whom the attack was carried out (e.g., the Identity entity, linked through a 

targets relationship), 

• How the attack was executed (e.g., via Malware and Attack Pattern entities). 
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This subset of the STIX ontology covers the majority of critical information found in practical CTI 

reports. For instance, in our dataset, 75% of reports contain at least one Malware entity, while 

54% reference a Threat Actor. This selection of entity types is also consistently supported across 

state-of-the-art information extraction tools and previous work, providing a stable foundation 

for benchmarking, evaluation, and integration efforts. 

As we explore in the next part of this section, the advent of generative AI—particularly large 

language models (LLMs) and multi-agent frameworks—holds immense potential for automating 

the extraction of these entities and relations directly from unstructured CTI sources. By 

leveraging these technologies, the NATWORK architecture aims to close the gap between high-

volume raw threat intelligence and actionable, structured insights tailored for self-resilient 6G 

environments. 

7.2.1. Structured CTI Extraction 

 

Figure 24: An example of a report published by Palo Alto Networks.  

(While Indicators of Compromise are easy to extract being collected at the end of the report, extracting Threat Actor, Malware, 
Attack Pattern and the other STIX's entities requires security experts to perform manual analysis) 

To concretely illustrate the task of structured CTI extraction, we examine a technical blog post 

published by Palo Alto Networks on the HelloXD ransomware campaign [128]. A snapshot of this 

report is shown in Figure 24. Like many industry-grade threat intelligence reports, it presents a 

dense and information-rich narrative: approximately 3,700 words, 24 figures, three detailed 

tables, and a dedicated section summarizing Indicators of Compromise (IoCs). 

The report discusses the attribution of the HelloXD ransomware to a threat actor known as x4k 

and outlines the tactics, techniques, and procedures (TTPs) observed in related campaigns. It 

provides an in-depth analysis of the malware’s functionality, explores its behavioural indicators, 

and presents several clues linking the malware to the threat actor. It also details aspects of the 

adversary’s infrastructure and operational approach. 
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Figure 25: A STIX bundle describing the report from previous figure. 

The aim of structured CTI extraction is to convert such a report into a STIX-compliant bundle, 

suitable for automated analysis and integration into cyber defence systems. Figure 25 depicts the 

resulting STIX bundle derived from this report. It includes key entities such as a Threat Actor node 

for x4k, a Malware node for HelloXD, multiple Attack Pattern entities describing the adversary’s 

TTPs, and several Indicator entities from the IoC section of the report. 

Generating this structured representation is far from trivial. Producing a complete and accurate 

STIX bundle typically requires between three and ten hours of dedicated analysis by experienced 

CTI professionals. This is supported by previous studies; for instance, Park et al. [129] report that 

annotating just 133 reports required three full-time annotators working over a five-month 

period. Similarly, the annotation of the 204 reports used in our evaluation took several months 

of sustained work by our team of CTI analysts. 

One reason for this high annotation cost is the nuanced and implicit nature of much of the 

information contained in CTI reports. Even basic tasks—such as identifying malware names or 

linking threat actors to attack campaigns—require careful interpretation and contextual 

reasoning. The challenges include ambiguities in terminology, the use of aliases, and uncertainty 

in attribution. 

A typical first step in the extraction process involves identifying the malware involved, the 

responsible threat actor, and any targeted identities. This may appear straightforward, but CTI 

reports often describe threats in subtle, context-dependent ways. For instance, entities may 

share names (e.g., a threat actor and a malware family both named similarly), or a single malware 

may be referenced using multiple aliases. Attribution is also frequently qualified or speculative, 

requiring analysts to distinguish between confirmed and hypothetical associations. 

In our example report, HelloXD is clearly the central malware being described. However, the text 

also mentions other ransomware families—LockBit 2.0 and Babuk/Babyk—which are not part of 

the HelloXD campaign. Their inclusion in the report is purely illustrative, used to draw 

comparisons or highlight common tactics. 
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Consider the following excerpt: 

The ransom note also instructs victims to download Tox and provides 

a Tox Chat ID to reach the threat actor. Tox is a peer-to-peer 

instant messaging protocol that offers end-to-end encryption and 

has been observed being used by other ransomware groups for 

negotiations. For example, LockBit 2.0 leverages Tox Chat for 

threat actor communications. 

Although LockBit 2.0 is referenced here, it is not directly connected to the HelloXD ransomware 

or the actor x4k. As such, it should not be included in the corresponding STIX bundle. This type 

of disambiguation is critical to ensure accurate modelling of the threat landscape and to avoid 

polluting CTI databases with unrelated or tangential information. 

These examples highlight why manual annotation is so time-consuming and why fully automating 

this process remains a challenge. However, advances in natural language processing—

particularly in generative AI and large language models—offer promising capabilities to support 

or accelerate this task.  

A second critical step in constructing structured CTI is the identification of attack patterns—that 

is, the tactics, techniques, and procedures (TTPs) employed by the threat actor during the 

execution of the attack. This process introduces another layer of complexity: unlike discrete 

entities such as malware names or indicators, attack patterns are typically descriptive 

behaviours, often embedded across multiple paragraphs within a report. 

These behaviours must not only be detected but also classified according to standardized 

taxonomies, such as the MITRE ATT&CK® Matrix [130], which is widely adopted for mapping 

adversarial behaviour. The ATT&CK framework includes over 190 techniques and more than 400 

sub-techniques, covering a broad spectrum of activities across different stages of an attack 

lifecycle—from initial access and execution to exfiltration and impact. As a result, mapping 

natural language descriptions from threat reports to specific MITRE techniques requires both 

deep reading comprehension and extensive domain knowledge. 

For example, the following excerpt, taken from a report by Proofpoint [131], illustrates how an 

attack pattern may be embedded in narrative text: 

TA416 has updated the payload by changing both its encoding method 

and expanding the payload’s configuration capabilities. 

An analyst must first detect this behaviour, and then correctly map it to a relevant MITRE 

technique. In this case, the appropriate mapping is T1027: Obfuscated Files or Information, 

described in the MITRE ATT&CK framework as: 
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Adversaries may attempt to make an executable or file difficult to 

discover or analyze by encrypting, encoding, or otherwise 

obfuscating its contents on the system or in transit. 

This example demonstrates the layered reasoning required in structured CTI extraction: 

identifying the behavioural action, resolving its technical implications, and linking it to an 

appropriate standardized concept. Errors in this process can lead to incorrect or incomplete STIX 

bundles, weakening the ability to correlate CTI across sources or automate detection. 

In the case of our HelloXD report, the analysis resulted in the extraction of 18 distinct attack 

patterns, each requiring close reading and interpretation. Some were explicit (e.g., the use of a 

peer-to-peer communication channel for ransom negotiation), while others required inferring 

intent or behaviour from context. Notably, this stage is particularly challenging to automate with 

classical rule-based systems or shallow machine learning approaches, making it a promising 

application area for generative AI systems capable of deeper semantic understanding. 

A further consideration during the extraction process is the relevance of the information. 

Analysts must make expert decisions about which elements to include in the final bundle and 

which to omit. This requires evaluating not only the technical accuracy of the information, but 

also its salience to the core narrative of the report and the confidence with which the 

information is presented. 

For instance, the HelloXD report includes tangential references to other activities associated with 

the threat actor x4k, such as the deployment of Cobalt Strike Beacon and the development of 

custom Kali Linux distributions. While potentially interesting, these activities are not discussed 

in detail and are not central to the campaign under analysis. Therefore, they are omitted from 

the final STIX bundle to maintain a clear and focused representation. 

This judgment-based filtering is essential to ensure that the resulting structured intelligence 

remains precise, actionable, and free from noise. However, it further contributes to the time and 

expertise required for high-quality CTI annotation. 

7.2.2. Existing solutions 

Given the significant complexity and time investment required for manual structured CTI 

extraction, a range of automated solutions has been proposed in recent years 

[132][133][134][135][136].These efforts span from narrowly focused systems targeting specific 

subtasks—such as the identification of attack patterns or indicators—to more ambitious 

approaches that aim to automate the entire pipeline of CTI extraction from unstructured sources. 

Despite these advances, the practical utility of such tools remains limited: most still require 

considerable human oversight and post-processing to produce high-quality, actionable threat 

intelligence. 
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This gap between theoretical capabilities and practical usability is reinforced by our own 

experience. The empirical results from our CTI analyst team confirm that none of the existing 

tools offer a fully reliable or scalable solution, particularly when applied to realistic, high-

variability datasets. The persistence of this challenge suggests that the limitations are not purely 

technical, but also methodological. 

One contributing factor is the absence of robust benchmarks that truly reflect the nature and 

complexity of the structured CTI extraction task. Many existing solutions rely on machine learning 

techniques—particularly from the natural language processing (NLP) domain—but are evaluated 

using standard NLP metrics that do not align with the specific requirements and goals of CTI 

practitioners. 

To illustrate this misalignment, consider the task of Named Entity Recognition (NER). In the NLP 

field, a model is typically evaluated based on its ability to correctly identify every mention of an 

entity in the text. For example, if the malware HelloXD is mentioned ten times in a report and 

correctly labelled on each occasion, a word-level (or more precisely, token-level) evaluation 

metric would count this as ten correct outputs. This leads to what we refer to as word-level 

labelling, which may overstate a system's performance when applied to the CTI domain. 

From a CTI perspective, however, the goal is to extract the unique entities that are relevant to 

the security event being described—regardless of how many times they are mentioned. Whether 

HelloXD appears once or ten times, it constitutes a single relevant malware entity in the context 

of a structured STIX bundle. Furthermore, as shown in our earlier example involving LockBit 2.0, 

not all entities identified by a generic NER tool are contextually relevant for structured CTI. A 

named entity may be correctly labelled from an NLP standpoint but should be excluded from a 

CTI bundle if it is not directly connected to the campaign or threat being analysed. 

These discrepancies become even more pronounced in the evaluation of Attack Pattern 

extraction. Most current approaches rely on sentence-level classification tasks, where the goal is 

to determine whether a given sentence contains an attack pattern and, if so, assign it to the 

appropriate category. This sentence-level labelling strategy, while useful for training classifiers, 

does not capture the full complexity of real-world CTI extraction. In practice, what matters is the 

ability to identify all relevant attack patterns scattered across a document, accurately classify 

them according to taxonomies like MITRE ATT&CK, and correctly attribute them to the associated 

entities (e.g., malware or threat actor). 

In essence, NLP-derived metrics often assess syntactic accuracy, while structured CTI extraction 

demands semantic relevance and contextual correctness. The failure to differentiate between 

these two levels of evaluation risks inflating perceived system performance and conceals the true 

limitations of current approaches. 
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This misalignment highlights a broader need for domain-specific metrics—what we refer to as 

CTI-metrics—which evaluate a system’s ability to reconstruct accurate, coherent, and relevant 

threat intelligence bundles from unstructured inputs. These metrics must account not just for 

precision and recall at the sentence or token level, but also for the correctness and relevance of 

the resulting structured knowledge graph. 

Table 2: Overview of manually annotated CTI datasets. 

(In some cases, the annotated reports represent a small, labelled subset of a much larger corpus (total size in parentheses). 

Asterisks (*) indicate that annotations are made at the sentence level rather than across entire reports. A checkmark (✓) in the 
'Public' column denotes datasets that are only partially released as open-source.) 

Dataset Entities & Relations Attack Patterns CTI Metrics Public 

SecIE 133 133 – 
 

CASIE 1k – – ✓ 
ThreatKG 141 (149k) 141 (149k) – 

 

LADDER 150 (12k) 150 (12k) 5 (✓) 

SecBERT – 14.4k* 6 ✓ 
TRAM – 1.5k* – ✓ 
TTPDrill – 80 (17k) 80 

 

AttacKG – 16 (1.5k) 16 
 

rcATT – 1.5k – ✓ 
 

Table 2 summarizes a selection of datasets used in prior work to evaluate structured CTI 

extraction methods. These datasets vary in scope, granularity, and coverage, particularly with 

respect to the annotation of complex entity types such as Attack Pattern. For this reason, we 

distinguish attack pattern extraction from simpler entity types (e.g., Malware, Threat Actor, 

Identity), given its higher semantic complexity and the additional requirement of mapping 

behavioural descriptions to formal taxonomies such as MITRE ATT&CK. 

Several studies report the use of large datasets to evaluate their models using conventional 

natural language processing (NLP) metrics, such as the frequency and accuracy of extracted 

entity mentions. However, these large corpora are often only partially annotated and are 

typically accompanied by much smaller manually labelled subsets when evaluations are 

performed using CTI-specific metrics. The principal reason cited for the limited size of these 

subsets is the high cost associated with manual annotation, which requires expert input from 

trained CTI analysts. To contextualize the limitations of current datasets, we analyse them 

through two evaluation frameworks: 

NLP-metrics. Datasets such as those used in SecIE[137], ThreatKG [135], and LADDER [134] 

provide word-level or sentence-level annotations, making them suitable for traditional NLP 

evaluation tasks like NER or sentence classification. Similarly, CASIE [132] offers a large corpus 
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annotated at the word level, though it does not include attack pattern annotations. The TRAM 

[147] and rcATT [136] datasets are focused on attack patterns but are also limited to sentence-

level labelling, which does not support full structured extraction workflows. 

CTI-metrics. Only a handful of works provide annotations suitable for evaluating CTI extraction 

methods from an operational, graph-based perspective. TTPDrill [133] and AttacKG [94] both 

include manually labelled datasets of 80 and 16 full reports, respectively, and adopt a CTI-centric 

evaluation approach. However, neither dataset is publicly released, and both are restricted to 

attack pattern extraction. SecBERT [135] performs a two-stage evaluation: it first assesses model 

performance on a large sentence-level dataset, then conducts a CTI-metrics evaluation on only 

six annotated reports. Likewise, LADDER [134]  includes an evaluation of attack pattern extraction 

using CTI metrics on five reports, but these are also not shared publicly. 

7.2.3. Creating a new dataset 

The absence of a sufficiently large, open-access dataset specifically designed for structured CTI 

extraction has long hindered the ability to evaluate and compare existing approaches in a 

consistent and meaningful way. Without such a benchmark, it becomes difficult to assess 

progress beyond surface-level NLP metrics or to ensure that proposed methods are applicable in 

real-world CTI workflows. 

To address this limitation, we rely on a dataset that was previously created by our team, 

consisting of 204 manually annotated CTI reports collected over a 12-month period starting in 

February 2022. Each report has been paired with a corresponding STIX-compliant bundle, 

meticulously constructed by expert CTI analysts to capture the relevant entities, relationships, 

and attack patterns described in the original text. This dataset, developed independently prior to 

the NATWORK project, is designed specifically to support evaluation based on CTI metrics, 

offering a realistic and high-quality benchmark for structured threat intelligence extraction. Its 

use in this work enables a more rigorous and operationally relevant assessment of generative AI-

based approaches for CTI automation. 

The remainder of this section provides information about the dataset creation methodology and 

introduces high-level statistics about the data. 

7.2.3.1. Methodology 

Our organization includes a dedicated team of Cyber Threat Intelligence (CTI) analysts whose 

primary responsibility is the structured extraction of threat intelligence from publicly available 

sources. Leveraging their expertise and established internal methodology, we use a dataset 

previously created by this team, comprising 204 manually annotated CTI reports, each paired 

with its corresponding STIX bundle. These reports, collected over a 12-month period starting in 
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February 2022, originate from well-known and reputable sources (cf. Section 7.2.3.2) and have 

been further reviewed to ensure classification quality. 

Structured CTI extraction in this context is performed manually, following a rigorous multi-step 

process, carried out by three independent analyst groups, each with clearly defined roles: 

Group A is responsible for selecting the reports to be processed. These reports are chosen based 

on analyst expertise and awareness of global threat trends. This group typically consists of two 

to four people and focuses on ensuring the relevance and diversity of the collected intelligence. 

Group B carries out the core extraction process. Their workflow involves several sequential steps: 

1. Initial Parsing: The selected report is processed using custom-built parsers to extract raw 

text from the original web source. These parsers are developed in-house by the CTI team 

to handle new formats or sources as needed. 

2. Text Segmentation: The extracted text is segmented into blocks of sentences, which are 

manually refined - analysts may merge, split, or discard segments to improve clarity and 

focus. 

3. Entity Extraction: Pre-labelling is performed using automated Named Entity Recognition 

(NER) tools. Analysts then manually verify and adjust these labels, adding or removing 

entities based on contextual relevance. Automated tools speed up the process by visually 

highlighting candidate entities, allowing analysts to focus on semantic validation. 

4. Attack Pattern Extraction: The same text blocks are processed using a logistic regression 

model from TRAM [147], which flags likely attack-pattern-related sentences. These are 

quickly verified by the analyst, while remaining ambiguous or uncovered text is reviewed 

manually. This tiered approach reduces the volume of text requiring deep manual analysis 

and helps disambiguate edge cases. 

5. STIX Bundle Assembly: Using a custom-built graphical interface, the analyst assembles 

the final STIX bundle. This includes not only verified entities but also correct attribution 

through STIX relationships (e.g., uses, targets). 

Group B consists of two analysts who alternate roles, each working on different reports. 

Group C independently reviews the STIX bundles produced by Group B. This group inspects the 

intermediate steps and either accepts or requests revisions to the submitted bundle. Group C 

also consists of two analysts, and all members of Groups B and C rotate roles between analyst 

and reviewer across different reports to ensure impartiality and reduce annotation bias. 

This entire process is supported by a web-based software infrastructure specifically developed 

to streamline structured CTI annotation. Analysts access a unified toolchain via this platform, 
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which tracks their interactions, roles (e.g., analyst vs reviewer), and time spent on each stage of 

the process. For the dataset used in this study, the average time required to complete the full 

structured CTI extraction for a single report (excluding selection by Group A) was approximately 

4.5 hours, with Group B responsible for the majority of the workload (~3 hours per report). 

To further ensure annotation quality and consistency, an additional validation phase was 

conducted. A team of two independent researchers reviewed a subset of the 204 reports 

previously processed by Groups B and C. They re-labelled the selected reports from scratch and 

compared results with the existing annotations. This process confirmed unanimous agreement 

across both analyst teams and researchers. During validation, researchers accessed the original 

web sources directly—bypassing the automated parsers used during Group B's initial 

processing—to eliminate even the slightest possibility of parser-induced errors. 

This multi-tiered approach ensures that the resulting dataset not only reflects real-world 

intelligence extraction practices, but also meets a high standard of annotation quality, providing 

a robust foundation for evaluating structured CTI extraction techniques based on CTI-specific 

metrics. 

7.2.3.2. Dataset Summary 

The dataset used in this work comprises 204 CTI reports, each manually annotated with a 

corresponding STIX bundle. The reports are sourced from 62 well-known public entities, 

including organizations such as Palo Alto Networks [148], Trend Micro [149], and Fortinet [150]. 

On average, each source contributes 3.3 reports (see Table 3). Importantly, approximately 79% 

of the sources are referenced by the MITRE ATT&CK® framework as external citations, 

confirming the representativeness and relevance of the selected materials within the global CTI 

landscape. 

Table 3: Dataset statistics: number of reports per source, and report length in words and sentences. 

Metric Min Avg 95p Max 
Reports per source 1 3.3 9 11 

Words per report 504 2133.6 4015.8 6446 

Sentences per report 11 86.3 172.5 358 

 

The thematic focus of the dataset is summarized in Table 4. Roughly 75% of reports centre around 

malware, with a significant portion also covering associated threat actors (30%). An additional 

15% describe threat actors alone or in combination with vulnerabilities. A minority of reports 

(10%) address broader topics such as cyber campaigns or threat infrastructure. This distribution 

ensures coverage across multiple intelligence use cases. 
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Table 4: Topics covered by the reports in the dataset. 

Topic Quota Group 
Malware 30% 

 

Malware + Threat Actor 30% 
 

Malware + Threat Actor + Vulnerability 8% 
 

Malware + Vulnerability 7% 75% 

Threat Actor 11% 
 

Threat Actor + Vulnerability 4% 15% 

Others (e.g., campaigns, infrastructure) 10% 10% 
 

The dataset achieves wide coverage of the MITRE ATT&CK Matrix for Enterprise, encompassing 

nearly 90% of its attack pattern classes. Furthermore, it includes all of the top 10 most prevalent 

ATT&CK techniques used by adversaries in 2022 [153], with each technique appearing in 

multiple reports. Overall, the dataset mentions 188 unique malware variants and 91 distinct 

threat actors, ensuring robust diversity in threat representation. 

Each of the 204 reports is associated with a STIX bundle, resulting in a total of 36.1k structured 

entities and 13.6k semantic relations. The ontology derived from this data is visualized in Figure 

23, covering 9 STIX entity types and 5 types of relations, and providing a structured foundation 

for knowledge graph-based CTI processing. 

Table 5 provides detailed statistics on the STIX bundles. On average, each bundle contains 177 

STIX objects and 67 relations, with wide variance reflecting the richness of different reports. We 

also report the distribution of key entity and relation types across the dataset. Notably, Malware 

appears in 75% of bundles, Threat Actor in 54%, and Attack Pattern in 99%, reflecting their 

prominence in CTI narratives. 

Table 5: Dataset statistics by STIX bundle. Final column shows percentage of bundles containing each object or relation at least 
once. 

Metric / Type Min Avg 95p Max Quota 
STIX Objects 13 177.1 525.8 1255 – 

STIX Relations 5 67.0 180.3 429 – 

Malware 0 0.9 2.0 5 75% 

Threat Actor 0 0.6 1.0 2 54% 

Attack Pattern 0 21.8 40.0 63 99% 

Identity 1 1.7 2.0 5 100% 

Indicator 1 41.9 163.1 395 100% 

Campaign 0 0.6 1.0 4 55% 

Vulnerability 0 0.5 2.0 11 21% 

Tool 0 0.1 1.0 10 6% 

Course of Action 0 0.0 0.0 1 2% 
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Metric / Type Min Avg 95p Max Quota 
uses (relation) 1 23.6 48.8 64 100% 

indicates (relation) 1 41.9 163.1 395 100% 

targets (relation) 0 1.2 3.8 12 77% 

attributed-to (relation) 0 0.3 1.0 2 26% 

mitigates (relation) 0 0.0 0.0 2 2% 
 

These statistics emphasize the richness and representativeness of the dataset, making it suitable 

for evaluating the performance of automated systems in structured CTI extraction tasks. While 

Table 5 is not used directly in our performance evaluation, it provides important context on the 

volume and diversity of information present in the annotated STIX bundles. 

7.3. Edge-Cloud Infrastructure Monitoring for CTI 

Monitoring and observability are crucial for ensuring the resilience and security of distributed, 

containerized systems, particularly in edge-cloud environments that support network slices. In 

recent years, the shift toward cloud-native architectures—including microservices, containers, 

and orchestration platforms like Kubernetes—has brought significant advantages in scalability 

and flexibility. However, these architectures also introduce complexity, especially when deployed 

across geographically distributed and highly dynamic edge-cloud infrastructures. This complexity 

makes it more challenging to understand system behaviour and detect faults or threats in real 

time. Traditional monitoring tools designed for monolithic or centralized systems fall short in this 

context, such as Zabbix and Nagios [154] [155]. 

To address this challenge, as part of our contribution, we focus on developing and maintaining 

an infrastructure for monitoring the health and behaviour of Kubernetes-based clusters and the 

microservices within these clusters, supporting Cyber Threat Intelligence (CTI) and AI 

frameworks. Our primary objective is to monitor workloads over Software-Defined Networking 

(SDN) and to observe how microservices behave in virtualized ecosystems under different 

conditions. To this end, we use Prometheus, a widely used open-source monitoring tool designed 

for cloud-native systems [155][156]. Prometheus is integrated with our experimental testbeds to 

collect metrics from various layers of the infrastructure. These include data on CPU and memory 

consumption, disk I/O, container lifecycle events, pod-level statistics, bandwidth and latency, and 

error rates across services and interfaces. 

To make the collected metrics more accessible and actionable, we integrate Prometheus with 

Grafana, a powerful open-source analytics and visualization platform. By configuring Prometheus 

as a data source in Grafana [135], we can query, visualize, alert, and explore key metrics from 

across our experimental VM and container testbeds. This integration significantly enhances 

operational insight by providing interactive dashboards that display metrics in real time and 
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across historical windows. As shown in Figure 26 and Figure 27, the system is designed to monitor 

the overall health of the cluster as well as focus on service-level granularity.  

 

                                                                              Figure 26: Cluster-Level Monitoring 

 

                                                                            Figure 27: Service-Level Monitoring 
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At the container level, we can monitor fine-grained performance metrics for individual 

microservices. At the node level—including both control plane and worker nodes—we track 

broader metrics, such as CPU load averages, memory usage, filesystem pressure, etc. We also 

attempt to understand how the K8s scheduler on the control plane responds under unstable load 

conditions, where oscillating request patterns cause rapid and repeated scaling decisions. These 

fluctuations lead to increased control plane activity, driving up CPU usage and energy 

consumption, affecting the service sustainability without any actual service failure. The term for 

this kind of attack is called Denial of Sustainability, wherein rapid and repetitive pod scaling in 

response to fluctuating workloads leads to increased energy consumption and operational costs, 

degrading the Quality of Service [158]. 

Furthermore, we focus on the structured generation of time-series datasets that can feed AI-

based threat detection and CTI systems. Prometheus serves as the backbone for collecting 

operational telemetry, enabling us to create labelled datasets that capture both routine and 

anomalous system behaviours under varied workloads. 

This work complements the broader architecture by ensuring the availability of accurate, time-

aligned, and context-rich observability data. This data serves long-term analytics and modelling 

required by CTI frameworks and AI systems in 6G environments.  
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8. Conclusions  
Deliverable D4.3 has presented the foundational contributions of the NATWORK project in the 

field of intelligent secure services for 6G networks. It brings together advancements in AI-driven 

orchestration, real-time cybersecurity, trust mechanisms, explainability, and cyber threat 

intelligence, developed within the scope of Work Package 4. 

The document began in Section 2 with a comprehensive state-of-the-art analysis, establishing 

the scientific and technological context for NATWORK’s innovations. It reviewed existing 

approaches in zero-touch network management, AI-based threat detection, explainable artificial 

intelligence (XAI), cyber threat intelligence (CTI), and blockchain for trust establishment, 

identifying key challenges and research gaps that NATWORK addresses. 

In Section 3, the deliverable introduced the first version of zero-touch network solutions, focusing 

on the design of AI-driven orchestration mechanisms that minimize human intervention while 

enabling autonomous, secure, and context-aware service deployment. This section outlined the 

proposed architecture and the early design of modules capable of managing dynamic security 

policies and adapting to runtime conditions. 

Section 4 detailed the AI-driven real-time threat detection capabilities being developed in the 

project. It presented the conceptual design of intelligent agents that process telemetry data and 

threat indicators in real time, enabling proactive identification and response to malicious 

activities across different network layers. 

In Section 5, the document described the initial design of blockchain-based trust establishment 

mechanisms, proposing a decentralized approach to support trust, data integrity, and secure 

interactions among distributed network components. This section introduced the foundational 

architecture and demonstrated how blockchain can enhance the transparency and reliability of 

service orchestration. 

Section 6 addressed one of the project’s key cross-cutting challenges: explainability. It explored 

different models and technical strategies to ensure that the decisions made by AI modules—

particularly those related to security enforcement and service orchestration—are 

understandable and interpretable by operators and auditors. Several explainability mechanisms, 

ranging from visual tools to traceable decision models, were introduced. 

Finally, Section 7 presented the first version of the Cyber Threat Intelligence (CTI) framework, 

outlining the approach for collecting, analysing, and operationalizing multi-source threat data. 

The CTI framework is designed to support both human analysts and automated agents, 

enhancing situational awareness and enabling adaptive security responses across the network. 
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Overall, this deliverable consolidates a wide range of technical contributions toward building an 

intelligent, secure, and explainable orchestration environment for 6G networks. The components 

and designs presented in D4.3 will serve as the basis for further integration and validation 

activities in the next phase of the NATWORK project. 
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Annex A 

A.1 Annex – Classification of attacks 

As part of the task 4.1, the NATWORK project continues to develop the attack datasets. Different partners are working on different 

attacks, on HTTP2, TCP, UDP, AMF, among others. The partners have classified their attacks so that to facilitate data collection 

activities, through uploading the generated datasets to a common repository provided by T4.5. A glimpse on the structure can be seen 

in the following table:  

 

Table 6: Classification of attacks 

Attack Name Type of attack Target Protocol Target 

DoS attacks and port scans   Denial of Service 

ICMP 
UDP 
TCP 
HTTP 

Server deployed in the 5GTN MEC 
environment 

AI-DoS attack  Denial of Service TCP/SCTP/HTTP2/UDP AMF and SMF of CERTH's testbed 

SCTP Session Flooding Denial of Service SCTP AMF of CERTH's testbed 

HTTP2 Ping Flooding attack Denial of Service HTTP2 SMF of CERTH's testbed 

HTTP2 Slow Get Flooding attack Denial of Service HTTP2 SMF of CERTH's testbed 

TCP SYN Flooding Denial of Service TCP AMF or SMF of CERTH's testbed 

UDP Flooding Denial of Service UDP UPF of CERTH's testbed 

SSH brute force attack SSH Brute Force SSH CERTH testbed 

OT/ICS attacks (Log4Shell, Brute 
Force attack) 

SSH brute force  SSH 
MONT's testbed 

Log4Shell  TCP / HTTP 

Data Exfiltration Data Exfiltration 
Depends on the attack type 
HTTP might be a target 

CNFs/VNFs on 5G testbed 

Malware Infection 
Malware 
Infection 

Depends on the attack type 
HTTP might be targets 

CNFs/VNFs on 5G testbed 

file:///C:/Users/leonardo.padial/AppData/:x:/r/sites/NATWORKProject/Shared%20Documents/WP4/T4.1/NATWORK%20Services%20and%20Attack%20Scenarios.xlsx
file:///C:/Users/leonardo.padial/AppData/:x:/r/sites/NATWORKProject/Shared%20Documents/WP4/T4.1/NATWORK%20Services%20and%20Attack%20Scenarios.xlsx
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Attack Name Type of attack Target Protocol Target 
DoSt Attack App HTTP HTTP CNFs/VNFs on 5G testbed 

Mirai botnet attack 

UDP generic UDP 

HES-SO's testbed TCP SYN TCP 

App HTTP HTTP 

Jamming Attack Jamming IEEE 802.11.p CERTH testbed 
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A.2 AI-DoS attack Tool - GORGO 

As network infrastructures evolve toward 5G and 6G paradigms, their increasing complexity and 

interconnectivity necessitate more advanced cybersecurity assessment methodologies. 

Traditional penetration testing tools often fail to simulate the dynamic and adaptive nature of 

real-world adversaries. In the following section GORGO, an AI-powered Denial-of-Service (DoS) 

attack tool is introduced. GORGO is designed to autonomously identify and exploit vulnerabilities 

in next-generation networks, providing a robust evaluation framework for system resilience. 

A.2.1 System Architecture 

GORGO employs a reinforcement learning framework, leveraging Deep Q-Learning agents 

capable of simulating and orchestrating DoS attacks. These agents do not rely on pre-configured 

datasets or manual tuning; instead, they learn and evolve through ongoing interaction with their 

environment. This allows GORGO to model highly adaptive adversarial behaviours, aligning with 

the dynamic nature of real-world cyber threats. Its design enables the tool to respond to network 

conditions in real time, altering its methods of attack as the scenario evolves. 

The technical foundation of GORGO supports an extensive range of features that contribute to 

its effectiveness as a penetration testing instrument. The system is not limited to a single 

protocol, as it can launch attacks using TCP, UDP, or SCTP, depending on the target and scenario. 

Its intelligence enables it to determine the most disruptive strategy based on the specific service 

or network component under attack. For instance, when targeting critical elements such as the 

Access and Mobility Function (AMF) or an On-Board Unit (OBU) in vehicular networks, GORGO 

adjusts its tactics accordingly. 

The tool can conduct protocol-level fuzzing: It generates and manipulates network packets 

autonomously to expose vulnerabilities that may not be detectable through standard testing 

tools. Moreover, the system facilitates collaborative learning among multiple agents, 

orchestrating synchronized attacks that are more difficult to detect and mitigate. By continually 

analysing the impact of its actions on Quality-of-Service metrics, such as latency and throughput, 

GORGO refines its strategy to enhance the overall effectiveness of the attack. 

A.2.2 Experimental Setup and validation 

An initial Validation and performance testing of GORGO was conducted using the CERTH 5G 

testbed, which provides a cloud-native, containerized network environment. This infrastructure 

includes a complete 5G core network implemented with Free5GC, along with simulated User 

Equipment and eNodeB elements. Network functions are deployed across Docker containers and 

interconnected through a software-defined networking architecture managed by Open vSwitch 

and the Floodlight controller. 
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We performed the following experiment: GORGO targeted the AMF component using SCTP over 

port 38412, leading to a complete disruption of core services. The final results of this attack are 

shown in Figure 28. The tool managed to disrupt the AMF functionalities after training on its 

environment after performing unsupervised learning that required 2 days, 21 hours, 56 minutes. 

 

Figure 28: Results of DoS attack against AMF component in real 5G testbed environment. 

The validation strategy for the first evaluation experiments of GORGO was structured so that can 

be extended to fit the scope of Use Case 3.2 of the NATWORK project. This use case focuses on 

AI-enabled penetration testing for 5G and 6G infrastructures. The evaluation was conducted 

through a three-stage scenario. Initially, GORGO launched a DoS attack while continuously 

monitoring the impact on network performance. As the attack unfolded, the system received 

feedback and dynamically optimized its approach to increase the level of disruption. The final 

phase involved a complete breakdown in communication between key network functions, 

effectively resulting in a full denial of service. 

A.2.3 Future Steps 

Further improvements to GORGO are planned to enhance its application before the end of the 

project. These include expanding support to additional protocols such as HTTP/1.1 and HTTP/2.0, 

which will allow GORGO to operate in a broader range of network environments. Techniques to 

evade intrusion detection systems are also being explored, with the aim of making GORGO's 

behaviour more difficult to detect. Recorded data from GORGO's activities will also be used to 

train intelligent intrusion detection systems, creating a feedback loop between offensive testing 
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and defensive development. These data collection activities will facilitate also the population of 

the common NATWORK data repository, provided by T4.5, with attack generated datasets. 

 

 


